
6

Enabling SIMT Execution Model on Homogeneous

Multi-Core System

KUAN-CHUNG CHEN and CHUNG-HO CHEN, National Cheng Kung University

Single-instruction multiple-thread (SIMT) machine emerges as a primary computing device in high-perfor-

mance computing, since the SIMT execution paradigm can exploit data-level parallelism effectively. This ar-

ticle explores the SIMT execution potential on homogeneous multi-core processors, which generally run in

multiple-instruction multiple-data (MIMD) mode when utilizing the multi-core resources. We address three

architecture issues in enabling SIMT execution model on multi-core processor, including multithreading ex-

ecution model, kernel thread context placement, and thread divergence. For the SIMT execution model, we

propose a fine-grained multithreading mechanism on an ARM-based multi-core system. Each of the proces-

sor cores stores the kernel thread contexts in its L1 data cache for per-cycle thread-switching requirement.

For divergence-intensive kernels, an Inner Conditional Statement First (ICS-First) mechanism helps early

re-convergence to occur and significantly improves the performance. The experiment results show that ef-

fectiveness in data-parallel processing reduces on average 36% dynamic instructions, and boosts the SIMT

executions to achieve on average 1.52× and up to 5× speedups over the MIMD counterpart for OpenCL

benchmarks for single issue in-order processor cores. By using the explicit vectorization optimization on the

kernels, the SIMT model gains further benefits from the SIMD extension and achieves 1.71× speedup over

the MIMD approach. The SIMT model using in-order superscalar processor cores outperforms the MIMD

model that uses superscalar out-of-order processor cores by 40%. The results show that, to exploit data-level

parallelism, enabling the SIMT model on homogeneous multi-core processors is important.

CCS Concepts: • Computer systems organization → Multicore architectures; Single instruction, mul-

tiple data;

Additional Key Words and Phrases: Control divergence, data-level parallelism, openCL, SIMD processors,

spatiotemporal SIMT

ACM Reference format:

Kuan-Chung Chen and Chung-Ho Chen. 2018. Enabling SIMT Execution Model on Homogeneous Multi-Core

System. ACM Trans. Archit. Code Optim. 15, 1, Article 6 (March 2018), 26 pages.

https://doi.org/10.1145/3177960

1 INTRODUCTION

Single-instruction multiple-thread (SIMT) machine, such as a GPGPU, is an effective architecture
for data-parallel workloads. Parallel programming models, such as OpenCL [17] and CUDA [29],
are typically employed for these SIMT machines. In OpenCL programming model, a data-parallel
kernel is a function that can be executed on computing devices. An instance to run the function

This work was supported by Ministry of Science and Technology, Taiwan, under Grant MOST 103-2221-E-006-266-MY3.

Authors’ addresses: K.-C. Chen and C.-H. Chen, National Cheng Kung University, Department of Electrical Engineering, 1

Da-Tsuen Rd. Tainan, 70101, Taiwan; emails: edi751001@gmail.com, chchen@mail.ncku.edu.tw.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1544-3566/2018/03-ART6 $15.00

https://doi.org/10.1145/3177960

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

https://doi.org/10.1145/3177960
mailto:permissions@acm.org
https://doi.org/10.1145/3177960

6:2 K.-C. Chen and C.-H. Chen

Fig. 1. Dynamic kernel instruction counts in SIMT or MIMD execution for OpenCL applications.

is called a work-item or a kernel thread. A number of work-items form a work-group, which is
dispatched to a computing unit, e.g., a GPGPU streaming multiprocessor (SM) or a CPU core, for
execution. A kernel can use the barrier built-in function for the synchronization of the work-items
within the same work-group. By this abstracted execution model, the OpenCL programming model
supports a unified programming interface for heterogeneous system architectures, including not
only GPUs but also multicore CPUs and other types of processors.

For the OpenCL programming model, an SM can execute one or more work-groups and typ-
ically runs each of the work-items by a thread. A set of threads are grouped into a warp [28]
or a wavefront [40] for execution in a SIMD lockstep fashion where the warps are scheduled by
a hardware scheduler. This hardware warp scheduler also handles the barrier synchronizations
among the threads. In this way, an SM can directly run the data-parallel threads, i.e., work-items,
in fine-grained parallel computation.

On the other hand, a processor core of a homogeneous multi-core processor generally supports
a single thread, assuming that simultaneous multithreading (SMT) is not used. In this way, mul-
tiple threads are executed by the processor cores in parallel to perform the multiple-instruction
multiple-data (MIMD) operations. As the number of the threads often outnumbers the processor
cores, thread context switching overhead occurs. The granularity for a thread execution must be
sufficiently large to reduce these overheads. To this end, prior works for data-level parallelism ap-
plications typically use a control thread to serialize the work-item executions in a coarse-grained
fashion [11, 14, 18, 21, 37, 38], such as work-item coalescing [21]. The granularity of this control
thread often equals the size of a work-group in OpenCL model.

To examine the impact of running data-parallel applications in different processor execution
models, we use a quad-core processor, referring to Table 2 for the system configuration, to run
OpenCL kernels in both the SIMT and the MIMD operations, respectively. For the MIMD execution
mode, the kernel functions, i.e., work-items, are serialized for executions by the control threads as
described previously. For the SIMT mode, the concurrent work-items are executed in a warp-based
fine-grained multithreading. The evaluated applications are from the OpenCL benchmark suits [1,
4, 29].

Figure 1 shows the dynamic kernel instruction counts of the SIMT execution normalized to the
MIMD mode. For the applications that are barrier-intensive, we observe that switching among
work-item executions in the MIMD mode has produced excessive dynamic kernel operations, by
about 2.37 times more dynamic kernel instructions than the SIMT executions. For the other appli-
cations, SIMT and MIMD approaches have similar dynamic kernel instruction counts. The result
indicates that a homogeneous multi-core processor running in SIMT execution model can elimi-
nate the software approach overheads in terms of the dynamic kernel instructions, especially for
the barrier-intensive applications.

The SIMT performance benefits can be gained for contemporary homogeneous multi-core pro-
cessors, for instance, the ThunderX ARM processor that has 48 cores [2], the Tilera TILE64 pro-
cessor [45] that has 64 cores, and the 61-core Intel Xeon Phi co-processor [15]. However, enabling

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:3

SIMT operation on a homogeneous multi-core processor faces several architecture level challenges.
The first comes from the difference of the multithreaded execution mechanisms. Generally, an SM
runs the threads concurrently by a hardware-assistance fine-grained multithreading scheme. In
contrast, a homogeneous processor core switches executions among the threads based on a soft-
ware approach. Like an SIMT GPU, a hardware support that allows the processor cores to run
the concurrent threads in fine-grained multithreading is necessary to enable the SIMT execution
model.

The next challenge is due to the fine-grained multithreading, which switches thread executions
on each cycle [12]. To meet this cycle constraint, an SM often uses a vast register file to store
all the concurrent thread contexts, allowing to access the thread contexts in time. However, the
register file in a homogeneous processor core is generally employed for a single thread execution
while the on-chip memories are used as caches. Hence, on a homogeneous multi-core system, an
effective mechanism to access concurrent thread contexts in time is the key to achieve per-cycle
thread-switching for SIMT operations.

The third challenge is to resolve the branch divergence problem, which decreases the SIMT
efficiency. In an SM, when the warp threads take different execution paths due to a divergent
branch, the warp goes through all the divergent paths sequentially. Each of the warp threads only
commits the results of its taken execution path. On the other hand, this branch divergence problem
never occurs in the MIMD execution mode. Thus, a solution that copes with the branch divergence
is required when the processor runs in the SIMT mode.

In this article, we propose an SIMT execution model, which is integrated into an ARMv7 multi-
core system, to achieve an SIMT/MIMD dual-mode architecture. This architecture can overcome
the above challenges and alternatively runs the concurrent threads either in the SIMT or the MIMD
mode, whichever is best for the performance. The proposed SIMT approach includes a spatiotem-
poral warp scheduling policy, an effective kernel thread context placement method, and a compiler
framework with hardware support for thread re-convergences. Overall, we have made the follow-
ing contributions in the system and micro-architecture design of a new multi-core application:

(1) The spatiotemporal warp scheduling policy enables the SIMT execution paradigm on a ho-
mogeneous multi-core processor. This SIMT execution model achieves about 2× speedup
over the MIMD mode for the barrier-intensive kernels.

(2) The thread context placement method proposes an addressing scheme that allows to store
the contexts of simultaneous kernel threads in the L1 data cache in SIMT execution mode.
This mechanism greatly reduces the kernel-level context switch overhead; for the barrier-
intensive kernels, only 20% of the memory instructions are needed for the SIMT executions
compared to the MIMD mode.

(3) The proposed compiler-assisted thread scheduling mechanism, Inner Conditional State-
ment First (ICS-First), prevents the SIMT model from heavy performance loss caused by
divergence executions and saves an average of 17% execution time compared to that with-
out using the re-convergence methods.

The rest of this article includes the following sections. Section 2 presents the related works.
Section 3 introduces the implementation details of the proposed dual-mode architecture. Section 4
presents the framework of the ICS-First mechanism, including a compiler framework based on an
ARM-based system. Section 5 shows the evaluation results. Finally, Section 6 concludes this article.

2 RELATED WORK

Previous works [11, 14, 18, 21, 37, 38] exploring data-level parallelism on multi-core processors
typically serialize the work-item executions in control threads. AMD’s Twin Peaks [11] uses a

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:4 K.-C. Chen and C.-H. Chen

user-level thread to execute a work-item and runs these threads in sequence. Other approaches
[14, 18, 21, 37, 38] dictate the work-item scheduling to the compiler framework. During compile-
time, a kernel source code is divided into multiple code regions according to the synchronization
barriers where each region is wrapped with a work-item loop for iteration execution. This method
is called work-item coalescing in SNUCL framework [21]. Lee et al. have shown that the work-item
coalescing technique is effective in several multi-core architectures [20, 21].

For multiple work-item executions, the control thread needs to replicate kernel variables for
each of the work-items. This incurs kernel-context switching for accessing the replicated vari-
ables. Stratton et al. [38] demonstrated a selective replication concept to reduce the replicated
variables when serializing CUDA kernels. Later, they proposed a variance vector approach for re-
dundancy removal of kernel variables [37]. Jääskeläinen et al. [14] proposed to examine the kernel
variable lifespans for replications by Single Static Assignment Control Flow Graphs, i.e., a com-
piler intermediate representation. Lee et al. [21] presented a web-based variable expansion to deal
with variable expansions across different loop nests.

