
2346 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 8, AUGUST 2017

A Processor and Cache Online Self-Testing
Methodology for OS-Managed Platform

Ching-Wen Lin and Chung-Ho Chen, Member, IEEE

Abstract— Software-based self-test (SBST) is an effective
method to detect operational faults of a processor system. We pro-
pose an architectural approach to support high fault-coverage
online SBST: Processor Shield, which tackles the difficult-to-
test issues raised due to the protection of an operating system.
The processor shield, including a software framework and design
for testing hardware, creates an online self-testing environment
without influencing other processes and on-bus devices even
if the SBST fails. We present a case study that demonstrates
SBST executions under Linux kernel on an ARMv5-compatible
processor system. For CPU testing, the stuck-at fault coverage is
over 99% while the transition fault coverage is higher than 93%.
For cache control logic testing, the stuck-at fault coverage is
over 99% while the transition fault coverage is higher than 95%.
For RAM module testing, the fault coverage is nearly 100%.
Cache SBSTs finish in a context-switch interval of less than 4 ms
while CPU SBST finishes in less than 8 ms for 1-GHz clock.
The hardware overhead of the processor shield is only 0.494%
of the whole processor area. We also present an SBST-dynamic
voltage and frequency scaling application that calibrates the
dynamic minimal guardbands and helps achieving lower power
consumption and mitigating transistor-aging effect.

Index Terms— Design for testing (DFT), guardband, online
testing, software-based self-test (SBST), transistor aging.

I. INTRODUCTION

RELIABILITY of an SoC chip will be degraded by
operational faults during chip lifetime. Operational faults

can be classified into three categories: permanent faults, inter-
mittent faults, and transient faults [1]. Permanent faults infi-
nitely generate irreversible faulty effects at the same location.
Although at first the manufacturing test can identify known-
good dies, permanent faults still appear and violate the chip
normal operations.

A permanent fault, which may eventually crash the system,
significantly hammers system reliability. Our aim is to capture
permanent faults of an embedded processor even if the system
still performs its normal functions. We analyze the stuck-
at fault coverage for the Linux kernel booting process on
an ARMv5 processor implemented in Verilog. During Linux
booting, all the bus input–output signals are recorded. This
record along with the processor netlist is used to perform

Manuscript received November 6, 2016; revised February 24, 2017;
accepted April 7, 2017. Date of publication May 10, 2017; date of current
version July 24, 2017. This work was supported by the Ministry of Science
and Technology, Taiwan, under Grant MOST 103-2221-E-006-266-MY3.

The authors are with the Institute of Computer and Communication
Engineering, Department of Electrical Engineering, National Cheng Kung
University, Tainan City 70101, Taiwan (e-mail: kliolin@mail.ee.ncku.edu.tw;
chchen@mail.ncku.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2017.2698506

fault simulation by Synopsys TetraMAX [35]. Even though
Linux kernel booting requires nearly two billion instructions,
including all the supported instruction types, the processor
fault coverage is only 90% of the stuck-at faults. Observing
this test result, there exists a substantial 10% of possible latent
faults that are not tested during the booting process.

In order to detect permanent faults of a processor
system, an effective method is to use the software-based
self-test (SBST) to capture faults by executing a test pro-
gram through the processor itself. Test programs are typically
dedicated to detect structural faults, including stuck-at fault,
transition fault, path delay fault, etc. These test programs for
a processor core can be classified into two forms according to
their developing methods: deterministic or random.

A deterministic test program can use fewer instructions to
quickly detect faults in the target components [2]–[9]. For
instance, an approach is described in [5] focusing on the
branch prediction unit test. In [8], a method is proposed to
test the forwarding unit in a pipelined processor. There are
also several methods proposed to test the whole processor
core [10]–[15].

Another way to develop deterministic programs is to use
automatic generation tools [16]–[19]. The programs generated
by the tools can typically achieve high fault-coverage for man-
ufacturing testing. However, this places some strict constrains
for testing environment and leads to many challenges for
online testing. For instance, in an online test scenario, the work
proposed in [19] can achieve 98% of fault efficiency (exclud-
ing the un-testable faults) for the miniMIPS core. The authors
built the memory access model with the constrained interaction
between the processor and the system bus. For an online test,
these constraints are typically difficult to meet as there are
unpredictable memory latencies and bus contentions resulting
from other bus masters in an SoC design.

A test program can be generated by a random instruc-
tion generator, which includes all the supported instruc-
tions [12], [13], [20]. This method can produce special
instruction sequences that are hard to appear in deterministic
programming. Hence, for the desired high fault-coverage,
an effective method is to combine deterministic and random
programming methods to generate the test programs [12], [13].
In this paper, we employ this hybrid method to generate the
SBST programs [12].

For RAM cell testing, March algorithms are the most
popular methods [21], [22]. March algorithm is a sequence
of March elements composed of pre-defined read/write
operations, which are called March read/write, applied to

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LIN AND CHEN: PROCESSOR AND CACHE ONLINE SELF-TESTING METHODOLOGY 2347

the test target memory cells by special addressing orders,
including ascending, descending, and either. In the word-
oriented March algorithm [23], the values, which are used
in the March read/write, are called March data back-
grounds (March DBs) or their complementary data back-
grounds (March CDBs). To test a cache system, March
algorithm has to be performed on the target RAM modules,
including virtual tag RAM, physical tag RAM, and data RAM.

A high fault-coverage online SBST program requires the
capability to test all of the functions of the target processor.
However, to run such an SBST program under an operating
system (OS) without violating normal system behaviors is
quite challenging.

In order to test the processor on a platform governed by an
OS, the first system related issue is system memory mapping,
including virtual address translation and physical memory
layout or allocation. An OS manages the virtual memory, and
a test process has to acquire the required memory space from
the OS. The physical memory layout decides where a physical
address is allocated onto the main memory, the memory-
mapped I/O (MMIO), or the reserved space. This mapping
relation is typically recorded in the hardware or platform
configuration. We call the address, which is required for
testing but its access is limited by system memory alloca-
tion or protection, shielded address. In order to achieve high
fault-coverage, accessing all the required addresses, including
shielded addresses, is an essential operation.

The second system related issue is interrupt testing
and its service routine. A preemptive OS may suspend
SBST processes to serve a higher priority interrupt. This
changes the expected SBST instruction flow and compromises
SBST test results. Disabling interrupt is an intuitive way
to prevent SBST processes from being affected. However,
interrupt handling circuits, for instance, switching to a priv-
ilege mode, invoking shadow register use, and preserving
the interrupted status, must be tested for high fault-coverage.
In order to test interrupt logic and circuit, an interrupt signal
is raised, and then the processor branches the service routine
prepared by the SBST process.

The third system related issue is the need to block faulty
actions, which may disturb contexts of other processes or on-
bus devices during online testing. When capturing a fault,
a responsible online test strategy records the test report in
a non-volatile memory