In contrast to the prior works, this article proposes to execute the bulk concurrent threads on a
homogeneous multi-core processor in a hardware-assistance manner to avoid these software ap-
proach overheads. To the best of our knowledge, this work is the first to investigate how the kernel
thread execution fashions, i.e., by the SIMT or the MIMD execution models, affect the performance
on a homogeneous multi-core system. On the other hand, performance enhancement in exploit-
ing data-level parallelism by vector instructions is investigated in several prior works. Stanic et al.
proposed an integrated vector-scalar design on an ARM-based processor [36]. Jo et al. proposed a
compiler optimization technique that employs both the implicit and explicit vectorization to im-
prove the OpenCL kernel executions [16]. These works optimize the intra-thread execution by
vector instructions or SIMD extensions. In addition to SIMD extensions, many CPUs, SPARC T5
[41] and Intel i7 [25] for instance, exploit thread-level parallelism by SMT technique [39], which
enables processor cores to execute multiple independent instructions from different threads in
each cycle.

Furthermore, several prior works studied the execution of applications on heterogeneous sys-
tem with CPUs and GPUs [13, 30] or task migration [44] between them. Traditionally, the CPUs
execute control tasks that offload the data-parallel workloads to the GPUs for higher throughputs.
Wen et al. [44] presented a task scheduling scheme with a predication model to exploit all the het-
erogeneous computing resources, i.e., CPUs and GPUs. In contrast to these works, this article aims
to improve the data-parallel executions on the homogeneous multi-core processor and proposes
solutions to address the architecture issues in enabling SIMT execution model.

As mentioned in Section 1, control divergence problem needs to be considered in an SIMT execu-
tion model. Previous works resolving this problem can be classified into two categories according
to the methods used: thread re-convergence and divergence mitigation. For the re-convergence
mechanism, Fung et al. [10] used immediate post-dominator (IPDOM) to identify the potential re-
convergence points at compile time. At runtime, divergent threads will re-converge at the IPDOM
points through the stack-based execution. Diamos et al. proposed the thread frontier concept [8]
for earlier re-convergence of divergent warp threads than the IPDOM approaches. Their work
was based on the Min-PC approach, which is an implicit thread frontier re-convergence. How-
ever, these methods need either stack storages for IPDOM approaches or multi-layer PC compar-
isons for Min-PC approaches. On the other hand, this article proposes Inner Condition Statement
First (ICS-First) mechanism to achieve re-convergence, which requires simpler hardware logic
implementation.

Other previous works mitigate the divergent execution cycles by either compaction techniques
[9, 27, 32, 42] or warp subdivision methods [26, 31, 33]. Compaction techniques dynamically

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:5

compact or re-form warps according to the active masks of the schedulable warps. This improves
the SIMD lane utilization and then shortens the divergence execution. Fung et al. [9] proposed a
thread block compaction mechanism where a thread block consists of threads within a work-group.
This mechanism re-groups the threads of a thread block into warps for execution. Narasiman et al.
[27] proposed a large warp microarchitecture that groups threads into large-size warps and dy-
namically creates SIMD width sized sub-warps from the active threads in a large warp. Vaidya
et al. [42] presented an intra-warp compaction method to reduce the execution cycles of a diver-
gent warp. Rhu et al. [32] introduced SIMD lane permutation technology that achieves a balanced
permutation for warp threads and offers effective compaction.

In contrast, warp subdivision approaches split a warp when the warp encounters a divergent
situation, which may be either a branch divergence or a memory divergence. In this way, the SIMT
machine has more schedulable warps, which help to increase latency tolerance. Meng et al. [26]
proposed a dynamic warp subdivision method that subdivides a warp upon divergences, including
branch divergences and memory divergences. Rhu et al. [31] introduced a dual-path execution
model that interleaves warp executions for intra-warp parallelism when the warp encounters a
structured divergent control flow. Rogers et al. [33] proposed variable warp sizing to improve the
performance of divergent kernels using a small warp size. Wang et al. [43] presented a multiple
SIMD, multiple data architecture that permits the SIMD processor executing multiple divergent
paths simultaneously. These divergent mitigation methods can be integrated with the proposed
ICS-First mechanism to further improve SIMT efficiency, as we will suggest in Section 5.3.

In addition to control divergence problem, the warp scheduling policy also affects the perfor-
mance of SIMT machines significantly. Most of the prior works studying the warp scheduling
tackled the performance loss from long latency memory instructions. Rogers et al. [34] introduced
a cache-conscious wavefront scheduling scheme to improve the cache efficiency by throttling the
active threads or warps. Li et al. [22] presented a priority-based cache allocation method to reduce
the cache pollution caused from massive active threads without throttling them. On the other hand,
Liu et al. [23] proposed a barrier-aware warp scheduling scheme to reduce the warp-induced stalls
rather than reduce the memory latency. In this article, we focus on the architecture supports in en-
abling dual-mode processor and only use the loosely-round-robin for the warp scheduling scheme.
More comprehensive studies about the warp scheduler in homogeneous multi-core system can be
investigated in the future.

3 SPATIOTEMPORAL SIMT EXTENSION ON A HOMOGENEOUS

MULTI-CORE PROCESSOR

In this section, we elaborate on the required micro-architecture to enable SIMT execution based on
a homogeneous multi-core system. This dual-mode architecture can run the data-parallel threads
in either the SIMT or the MIMD mode.

3.1 Dual Mode CPU Architecture

Figure 2 shows the proposed SIMT/MIMD dual-mode architecture, which includes an SIMT co-
processor for warp scheduling, logic for warp PC arbitration, and a warp context dispatching unit.
To sustain multiple concurrent threads of execution, a per-core CPU thread descriptor table is used
to store the execution states of all the sustainable threads running on the processor core.

We propose to use the private first-level data cache to store the concurrent thread contexts. In
this way, a processor core is able to support multiple simultaneous threads for SIMT operations
by re-using its existing cache memory. The threads scheduled on a processor core simultaneously
are called CPU threads in this article.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:6 K.-C. Chen and C.-H. Chen

Fig. 2. SIMT/MIMD Dual-mode CPU architecture for a cluster of N processors.

We assume that processor cores are grouped into clusters and that a cluster is the basis of an
SIMT unit, i.e., the analogy of an SM used to serve a work-group. In this way, a processor core
can work as an SIMD lane, where the instruction to be executed is dispatched from the SIMT
co-processor.

To schedule the massive number of CPU threads efficiently, we use a warp-based scheduling
approach that groups a number of the CPU threads into a warp and schedules the instructions
from different warps for fine-grained multi-threading execution. As shown in Figure 2, when the
cluster performs the SIMT operation, the warp scheduler in the SIMT co-processor first selects a
warp based on a given policy, and then the warp PC arbiter provides a warp PC for the scheduled
warp. The warp PC is decided according to the thread execution states of the scheduled warp.
The execution states of the warp are stored in the CPU thread descriptor table and read by the
SIMT co-processor interface. The warp PC pointed instruction is fetched by the SIMT instruction
fetch agent, a designated processor core in the cluster, and then executed by all the cluster cores
to perform the SIMD operations.

Similar to the terminology used in the GPGPU, the warp size denotes the number of concurrent
threads running on the same instruction stream while the SIMD width denotes the number of
physical execution lanes. In this work, the SIMD width is the number of processor cores in a
cluster. Because a typical SIMD width is usually less than the warp size, a warp will be executed in
multiple execution rounds. Each execution round runs a SIMD width sized sub-warp; consequently,
the number of execution rounds for a warp is the warp size divided by the SIMD width.

Since the threads in a sub-warp are executed by all the SIMD lanes in synchrony, it is also called
a spatial sub-warp. On the other hand, those warp threads that are executed by the same SIMD
lane in consecutive execution round form a temporal sub-warp [24]. Thus, the SIMT co-processor
introduces a third component, a spatial sub-warp context dispatcher, which prepares the current
CPU thread ID, warp instruction, and PC for a spatial sub-warp execution, and as a result runs a
warp in the consecutive execution of spatial sub-warps.

In summary, the SIMT approach is achieved by adding the per-core thread descriptor table and
the SIMT co-processor, which includes a warp scheduler, warp PC arbiter, and spatial sub-warp
context dispatcher, to the cluster-based multicore processor. The detailed functionalities of these
components are described in the following sections.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:7

Table 1. Notation Used

Symbol Description

pi Cluster processor core i , where 0 ≤ i ≤ SIMD_width − 1.
Nct Number of CPU threads in a processor core.
nact Number of active CPU threads in a processor core, counted by

WorkGroupSize/SIMD_width where the work-group size is announced
by OpenCL API function.

t (i, j) CPU thread j on processor core pi , where 0 ≤ i ≤ SIMD_width − 1,
0 ≤ j ≤ Nct − 1.

NI SA_r eд Number of general purpose registers that ISA defines.
Nit Iterative execution times of a warp, evaluated by

Warp_size/SIMD_width.
Wm Warpm, where 0 ≤ m ≤ Nct/Nit − 1.
Wtk Warp thread k , where 0 ≤ k ≤ warp_size − 1.

ssw (v,m) Warp wm ’s spatial sub-warp v , where 0 ≤ v ≤ Nit − 1.
tsw (i,m) Warp wm ’s temporal sub-warp i , where tswi runs on pi .
TPMi Processor core pi ’s on-chip memory, which is used as the thread

privatization memory when pi runs in SIMT mode.
TPO Thread-privatization objects, which are used by a CPU thread for ISA

registers and stack objects.
ntpo Number of thread-privatization objects allocated to a CPU thread,

evaluated by L1_cache_size/(nact ∗ ISA_reдister_width).
TPO (i, j,d) CPU thread t (i, j) ’s dth TPO.
vTPO (i,m,d) Temporal sub-warp tsw (i,m) ’s dth TPO.

3.2 CPU Thread Descriptor

A CPU thread descriptor stored in an entry of the CPU thread descriptor table is associated with
a CPU thread. As shown in Table 1, we use the notation t (i, j) to denote a CPU thread j run on
processor core i . As an example, for a table of 128 entries, the maximum number of concurrent
CPU threads that can be assigned to a processor core for execution is 128, and the CPU threads of
core zero can be denoted from t (0,0) to t (0,127) .

To run a kernel program, a processor core cluster is assigned a number of work-items depend-
ing on the work-group size announced by the programmer. The work-items in a work-group are
evenly distributed to the cluster cores for execution, and are scheduled as the CPU threads se-
quentially numbered from zero. To do this, a cluster processor core stores the work-item IDs into
the CPU thread descriptors and initializes all the other descriptor items as the cluster is assigned a
work-group. In the OpenCL approach, a cluster processor core starts executing these initialization
functions when a work-group is created and dispatched to the cluster by the OpenCL API function,
clEnqueueNDRangeKernel. Then, the cluster starts SIMT operation after all of the cluster processor
cores finish the initialization functions.

The CPU thread descriptor is shown in Figure 3. The work-item identifier is a three-dimensional
value (X, Y, and Z) that identifies which work-item is assigned to the CPU thread. Each CPU
thread has a PC to point to the instruction that is going to run, and the condition code is used
for conditional execution. The thread descriptor includes a state and priority that indicate the
execution state of the corresponding work-item. The state bits identify the work-item execution
in one of the following states: idle, ready, barrier, or execution. Figure 4 shows a CPU thread state

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:8 K.-C. Chen and C.-H. Chen

Fig. 3. CPU thread descriptor. Fig. 4. CPU thread state transition.

transition diagram, where the arrows denote the processor core actions. The state begins with the
idle state in which no work is assigned to the CPU thread. The ready state is entered as a work-item
is assigned to the corresponding CPU thread, or returns from the execution or barrier state.

As a CPU thread is scheduled to execute a warp instruction, the state transfers to the execution
state. Whenever the executed instruction reaches the end of the pipeline to commit its result, the
state returns to ready if it is a non-barrier instruction or transfers to the barrier state if it is a
barrier instruction. The barrier state indicates the requirement for bulk thread synchronization.
When all of the associated CPU threads reach the barrier state, their CPU thread states become
ready again for execution. Also, as a thread exit instruction is reached, this means the thread
has run to completion and the state returns to the idle state. When all the threads have run to
completion, the cluster processor cores return to the MIMD mode. While state transition to the
ready or execution state can be signaled by the execution of an instruction or by processor core
actions, the transition to the barrier or idle state is triggered by a specific instruction.

3.3 Warp Scheduling and Warp PC Arbitration

Once all of the cluster processor cores set up their respective CPU thread descriptor tables, they
raise their SIMT mode registers to signal the SIMT co-processor that they are ready to enter the
SIMT mode. The cluster processor cores then begin executing the warp instructions received from
the SIMT co-processor.

A complete warp is divided into multiple temporal sub-warps, tsw, (see notation used in Table 1)
according to the cluster processor core number, where a temporal sub-warp is formed by a chain
of CPU threads in a cluster processor core. Given a warp size of 32 and an SIMD width of four,
for instance, the first eight CPU threads (CPU thread ID from 0 to 7) of each processor core form
the first temporal sub-warp while the second eight CPU threads (CPU thread ID from 8 to 15)
of each processor core form the second temporal sub-warp, and so on. Consequently, the mth
warp consists of the mth temporal sub-warps from the cluster processor cores. Hence, with 128
CPU threads per core, each processor core accommodates at most 16 temporal sub-warps; namely,
there are at most 16 active warps that can be scheduled for execution each cycle in a cluster.

As a cluster runs in the SIMT mode, the warp scheduler reads the warp state bits through the
hardwired logic from the CPU thread descriptor tables to decide the ready-to-run warps. A ready-
to-run warp contains threads in either ready or barrier state with at least one thread in the ready
state. One of the ready-to-run warps will become the candidate warp for execution according to the
warp scheduling policy used, for example, a round robin policy. The warp PC arbiter determines
a warp PC to use for the ready-state threads based on the given thread priority. We develop a
compiler-managed thread priority scheme, which will be discussed in Section 4, to set the thread
priority at runtime.

3.4 Instruction Fetch and Sub-Warp Scheduling

One way to fetch a warp instruction is by broadcasting the warp PC to the cluster processor
cores where each uses this PC to fetch the instruction for execution, respectively. To coalesce the

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:9

redundant fetches of the same instruction, an alternative is to designate one of the processor cores
to fetch the warp instruction on behalf of the other processor cores, as illustrated in Figure 2. As
an example, the fetch unit associated with the instruction memory management unit (IMMU) of
core zero is devoted to SIMT instruction fetching while the rest of the IMMUs have no operation
in the SIMT mode. When the IMMU of core zero receives the warp PC, the fetch unit uses this PC
to fetch the instruction, as in the conventional mode. The fetched instruction is returned to the
warp context dispatcher for broadcasting later.

When the warp size is greater than the SIMD width, a warp is decomposed into multiple spatial
sub-warps (ssw) for iterative executions. The number of iterative times is denoted as Nit . A spatial
sub-warp, ssw (v,m) , is identified by the iteration sequence numberv and the warp IDm. In addition,
the warp threads of warpm executed in the same SIMD lane form the temporal sub-warp, denoted
as tsw (i,m) , where i is the SIMD lane ID andm is the warp ID. Note that a fetched warp instruction
will be executed iteratively Nit times for a warp execution, that is, the tsw size equals Nit .

In each execution round, all of the cluster processor cores execute the same warp instruction
according to the current CPU thread ID, which associates with an ssw , in synchrony. Namely, an
ssw (spatial sub-warp) consists of those threads running on each cluster processor core of the same
CPU thread ID. Given a CPU thread t (i, j) , which is associated with the spatial sub-warp ssw (v,m) ,
the current CPU thread ID, j, can be obtained by Equation (1):

j =m ∗ Nit +v, (1)

where v ranges from 0 to 7, m ranges from 0 to 15 and Nit equals 8; given a warp size of 32, an
SIMD width of 4, and a 128-entry CPU thread descriptor table.

Thus, an ssw (spatial sub-warp) context is a three-tuple value consisting of the warp instruction,
the warp PC, and the current CPU thread ID (j in Equation (1)). The current CPU thread ID is
broadcast from the SIMT co-processor for each ssw execution, and is used to index the CPU thread
descriptor and to address the thread contexts in the on-chip memory, the L1 data cache in this
work. The warp instruction and PC are broadcast for the first ssw and then buffered by the cluster
processor cores for the remaining Nit − 1 spatial sub-warps until the warp is completed.

To support the SIMT approach while retaining the conventional processor execution model,
we design two instruction fetch and commit paths for MIMD and SIMT modes, respectively. As
shown in Figure 2, each processor core holds an SIMT mode register that indicates the operation
mode. The M1 mux is simply used to select the instruction source for either mode of operation
while the output of the M2 mux is an additional flag for the instruction commit. In the SIMT mode,
if the warp PC and the current CPU thread PC, which is read from the CPU thread descriptor of
an SIMD lane, are different, this means the SIMD lane diverges from the warp execution path. In
this case, the output of M2 is used to disable the instruction commit operation.

3.5 Implementation of Thread-Privatization Memory

Figure 5 gives an example of using the processor core’s L1 data cache for storing the concurrent
threads’ contexts when the core runs in the SIMT mode. In SIMT mode, the L1 data cache is called
a thread-privatization memory (TPM), which is evenly shared among all the active CPU threads.
The number of active CPU threads in a processor core is nact , that is, the work-group size divided
by the SIMD width. The thread-privatization memory is accessed in words or ISA-register width,
e.g., 32-bit in our example. As a result, a CPU thread can obtain ntpo 32-bit TPO referring to Table 1
where these TPOs are numbered from 0 to ntpo − 1.

In general, a CPU thread’s private memory includes ISA-defined registers and stack objects.
This work proposes to use thread-privatization objects for the thread context storage as much as
possible. In this way, when running in the SIMT mode, the data of CPU thread registers, i.e., the

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:10 K.-C. Chen and C.-H. Chen

per-thread ISA registers, are placed in the L1 data cache instead of in the original CPU register
file. The data of a CPU thread register are stored in a TPO where the register ID d is used to index
the TPO. Since the tsw threads running on the same processor core execute the same instruction
stream, they require the registers of the same IDs for a warp instruction execution. Thus, theTPOs,
which are indexed by d for the tsw threads in processor core i , are placed in a contiguous memory
space for accessing in parallel, as shown in Figure 5.

Let TPO (i, j,d) denote the dth TPO allocated to the CPU thread t (i, j) . The TPO (i, j,d) is accessed
according to Equation (2), assuming that the object width is 32-bit, i.e., 4 bytes. The portion of the
L1 data cache of processor core i , which is used as the thread-privatization memory in the SIMT
mode, is denoted as TPMi . Note that the CPU thread t (i, j) is associated with the spatial sub-warp
ssw (v,m) , referring to Table 1:

m = j � log2 (Nit), (2a)

v = j&(Nit − 1), (2b)

TPO (i, j,d) = TPMi [((m ∗ ntpo + d) ∗ Nit +v)]. (2c)

This placement helps to parallel access a set of TPOs for the threads in a tsw . The set of TPOs
numbered d for the threads in tsw (i,m) is a vector TPO denoted as vTPO (i,m,d) . For instance, the
vTPO (i,1,2) in Figure 5 denotes the set of third TPOs (numbered from zero) for the threads in
tsw (i,1) . Each vTPO , which is placed in a cache line for parallel accessing, can be addressed by
the warp ID m concatenated with the TPO ID d , i.e., (m ∗ ntpo + d). Since the threads in a tsw
will be executed in Nit rounds by a cluster processor core, the operand collectors are added to the
cache to hold all the operands of the current instruction in a temporal sub-warp until all the threads
are complete. A mux is used to select the operands of the executing thread by the iteration sequence
number v of the spatial sub-warp ssw (v,m) . This addressing scheme has been verified on a 32KB
cache memory with cache line size configured to either 32 or 64 bytes.

3.6 Thread Stack Object Placement

As mentioned above, each CPU thread uses NI SA_r eд TPO to store the register data. NI SA_r eд de-
notes the number of ISA defined registers. However, the number of per-threadTPOs, ntpo , usually
outnumbers NI SA_r eд . For example, if the cache size is 32KB, and the number of cluster cores is
four, a processor core will get 64 active threads out of the 256 work-items. In this case, an active
thread can be allocated with 128 32-bit TPOs.

To fully utilize the higher speed L1 data cache in the SIMT mode, we use the restntpo − NI SA_r eд

TPOs to store the thread stack objects as shown in Figure 6. In this way, the data of a stack object are
stored either in aTPO or in the main memory. Before discussing how to achieve this, we introduce
the stack memory allocation for all the active CPU threads on a processor core.

As each of the active threads has its own private stack, the stack pointers (SP) of these threads
have to be initialized to different values. To achieve this, the OpenCL runtime assigns a stack
segment to a processor core where the segment will be distributed to the active threads using a
predefined thread stack size. Assuming the SP initially points to the top of stack of the respective
threads, which is the highest address in the stack, and its value grows down as the stack objects
increase, the SP value of an active thread j is initialized by Equation (3):

SPj = TOSseд − j ∗ Sizestack , (3)

where theTOSseд is the top of the stack segment; j is the CPU thread ID, and Sizestack is the stack
size allocated to an active thread.

Figure 7 depicts the mapping between a stack object to a TPO. Considering that the predefined
thread stack size is a power of two, a stack object address can be decoded into a segment number,

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:11

Fig. 5. Data cache used as the register file for pro-

cessor core pi .

Fig. 6. Stack memory arrangement for a CPU thread.

Fig. 7. Conversion from stack object address to thread-

privatization object ID.

CPU thread ID, and a stack object offset. Assuming 32-bit word is used, the stack address, which
will be redirected to a TPO, is aligned to the 32-bit width; thus, the last two bits are ignored when
generating the object ID.

Since the stack object address decreases as the number of stack objects increases, the stack object
index can be obtained by the one’s complement of the stack object offset. As shown in Figure 6, a
stack object can be stored in a TPO when its index is less than or equal to ntpo − NI SA_r eд . A TPO

for a stack object can be indexed by the addition of the stack object index and the base NI SA_r eд . In
addition, by adding a memory attribute to the segment descriptor, the memory management unit
is able to determine whether a memory address is located in the stack segment or not.

In this way, we have provided a uniform addressing scheme for accessing the thread’s ISA reg-
isters as well as the thread stack objects from per-thread thread-privatization objects. By this uni-
form addressing scheme, the processor cores are able to access the private thread contexts in time
for fine-grained multithreading. In addition, by storing the data of stack objects in the thread-
privatization objects, the cache memory capacity can be utilized effectively.

4 COMPILE-ASSISTED THREAD SCHEDULING

This section describes the Inner Conditional Statement First thread scheduling algorithm as well
as its compiler-assisted framework. We also give an implementation example of the warp PC ar-
bitration based on thread priority.

4.1 Inner Conditional Statement First Strategy

The “inner conditional statement first” scheduling policy achieves thread re-convergence by lever-
aging the following observation: Since a warp thread divergence generally comes from a condition
statement, a re-convergence chance may arise when the warp threads finish the inner conditional
statement and then rendezvous with other threads at the outer statement.

Specifically, the proposed mechanism gives an inner conditional statement of depth i a higher
priority for execution than its outer statement of depth i-1. In this way, the priority of a conditional
statement is determined by the depth of the nested conditional structure. Thus, the outer statement

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:12 K.-C. Chen and C.-H. Chen

can proceed as soon as there is no more inner conditional statement left for execution. As a result,
re-convergence may occur, since the faster threads will wait at the outer statement.

The ICS-First mechanism consists of compiler insertion framework and adjustment of CPU
thread priority. The compiler has to insert the priority setting instructions at the proper locations
for the priority-level adjustment. The warp PC arbiter then references the CPU thread priorities
to prepare the warp PC. The following sections introduce the compiler framework and present a
case study of the priority-based thread scheduling mechanism.

4.2 Compiler-Assisted Insertion Framework

To achieve ICS-First execution, we introduce three priority setting operations: raise-the-priority,
lower-the-priority, and set-outmost-priority. The raise-the-priority operation increments the CPU
thread priority level by one while the lower-the-priority operation downgrades one level of the
priority. The set-outmost-priority operation defines a thread not entering any conditional state-
ments, which in default has the lowest priority level.

To insert priority setting instructions, the kernel source code is first transformed into an abstract
syntax tree (AST), which consists of data structure nodes denoting the declarations of functions
or variables, and statements. Algorithm 1 depicts the rundown of finding the insertion points in
the AST nodes through checking the condition statements. Clang, a C language family front-end
compiler of LLVM framework, is employed to generate the AST structure and the kernel source
code with the insertion tags. To insert these tags at the correct location, each AST node uses four
member functions for position identification: begin(), end(), before(), and after().

The begin() and end() functions identify the beginning and end of the statement, respectively.
The before() function indicates the position just in front of the statement while the after() func-
tion locates the successor points where the AST tracer leaves the statement. A priority instruction
pragma is inserted at one of these positions by adding an extra corresponding AST node to the
tree structure. In addition, we further use member functions: isConditionStatement() and isCond-

tionalStatementBody(), to identify whether an AST node is a condition statement or a conditional
statement body.

At first, the “set-outmost-priority” pragma is inserted to indicate the beginning of the kernel
function, which has the lowest priority. A kernel function is found as a function declaration node,
which has kernel attribute. As tracing the underlying AST node of the kernel function, whenever

ALGORITHM 1: Priority pragma insertion

Input: AST-Tree = KernelSourceCode.GetAST-Tree();

pragma-stack = NULL;

for every Decl *D in AST-Tree do

if D is a FunctionDecl FD && FD.isKernelFunc() then
FD.begin().set-outmost-priority();

for every Stmt S in FunctionDecl FD do

if S.isConditionStatement() then
S.before().raise-the-priority();

pragma-stack.push();

else if S.isConditionalStatementBody() then

if AST tracer reaches S.end() then
pragma-stack.pop();

if pragma-stack == NULL then
S.after().set-outmost-priority();

else
S.after().lower-the-priority();

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:13

Fig. 8. Active thread vector generation logic,

N priority level, where warp size is K.

Fig. 9. Pseudo-code of highest priority warp

thread arbitration.

the AST tracer sees a conditional statement, such as an if-statement or a loop-statement, the algo-
rithm inserts the “raise-the-priority” pragma before that statement.

As the AST tracer finishes tracing a conditional statement, there are two candidate pragmas,
“lower-the-priority” and “set-outmost-priority,” will be inserted according to whether the inserted
location is out of any conditional statement or not. We use a stack, which is initialed to NULL
at beginning, to determine the inserted pragma. A flag is pushed onto the stack each time “raise-

the-priority” is inserted. A pop operation of the stack is performed each time the AST tracer fin-
ishes tracing a conditional statement. For a null stack, “set-outmost-priority” is inserted, otherwise,
“lower-the-priority” is inserted. Finally, all pragmas are translated into the corresponding instruc-
tions when generating the binary code, i.e., co-processor instructions MCR in ARM-based ISA.

4.3 Case Study: Per-Thread Priority Adjustment and Vector-Based

Warp PC Arbitration

Referring to Figure 3, a CPU thread state consists of a thread priority and a four-state bit vector,
including Idle, Ready, Execution, and Barrier, respectively. Furthermore, an N-level thread priority is
also implemented as an N-bit vector, where each bit indicates a priority level. Whenever a processor
core encounters a priority setting instruction, the core uses the current thread ID to index the CPU
thread descriptor to update the thread priority level.

The current warp PC is selected from the warp threads that have the highest execution priority
level. In an N priority-level architecture, there are N active thread vectors (ATV) to show the active
threads for each priority level. If a warp consists of K CPU threads, then each ATV is a K-bit vector,
where a bit shows whether the corresponding CPU thread is active or not at a given priority level.
Since a processor core providesNit CPU threads to form a warp, a CPU thread t (i, j) can be identified
as a warp threadwtk by Equation (4), where t (i, j) is associated with the spatial sub-warp ssw (v,m) ,
and v is evaluated by Equation (2b):

k = i ∗ Nit +v = i ∗ Nit + (j&(Nit − 1)). (4)

The warp thread ID k, ranging from 0 to K-1, is used to address the ATV’s bit position of a given
priority level. At priority level n, the kth bit of the active thread vector, ATV -Pn[k], stands for
whether wtk is active. ATV -Pn[k] is determined by Equation (5):

ATV -Pn[k] = (I ′ · E ′ · R · B′) · Pn , (5)

where I, E, R, and B are thread state bits; Pn is the nth bit of the thread priority; k is from zero to
K - 1, and n is from zero to N - 1.

ATV -Pn[k] has a logic value of one if and only if thewtk is active (R is true) as well as turned on
at priority level n. Figure 8 illustrates the logic diagram for the ATVs of N priority levels. Figure 9
illustrates the pseudo-code that arbitrates the highest priority warp thread. This procedure takes

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:14 K.-C. Chen and C.-H. Chen

Table 2. Dual-Mode Multi-Core Platform Configurations

Single Issue In-Order Platform Configuration

Platform Component Baseline Configuration

core cluster a cluster has 4 cores
core model in-order, ARMv7-A ISS, VFP 3.0, 1GHz

L1 I/D-Cache (private) 4-way, 64B line, 32KB, 1 cycle delay, write through, perfect write buffer
L2 Unified Cache (private) 8-way, 64B line, 256KB, 8 cycles delay, MOESI cache coherence, write back

I/D TLB 32 entries, 20 cycles miss penalty
Main memory 200 cycle latency

SIMT Architecture Configuration

Simultaneous CPU threads Up to 128 CPU threads per core
Warp scheduling Round robin, warp size is 32

Warp thread scheduling ICS-First
Compiler Framework

front-end Clang 3.7
back-end LLVM 3.7 & GCC 4.9.2

work-item coalescing SnuCL with LLVM2.9

Table 3. The Superscalar Processor Core Variances

MIMD mode Out-of-Order MIMD mode In-Order Dual-mode

Execution units 2 Integer units, 2 Floating point units, and 1 Load-store unit, Compatible with ARM v7 and VFP 3.0, 1 GHz

Issue width 3 2 3

Commit width 3 2 3

Inst. fetch queue 32

Instruction widow 128

Branch predictor 2-bit, 4096 entries. (only used in MIMD mode)

BTB entry 4,096 entries. (only used in MIMD mode)

Load-store queue 32, support hit under multiple miss read 32, in-order execution 32, in-order execution

all the ATV -Pns as its inputs and then outputs the highest priority WTID using a one-hot bit
vector, where the logic one position indicates the warp thread ID.

5 EXPERIMENTAL EVALUATION

In this section, we present a detailed evaluation of the proposed dual-mode architecture.

5.1 Methodology

We model the proposed dual-mode multi-core architecture in SystemC modules. First, we imple-
ment a single issue in-order processor core, see Table 2. The approximately timed SystemC instruc-
tion set model is fully compatible with the ARM v7 architecture and has been verified by booting
the Linux OS [3]. All simulated processor cores have their private cache systems, including an L1
I-cache, an L1 D-cache, and an L2 unified cache. The cache systems and the SIMT co-processor are
simulated in a cycle accurate model. Each processor core is designed to support at most 128 con-
current CPU threads for the SIMT mode. The cache coherence is handled with the MOSEI protocol.
The cache coherence mechanism is employed to retain the workgroup shared memory consistency
specified in the OpenCL framework.

The processor core configuration in Table 2 is a single issue in-order design, which is used
for the major discussions of the SIMT/MIMD execution model. We also model a cycle-accurate
superscalar processor core in SystemC for further evaluations. The variances of processor
core architectures are shown in Table 3. We implement two superscalar architectures including

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:15

Table 4. Benchmarks

Barrier-intensive benchmarks Sparse-barrier benchmarks

Benchmark Static Barriers Dynamic Barriers BPKI Benchmark Static Barriers Dynamic Barriers BPKI
B+tree (R) 5 13056000 45.85 Bfs (R) 0 0 0

Backprop (R) 6 10485760 46.26 Bitonicsort (A) 0 0 0
Dwthaar1d (A) 3 623552 62.09 Blackscholes (N) 0 0 0

Fdtd3D (N) 2 4194304 16.19 Cfd (R) 0 0 0
Hotspot (R) 3 7573504 13.50 DotProduct (A) 0 0 0

Lud (R) 6 333056 4.32 Gaussian (R) 0 0 0
MatrixMul (N) 2 128000 11.40 Kmeans (R) 0 0 0

Nbody (A) 2 81920 2.50 LavaMD (R) 0 0 0
Nw (R) 12 8587264 43.29 Nn (R) 0 0 0

Pathfinder (R) 3 4569660 38.03 Particlefilter (R) 10 1092096 0.27
Reduction (A) 4 21201920 38.28 Srad (R) 0 0 0

R:Rodinia, N:NVIDIA SDK, A:AMD SDK.

in-order and out-of-order processors for the MIMD approaches. The configurations of the in-order
and the out-of-order superscalar processor core are similar to the ARM Cortex A7 and Cortex
A15 architecture, respectively.

Then, we add the SIMT co-processor to the in-order superscalar processor for the dual-mode
implementation. In contrast to the in-order and the out-of-order cores exploiting instruction-level
parallelism of a single thread, the proposed SIMT model leverages data-level parallelism for utiliz-
ing the execution units in parallel. To fairly compare the efficiency of the different ways achieving
parallel execution, the issue and commit widths of the dual-mode processor are all set to three
as that of the out-of-order processor. The branch prediction mechanisms do not work in the
SIMT mode, since the branch divergence is handled by the SIMT co-processor. The other system
configurations are the same as listed in Table 2 and the detailed evaluation result is given in
Section 5.5.2.

We choose OpenCL framework as the data-parallel programing model. Since our work focuses
on the thread or the work-item executions, the simulation platform only performs the kernel ex-
ecutions while the runtime APIs are executed by the host machine to achieve an acceptable sim-
ulation time [5]. The kernel source insertion mechanism for the ICS-First algorithm is based on
the LLVM framework [19]. The instrumented kernel source is generated by the Clang front-end,
libTooling, and is then translated into the assembly code and binary code via the LLVM static
compiler and GCC, respectively.

To make a comparison with the software-based MIMD approach, we employ the SnuCL compiler
[18] to build serialized OpenCL kernels and run them on the proposed platform as well. Since the
SnuCL compiler supports work-item coalescing and also eliminates the unnecessary variable repli-
cations, it represents the performance of the state-of-the-art MIMD approaches for the OpenCL
kernel execution on multi-core processors. The platform used to run the OpenCL kernels in MIMD
mode has the same configurations as that of the SIMT mode, except without the SIMT architecture
supports. With SnuCL support, each processor core runs an independent thread that executes a
serialized kernel to serve a work-group at a time as there is no hyper-threading support.

We use OpenCL applications from the NVIDIA SDK [29], AMD SDK [1], and Rodinia benchmark
suites [4] for system evaluations. The benchmarks are classified into barrier-intensive and sparse-
barrier ones. The two types of the benchmarks show how the kernel features, including variable
replication, data locality, and synchronization frequency, impact the execution mode efficiency.
Table 4 lists the benchmarks along with static barrier count, dynamic barrier count, and barrier
instructions per kilo kernel instructions (BPKI) that reveals the synchronization frequency.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:16 K.-C. Chen and C.-H. Chen

Fig. 10. Overall performance comparison.

Fig. 11. Dynamic kernel instruction count comparison.

Moreover, the ARM-v7 ISA supports the advanced SIMD extension. In general, explicit vec-
torization and implicit vectorization are the two methods to use the SIMD extensions for data-
parallel kernel executions. The explicit vectorization requires the programmer to implement the
vectorization kernel manually while the implicit one relies on compiler optimization to gener-
ate vectorization codes. However, for an ARM-based machine, the auto-vectorization mechanism
of the contemporary compilers, e.g., GCC, hardly finds data-level parallelism in work-item loops
[16], and this limits the efficiency of the implicit vectorization. To compare the kernel executions
of using the SIMD extension, we select ten benchmarks including five barrier-intensive and five
sparse-barrier applications shown in Figure 16, and modify their kernels in hand for explicit vector-
ization. The vector length is four, which means that the modified kernel packets four work-items
of the original kernel into one for vectorization. The evaluation result of the vectorization kernel
executions is discussed in Section 5.5.1.

5.2 Performance Overview

Figure 10 shows the normalized execution time for executing the kernel threads in the SIMT mode
with the proposed ICS-First mechanism or in the MIMD mode with the work-item coalescing (WC)
scheme proposed by SnuCL. Overall, the SIMT execution achieves geometric mean speedups of
1.52× over the work-item coalescing technique.

In general, the SIMT execution significantly speeds up barrier-intensive applications (their BP-
KIs are typically larger than 10) by on average 1.92× speedup over WC. For these barrier-intensive
applications, the MIMD execution model relies on the software implementations to switch work-
item executions for each of the code regions split by the barrier functions. As a result, more dy-
namic instructions are used in switching executions and then lead to more execution time. As
shown in Figure 11(a), for the barrier-intensive kernels, their MIMD executions use extra 1.5 times

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:17

dynamic instructions compared to the SIMT executions, as expected. On the contrary, for the
sparse-barrier kernels, their executions have similar dynamic kernel instruction counts in both
SIMT and MIMD modes, which is shown in Figure 11(b).

Moreover, since the kernels use barriers to identify the parallel regions, the work-item coalescing
technique performs selective variable replication that expands the kernel variables spanning mul-
tiple parallel regions to memory arrays. This produces memory-register transfers for the replicated
variables. In contrast, when using the SIMT execution mode, the majority of these local variables,
which are usually allocated to a register by the compiler, are directly mapped onto the L1 D-cache
memory by the proposed addressing scheme, and as a consequence, the frequent data transfers
for local variables are avoided. As a result, for the MIMD execution model, about 3.64 times more
dynamic memory instructions are used for the transfers of the replicated variables.

These results show that the software approach overheads depends on not only the synchroniza-
tion frequency, which can be represented by BPKI, but also the synchronization quantity related
to the number of replicated variables. Given Nbody kernel for instance, although its BPKI is not
relatively high (only 2.5), this kernel uses a large amount of variables that needs to be replicated.
Consequently, this kernel requires about 7.13 times of dynamic memory instructions for the MIMD
execution against to the SIMT mode.

On the other hand, the SIMT execution model only has little performance gains for some barrier-
intensive kernels, Fdtd3D, lud, and nw for example. In Fdtd3D and lud kernels, there are few private
variables used across multiple barrier regions. Hence, the compiler can optimize the two kernels by
selective variable replication effectively when serializing the work-item executions for the MIMD
execution. For nw application, since its kernel is simple and repeatedly used many times during
the execution, the dual-mode processor frequently switches the execution mode and as a result
the overheads increase.

For the sparse-barrier kernels, the SIMT mode performs poorly in the Bfs, Bitonicsort, DotProduct,
Nn, and Srad due to thread initializations. In the SIMT mode, the active threads have to initialize
their SPs, PCs, and thread descriptors before serving the work-items. This initialization overhead is
unavoidable when using the SIMT approach. In contrast, the variable replication overhead coming
from work-item coalescing in the MIMD operation can be thoroughly eliminated by selective repli-
cation when the kernel is synchronization free, e.g., Bfs, Bitonicsort, DotProduct, Nn, and Srad. As a
result, the SIMT executions of these five introduce average 16% more execution time as compared
to that required in the MIMD mode enhanced with selective replication.

Although the MIMD execution can use selective replication to eliminate the variable replication
overhead, Blacksholes for instance, its SIMT executions can achieve 5× speedup over the MIMD
mode. This is because the kernel has good spatial and temporal data locality among the work-items.
Hence, the SIMT operation, which schedules the work-items in a warp-sized barrel method rather
than in sequence as the work-item coalescing does, can leverage the data locality more effectively.
In addition, the ParticleFilter kernel is classified as the sparse-barrier one due to the relatively
low BPKI. Although the kernel is not barrier intensive, its SIMT execution also has 1.74× speedup
compared to the MIMD execution. This notable speedup also comes from the efficient data locality
for the SIMT execution.

According to the above results, for some particular kernels, the SIMT execution model is out-
performed by the MIMD mode due to effective compiler optimizations. Even so, our dual-mode
architecture can run in the MIMD mode with work-item coalescing or other approaches to ob-
tain the best performance for these kernels. The favorable kernel execution mode (using SIMT
or MIMD operation) can be estimated with a compiler-based analysis. At the compile time, de-
terministic kernel features, such as synchronization frequency, data locality, variable replications,
and branch divergences, can be extracted and used in the performance-oriented prediction for the

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:18 K.-C. Chen and C.-H. Chen

Fig. 12. Comparison of kernel optimizations.

operational modes. In our other work [6], we have proposed a prediction model using machine
learning to achieve this goal and the prediction accuracy is 95%.

Observing this, our dual-mode SIMT/MIMD architecture uses a coarse-grained mode selection
policy. That is, the OpenCL runtime system decides the execution mode to run for a kernel and
uses the selected mode throughout the execution. We will show that a fine-grained execution mode
policy such as the alternate execution model, which will be discussed later in Section 5.3, generally
makes no benefits for most of the kernels. As shown in Figure 10, this prediction execution model
can outperform the SIMT-always and the MIMD-always models by 4.57% and 59.74%, respectively.
Hence, the dual-mode architecture can always offer the best performance by using the suitable
execution mode for data-parallel kernels.

The above experiment results are based on the original benchmarks without any modification.
However, the performance of the kernel execution is significantly affected by the optimizations on
the computing devices. To further discuss this issue, we use MatrixMul, Kmeans, and BlackScholes

as the examples, and modify their kernels by removing the GPU-specific optimizations. Figure 12
shows the normalized execution time for executing the modified and the unmodified kernels in
both the SIMT and the MIMD modes. The normalized base is the execution time of running the
unmodified kernel in the MIMD mode.

The original MatrixMul kernel employs the local memory to reduce the accesses to the global
memory. The GPUs can benefit from this, since an SM can use its high-speed internal memory
to store the OpenCL memory objects in the local memory. However, the processor cores of CPUs
generally use the internal memory for cache system. Thus, the OpenCL memory objects allocated
in either the global memory or the local memory are all stored in the main memory and cached
by the hardware, which makes the optimization a downside to CPUs. Therefore, we disable the
use of local memory in the MatrixMul kernel. As shown in Figure 12, this improves the SIMT
and MIMD executions by 1.57× and 2.16× speedups, respectively. The reason for the significant
speedup is because the redundant memory transfers between the local and the global memories are
eliminated. Moreover, the MIMD execution has more notable enhancement, because the barriers
for the local memory synchronizations are removed.

The second application, Kmeans, uses a swap kernel to remap the data array from row-major
order to column-major order for the better memory access pattern on the SIMT machine. However,
this column-major layout is inefficient on the CPU platform [35]. Thus, we disable the use of the
swap kernel in the modified version, which improves the MIMD execution by 1.61× speedup. And
as expected, for the SIMT execution, about 12% extra execution time are required, since the data
layout of the modified Kmeans kernel are inefficient for SIMT operation.

Finally, the application BlackScholes calculates the price of European put and call options. As-
suming m work-items are used to evaluate optN options, each of the work-items will calculate
optN /m options. In the unmodified version, the indexes of the options assigned to a work-item
for evaluation are stridden by m. As a result, the load/store data for the option evaluations are
also stridden in the main memory, which dramatically decreases the cache efficiency. By assigning
the sequential tasks to each work-item, the MIMD execution is enhanced significantly by 7.17×

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:19

Table 5. Comparison of Divergence Optimization Techniques

Alternate
ICS-First Warp execution model

Min-PC (This work) Compaction sub-division (ALT)

Target
early re-

convergence
early re-

convergence
divergence
mitigation

divergence
mitigation

divergence
mitigation

Hardware
support

N-level PC
comparators

Bit-vector
PC arbiter

Active mask
stack with

compaction logic

Active mask
stack or table for
each sub-warp

Synchronous
MIMD support

Overhead
High

(operation)
Low

(operation)
Medium
(storage)

High (storage)
High (Multiple

instruction
streams)

speedup. As this way improves the cache efficiency, the SIMT execution is also enhanced by 1.84×
speedup, which makes the SIMT mode still outperform the MIMD mode by 21% less execution
time. As we can see, the used program optimizations directly affect the kernel features. Thus, by
the proposed dual-mode design, the processor will have potential to effectively execute the kernels
in a proper execution mode without tuning the kernels case by case.

5.3 Comparison of Divergence Optimizations

Typically, a divergence problem can be optimized in early re-convergence and divergence mit-
igation. The ICS-First and Min-PC [7, 8] focus on re-converging the divergent threads as soon
as possible while other previous works mitigate the divergent execution before warp threads re-
converge either by the compaction mechanisms [9, 27, 32, 42] or by the warp sub-division [26,
31, 33] techniques. Table 5 shows the comparisons of these divergence optimization methods. As
we have mentioned in Section 2, our ICS-First mechanism can be integrated with other divergence
mitigation approaches. To explore the integration benefits, we implement the ICS-First mechanism
with SIMD Lane Permutation (SLP) [32] and Dual-Path Execution (DPE) [31] models to represent
the thread compaction and warp sub-division approaches, respectively.

Another optimization is to switch the SIMT execution to the MIMD as soon as a divergence
occurs in the SIMT mode, i.e., the alternate execution model (ALT). To do this efficiently, we as-
sume running the divergent warps in a synchronous MIMD execution fashion, where the SIMT
co-processor prepares the respective warp PCs to the processor cores that execute the different
instructions synchronously. Note in this way, the non-divergent warps still run in the SIMT mode.
In the ALT model, alternatively, each processor runs their respective instructions asynchronously,
i.e., the asynchronous MIMD execution. However, in this asynchronous MIMD mode, schedul-
ing the concurrent MIMD and SIMT threads is a complicated issue. Thus, for the ALT model, the
synchronous MIMD model is used.

Table 5 illustrates the comparison of these divergence optimization techniques. For early re-
convergence, the proposed ICS-First mechanism only requires a bit-vector PC arbiter, which can
be performed in bitwise operations, while the Min-PC arbitration needs a multiple-layer PC com-
parison. To implement the divergence mitigation methods based on the compaction or the warp
sub-division, a warp is given an active mask stack, which is used to check for compaction oppor-
tunities or to control the possible divergent paths.

Figure 13 shows the normalized execution time of using ICS-First, or its variants over the Min-
PC mechanism for thread re-convergence. Figure 13(a) compares the Min-PC approach and our

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:20 K.-C. Chen and C.-H. Chen

Fig. 13. Performance comparison of divergence optimizations.

ICS-First mechanism. To demonstrate the importance of thread re-convergence, the normalized
execution time of excluding any optimizations is also given in Figure 13(a) (the “No Div. Opt.”
bars). Overall, for the thread re-convergence techniques, the Min-PC approach outperforms the
ICS-First by only 0.8% in terms of execution time. This result shows that the ICS-First approach
can achieve the similar performance to Min-PC, but requires much simpler implementation.

When using the ICS-First approach, the proposed SIMT machine can save an average of 17%
execution time compared to that without any divergence optimization. Especially, the divergent
optimization significantly improves performance for divergence-intensive kernels. For example,
ICS-First achieves 8.3× and 3.1× speedups compared with not using any divergent optimizations
for Blackscholes and LavaMD, respectively. This is because Blackscholes and LavaMD use log and
exp functions, which are implemented in a math library and cause various divergent executions. As
math library is widely used in general-purpose computing, an effective re-convergence mechanism
is necessary when using the SIMT execution model.

On the other hand, the ICS-First approach working with the divergence mitigation mechanisms,
SLP and DPE, and ALT are evaluated and shown in Figure 13(b). Figure 13(b) shows that the ICS-
First mechanism can achieve good performance without the divergence mitigation supports on the
target homogeneous multi-core processor. Except the divergence-intensive kernels, for instance,
Blackscholes, the ALT model in general does not improve the performance. The major reason is the
use of the predicated instructions that greatly reduce the divergences. On the average, only about
8% of the dynamic instructions are executed in the MIMD mode in the ALT execution model for
the benchmarks in Table 4.

SLP also improves divergence-intensive kernel, Blackscholes, significantly, and has a few pos-
itive performance gains for the other kernels. Moreover, our proposed spatiotemporal SIMT exe-
cution model has provided enough temporal threads to amortize the execution latency; as a result,
DPE delivers only limited improvement when it focuses on warp sub-division intended to increase
the schedulable warp threads. Overall, ALT and SLP only improve ICS-First by 2.6% and 2.5%, re-
spectively, while DPE approach does not improve ICS-First generally.

5.4 Discussions

In this subsection, we first discuss the design issues of the proposed SIMT architecture, including
thread privatization memory and SIMD-width selection. Then, the data-parallel executions using
different programming models, i.e., OpenCL and OpenMP, are also discussed.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:21

Fig. 14. Comparison of different SIMD widths (Total 32 CPU cores).

5.4.1 Impacts on Memory System. When the processor runs in the SIMT mode, its L1 data cache
is used to store the thread-privatization objects or thread contexts rather than the main memory
data, which will be cached by the L2 cache. Consequently, the increased memory latency and the
data consistency between mode switches are the two raised problems. For the problem of increased
memory latency, the number of active threads must be enough to amortize the memory latency for
the efficient SIMT execution. We will discuss that how many active threads are enough to amortize
the latency for the homogeneous multicore in Section 5.4.2.

For the data consistency problem, since we use the coarse-grained mode selection mentioned
in Section 5.2, the mode-switching only occurs at the beginning and the finishing of a kernel
execution. That is, there is no mode switching during the kernel execution. When switching to
the SIMT mode, the processor cores have to flush their L1 data caches to ensure that the return
states of the MIMD mode will not be destroyed by the SIMT operation. On the contrary, when the
processor cores switch back to the MIMD mode after finishing the kernel execution, they only need
to invalidate the L1 data caches without flushing, since the stored thread contexts will not be used
again. Thus, the processor cores can return from the SIMT mode to the MIMD mode seamlessly.

5.4.2 Comparison of Difference SIMD Widths. For a particular work-group size, the number of
active threads in a processor core depends on the SIMD width, i.e., the number of the cluster cores,
referring to Table 1. Given a total of 32 processors in a system, we configure the SIMD width, to 2,
4, 8, or 16 to construct 16, 8, 4, or 2 SIMT clusters, respectively. The processor configurations are
the same as those listed in Table 2. To focus on the SIMD width impact, for all of the cluster config-
urations, the intra-cluster cache coherence is handled in a snooping-based method, although the
8-core or the 16-core clusters may have unaffordable cost for the snooping-based implementation.
The inter-cluster coherence is achieved by a directory-based manner.

Figure 14 shows the execution time normalized to the time for SIMD width of four. Overall, the
result shows that an SIMD width of four performs better than other configurations, on average.
Since a cluster is assigned a work-group once and the work-items in a work-group are evenly
distributed to the cluster processors, a wider SIMD width will lead to fewer active threads assigned
to a processor core. However, the SIMT architecture needs a large number of active threads to
amortize the execution latency (especially memory operations). As a consequence, SIMT widths
of 8 or 16 tend to suffer more easily from long latency instructions. In addition, the cluster cores rely
on cache coherence for the work-group share memory consistency. Thus, too many processor cores
in a cluster increase the frequency of cache coherency and then lengthen the memory operation
latency. This is also the reason why an SIMD width of 32 is not considered here.

The SIMD width of 2 has the most active threads in a processor core to amortize operational
latency, and thus, each active thread is allocated with the least number of TPOs. As a result, it is
easier for the stack objects of an active thread to exhaust the TPOs, and resort to the storage in
the main memory. For example, since the Hotspot and MatrixMul employ a lot of stack objects for
their local variables, a two-lane machine takes 2.42× and 4.33×more execution time, respectively,
compared to a four-lane machine. Note that these benchmarks often specify 128-sized or 256-sized

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:22 K.-C. Chen and C.-H. Chen

Fig. 15. Comparison of data-parallel executions based on OpenCL and OpenMP programming models (Nor-

malization base is the execution time of OpenMP applications).

Fig. 16. Comparison of whether using the vectorization optimization or not.

work-groups that result in 32 or 64 active threads per processor for a four-lane machine. The kernel
execution of these two active thread sizes amortizes the instruction execution latency well and
effectively places the thread contexts in the L1 data caches. Consequently, better performance can
be achieved in the given system configuration.

5.4.3 Comparison of OpenCL and OpenMP Programming Models. OpenCL and OpenMP are
the two popular and primary data-parallel programming models used in multicore platforms. In
general, OpenCL is a fine-grained parallelism model where a work-item is executed for each point
inside the problem space. In contrast, OpenMP model employs a coarse-grained parallelism, which
splits data-parallel workloads, such as for-loop iterations, into several thread executions [35]. The
different parallelization mechanisms actually affect the execution order of the parallel workloads
as well as the memory access sequences, and, consequently, reflect on execution performance.

Figure 15 shows the execution time comparisons of the OpenCL and OpenMP applications. The
used applications are from Rodinia and the configuration of the multi-core system is shown in
Table 2. Note that the applications in AMD and NVIDIA SDKs do not support the OpenMP version.
For OpenMP application executions, a thread is used to execute the split data-parallel workloads
and run on a processor core in the MIMD mode. On the other hand, for OpenCL, the processor
uses either the SIMT or the MIMD executions.

In general, for the evaluated benchmarks, the applications implemented in OpenCL can achieve
similar performance or even outperform the OpenMP. The reason is that these applications favor
the fine-grained parallelism where their memory access sequences achieve more efficient cache uti-
lization than the OpenMP implementations. As a result, running the OpenCL applications in MIMD
mode and SIMT mode can respectively save 25% and 45% execution time compared to the OpenMP
applications. Thus, the result shows that our dual-mode architecture is a high-performance design
for data-parallel executions on the homogeneous multi-core system.

5.5 Comparison of Kernel Executions on Advanced Processor Architectures

In this subsection, we first discuss the impacts of the vectorization optimization. And then, we will
show the comparison of running the data-parallel kernels on multiple superscalar architectures
mentioned in Section 5.1.

5.5.1 Comparison of Vectorization Kernel Executions. Figure 16 shows the normalized execution
time of running the vectorization and the non-vectorization kernels on either the SIMT mode
or the MIMD mode. The normalized base is the execution time of running the non-vectorization

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:23

Fig. 17. Comparison of superscalar architectures.

kernels by the MIMD mode. Overall, by using explicit vectorization optimization, the SIMT and the
MIMD executions are respectively improved by 21% and 39% over the non-vectorization kernels.
The DotProduct and Nn kernels are not enhanced by vectorization, since they spend most of the
execution time for memory accesses.

The vectorization BlackScholes kernel significantly improves the SIMT and MIMD executions by
2.5× and 4.4× speedups, respectively. This is because the kernel is compute-intensive and, hence, is
efficient for using the vectorization optimization. Furthermore, its MIMD execution has remarkable
enhancement, since the vectorization kernel merges sequential tasks of option calculations into
a work-item and this significantly improves the cache efficiency for the MIMD operation as we
have mentioned in Section 5.2. In summary, for the ten evaluated applications, the SIMT model
gains further improvement from the SIMD extension and outperforms the MIMD execution by an
average of 1.71× speedup. The result indicates that even the SIMD extension is helpful in running
the data-parallel programs effectively, the SIMT model still has opportunity to exploit more data-
level parallelism for the higher throughput.

5.5.2 Comparison of Superscalar Architectures. Figure 17 shows the normalized execution time
of the three modeled superscalar architectures, including in-order superscalar processor, out-of-
order superscalar processor, and the proposed dual-mode superscalar processor. The detailed sys-
tem configurations are listed in Table 2 and Table 3. The in-order and the out-of-order processors
run the kernels by the MIMD approach while the dual-mode processor executes the kernels in the
SIMT way. The normalized base is the kernel execution time of using the in-order processor.

For the barrier-intensive applications, as the MIMD executions have software approach over-
heads, using the SIMT execution model on the superscalar processor can achieve 2.70× and 1.84×
speedups over the in-order and out-of-order approaches, respectively. For Fdtd3D and Lud, the
out-of-order processor achieves similar performance to the SIMT model. One reason is that these
two kernels can be optimized by selective variable replication more effectively than other barrier-
intensive kernels as we have mentioned in Section 5.2. Another reason is that the out-of-order
processor can exploit ILP effectively for these two kernels.

On the other hand, for the sparse-barrier kernels, Bfs, Bitonicsort, DotProduct, Nn and Srad, due
to the thread initialization overheads, their SIMT executions are outperformed by the MIMD exe-
cutions, either on the in-order processor or on the out-of-order one. For the kernels, BlackScholes

and ParticleFilter, we have discussed that they favor the SIMT executions due to the inefficient
data locality for the MIMD operation. Compared to the in-order processor, the out-of-order pro-
cessor shows relatively low performance losses against the SIMT execution model for these two
kernels. The reason is that the out-of-order processor can hide the long memory latency as much
as possible by executing the later independent instructions in advance.

Overall, by using the out-of-order approach, the superscalar processor can exploit ILP effec-
tively for the data-parallel programs and then outperforms that using the in-order design by 1.32×
speedup on the average. On the other hand, enabling the SIMT model on the superscalar processor

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

6:24 K.-C. Chen and C.-H. Chen

can not only exploit data-level parallelism for parallel executions but also eliminate the software
approach overheads and thus can achieve on average 1.85× and 1.40× speedups over the in-order
and the out-of-order designs, respectively.

6 CONCLUSIONS

This article has addressed architecture issues in enabling the SIMT execution model on a homoge-
neous multi-core processor. We present three effective approaches for an SIMT/MIMD dual-mode
processor, including spatiotemporal SIMT execution, kernel thread context placement, and early
thread re-convergence mechanism. We implement these dual mode processor features in an ARM-
ISA multi-core platform based on the OpenCL and LLVM compiler frameworks.

To enable the SIMT operations, we develop an SIMT co-processor that schedules the kernel
threads in terms of spatiotemporal warps. In the SIMT mode, the processor cores use their re-
spective L1 data caches for the placement of the kernel thread contexts, including ISA registers
and stack objects. We introduce an addressing scheme to access these kernel thread contexts. This
SIMT execution model saves on average 36% dynamic instructions and boosts the data-parallel
kernel executions by 1.52× over the MIMD approach.

For the thread divergence problem, we proposed an Inner Conditional Statement First (ICS-First)
algorithm, which guarantees thread re-convergence at the outer statement as soon as the inner
thread finishes. This ICS-First mechanism significantly improves the divergent kernel executions
and saves 17% execution time over that without using any thread re-convergence mechanism on
the average. In addition, we show that the SIMD width has a significant impact on SIMT efficiency.
Given a 32KB L1 data cache, the performance favors 32–64 active threads per processor core.

Our study also shows that the execution mode efficiency is mainly affected by the kernel features
in terms of variable replication, synchronization frequency, and data locality. Executing a kernel
in the most favorable mode can be performed through kernel feature analysis at the compile time.
This can achieve on average 1.60× and 1.05× speedups over the MIMD-always and SIMT-always
executions, respectively. Moreover, for the processor supporting the SIMD extension, the SIMT
model can further achieve an average of 1.71× speedup over the MIMD approach by using the
explicit vectorization optimization on kernels.

Nonetheless, the SIMT model can be integrated into the superscalar processor and achieve on
average 1.85× and 1.40× speedups compared to the in-order and the out-of-order designs, respec-
tively. Therefore, this work has demonstrated that the proposed SIMT/MIMD dual-mode processor
architecture is an attractive feature for future multicore systems.

REFERENCES

[1] Advanced Micro Devices Inc. 2017. AMD Accelerated Parallel Processing SDK. Retrieved from http://developer.amd.

com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/.

[2] Cavium. 2017. Cavium ThunderX ARM Processors. Retrieved from http://www.cavium.com/ThunderX_ARM_

Processors.html.

[3] En-Hao Chang, Chen-Chieh Wang, Chien-Te Liu, Kuan-Chung Chen, and Chung-Ho Chen. 2014. Virtualization tech-

nology for TCP/IP offload engine. IEEE Trans. Cloud Comput. 2, 2 (Apr. 2014), 117–129.

[4] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.

Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of the 2009 IEEE International Symposium

on Workload Characterization (IISWC’09). IEEE Computer Society, Los Alamitos, CA, 44–54.

[5] Kuan-Chung Chen and Chung-Ho Chen. 2014. An openCL runtime system for a heterogeneous many-core virtual

platform. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS’14). 2197–2200.

[6] Yuan Chi. 2016. OpenCL Kernel Attribute Prediction for Operation Mode Se-lection in SIMT/MIMD Dual-mode Architec-

ture. Master’s thesis. National Cheng Kung University, Taiwan.

[7] Sylvain Collange. 2011. Stack-less SIMT Reconvergence at Low Cost. Technical Report.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/.
http://www.cavium.com/ThunderX_ARM_Processors.html.

Enabling SIMT Execution Model on Homogeneous Multi-Core System 6:25

[8] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr, Haicheng Wu, and Sudhakar Yala-

manchili. 2011. SIMD re-convergence at thread frontiers. In Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-44). ACM, New York, NY, 477–488.

[9] Wilson W. L. Fung and Tor M. Aamodt. 2011. Thread block compaction for efficient SIMT control flow. In Proceedings

of the 2011 IEEE 17th International Symposium on High Performance Computer Architecture (HPCA’11). IEEE Computer

Society, Los Alamitos, CA, 25–36.

[10] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2009. Dynamic warp formation: Efficient MIMD

control flow on SIMD graphics hardware. ACM Trans. Archit. Code Optim. 6, 2, Article 7 (Jul. 2009), 37 pages.

[11] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Benedict R. Gaster, and Bixia Zheng. 2010.

Twin peaks: A software platform for heterogeneous computing on general-purpose and graphics processors. In Pro-

ceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques (PACT’10). ACM,

New York, NY, USA, 205–216.

[12] John L. Hennessy and David A. Patterson. 2011. Computer Architecture: A Quantitative Approach (5th ed.). Elsevier.

[13] Yun-Chi Huang, Kuan-Chieh Hsu, Wan-Shan Hsieh, Chen-Chieh Wang, Chia-Han Lu, and Chung-Ho Chen. 2016.

Dynamic SIMD re-convergence with paired-path comparison. In Proceedings of the 2016 IEEE International Symposium

on Circuits and Systems (ISCAS’16). 233–236.

[14] Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schnetter, Kalle Raiskila, Jarmo Takala, and Heikki Berg. 2015.

pocl: A performance-portable openCL implementation. Int. J. Parallel Program. 43, 5 (Oct. 2015), 752–785.

[15] James Jeffers and James Reinders. 2013. Intel Xeon Phi Coprocessor High Performance Programming (1st ed.). Morgan

Kaufmann, San Francisco, CA.

[16] Gangwon Jo, Won Jong Jeon, Wookeun Jung, Gordon Taft, and Jaejin Lee. 2014. OpenCL framework for ARM pro-

cessors with NEON support. In Proceedings of the 2014 Workshop on Programming Models for SIMD/Vector Processing

(WPMVP’14). ACM, New York, NY, 33–40.

[17] Khronos Group. 2011. The OpenCL Specification 1.2. Retrieved from https://www.khronos.org/registry/OpenCL/

specs/opencl-1.2.pdf.

[18] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. 2012. SnuCL: An openCL framework

for heterogeneous CPU/GPU clusters. In Proceedings of the 26th ACM International Conference on Supercomputing

(ICS’12). ACM, New York, NY, 341–352.

[19] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transforma-

tion. In Proceedings of the International Symposium on Code Generation and Optimization, 2004 (CGO’04). 75–86.

[20] Jun Lee, Jungwon Kim, Junghyun Kim, Sangmin Seo, and Jaejin Lee. 2011. An openCL framework for homogeneous

manycores with no hardware cache coherence. In Proceedings of the 2011 International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT’11). IEEE Computer Society, Washington, DC, USA, 56–67.

[21] Jaejin Lee, Jungwon Kim, Sangmin Seo, Seungkyun Kim, Jungho Park, Honggyu Kim, Thanh Tuan Dao, Yongjin Cho,

Sung Jong Seo, Seung Hak Lee, Seung Mo Cho, Hyo Jung Song, Sang-Bum Suh, and Jong-Deok Choi. 2010. An openCL

framework for heterogeneous multicores with local memory. In Proceedings of the 19th International Conference on

Parallel Architectures and Compilation Techniques (PACT’10). ACM, New York, NY, 193–204.

[22] Dong Li, Minsoo Rhu, Daniel R. Johnson, Mike O’Connor, Mattan Erez, Doug Burger, Donald S. Fussell, and Stephen

W. Redder. 2015. Priority-based cache allocation in throughput processors. In Proceedings of the 2015 IEEE 21st Inter-

national Symposium on High Performance Computer Architecture (HPCA’15). IEEE, 89–100.

[23] Yuxi Liu, Zhibin Yu, Lieven Eeckhout, Vijay Janapa Reddi, Yingwei Luo, Xiaolin Wang, Zhenlin Wang, and

Chengzhong Xu. 2016. Barrier-aware warp scheduling for throughput processors. In Proceedings of the 2016 Inter-

national Conference on Supercomputing (ICS’16). ACM, New York, NY, Article 42, 12 pages.

[24] Jan Lucas, Michael Andersch, Mauricio Alvarez-Mesa, and Ben Juurlink. 2015. Spatiotemporal SIMT and scalarization

for improving GPU efficiency. ACM Trans. Archit. Code Optim. 12, 3, Article 32 (Sept. 2015), 26 pages.

[25] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, Alan J. Miller, and Michael Upton.

2002. Hyper-threading technology architecture and microarchitecture. Intel Technol. J. 6, 1 (2002), 1–12.

[26] Jiayuan Meng, David Tarjan, and Kevin Skadron. 2010. Dynamic warp subdivision for integrated branch and memory

divergence tolerance. In Proceedings of the 37th Annual International Symposium on Computer Architecture (ISCA’10).

ACM, New York, NY, 235–246.

[27] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur Mutlu, and Yale N. Patt. 2011.

Improving GPU performance via large warps and two-level warp scheduling. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-44). ACM, New York, NY, 308–317.

[28] John Nickolls and William J. Dally. 2010. The GPU computing era. IEEE Micro 30, 2 (Mar. 2010), 56–69.

[29] NVIDIA Corporation. 2012. NVIDIA CUDA Toolkit 4.2. Retrieved from https://developer.nvidia.com/cuda-toolkit-

42-archive.

[30] Jason Power, Joel Hestness, Marc S. Orr, Mark D. Hill, and David A. Wood. 2015. gem5-gpu: A heterogeneous CPU-

GPU simulator. IEEE Comput. Arch. Lett. 14, 1 (Jan. 2015), 34–36.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf.
https://developer.nvidia.com/cuda-toolkit-penalty -@M 42-archive.

6:26 K.-C. Chen and C.-H. Chen

[31] Minsoo Rhu and Mattan Erez. 2013. The dual-path execution model for efficient GPU control flow. In Proceedings of

the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA’13). IEEE Computer

Society, Los Alamitos, CA, 591–602.

[32] Minsoo Rhu and Mattan Erez. 2013. Maximizing SIMD resource utilization in GPGPUs with SIMD lane permutation.

In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA’13). ACM, New York, NY,

356–367.

[33] Timothy G. Rogers, Daniel R. Johnson, Mike O’Connor, and Stephen W. Keckler. 2015. A variable warp size archi-

tecture. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA’15). ACM, New

York, NY, 489–501.

[34] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-conscious wavefront scheduling. In Proceedings

of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE Computer Society,

Los Alamitos, CA, 72–83.

[35] Jie Shen, Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. 2012. Performance gaps between openMP and openCL

for multi-core CPUs. In Proceedings of the 2012 41st International Conference on Parallel Processing Workshops. 116–125.

[36] Milan Stanic, Oscar Palomar, Timothy Hayes, Ivan Ratkovic, Adrian Cristal, Osman Unsal, and Mateo Valero. 2017.

An integrated vector-scalar design on an in-order ARM core. ACM Trans. Archit. Code Optim. 14, 2, Article 17 (May

2017), 26 pages.

[37] John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike Murphy, Ziang Hu, and Wen-mei W. Hwu.

2010. Efficient compilation of fine-grained SPMD-threaded programs for multicore CPUs. In Proceedings of the 8th

Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO’10). ACM, New York, NY,

111–119.

[38] John A. Stratton, Sam S. Stone, and Wen-mei W. Hwu. 2008. MCUDA: An Efficient Implementation of CUDA Kernels

for Multi-Core CPUs. Vol. 5335. Springer, Berlin, 16–30.

[39] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1995. Simultaneous multithreading: Maximizing on-chip par-

allelism. In Proceedings of the 22nd Annual International Symposium on Computer Architecture (ISCA’95). ACM, New

York, NY, 392–403.

[40] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. 2012. Multi2Sim: A simulation frame-

work for CPU-GPU computing. In Proceedings of the 21st International Conference on Parallel Architectures and Com-

pilation Techniques (PACT’12). ACM, New York, NY, 335–344.

[41] Ali Vahidsafa, Sebastian Turullols, David Smentek, Ram Sivaramakrishnan, Paul Loewenstein, Sumti Jairath, and John

Feehrer. 2013. The oracle sparc T5 16-core processor scales to eight sockets. IEEE Micro 33, 2 (2013), 48–57.

[42] Aniruddha S. Vaidya, Anahita Shayesteh, Dong Hyuk Woo, Roy Saharoy, and Mani Azimi. 2013. SIMD divergence

optimization through intra-warp compaction. In Proceedings of the 40th Annual International Symposium on Computer

Architecture (ISCA’13). ACM, New York, NY, 368–379.

[43] Yaohua Wang, Shuming Chen, Jianghua Wan, Jiayuan Meng, Kai Zhang, Wei Liu, and Xi Ning. 2013. A multiple

SIMD, multiple data (MSMD) architecture: Parallel execution of dynamic and static SIMD fragments. In Proceedings

of the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA’13). IEEE Computer

Society, Los Alamitos, CA, 603–614.

[44] Y. Wen, Z. Wang, and M. F. P. O’Boyle. 2014. Smart multi-task scheduling for openCL programs on CPU/GPU hetero-

geneous platforms. In Proceedings of the 2014 21st International Conference on High Performance Computing (HiPC’14).

1–10.

[45] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl Ramey, Matthew Mattina,

Chyi-Chang Miao, John F. Brown III, and Anant Agarwal. 2007. On-chip interconnection architecture of the tile

processor. IEEE Micro 27, 5 (Sept. 2007), 15–31.

Received June 2017; revised October 2017; accepted December 2017

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 6. Publication date: March 2018.

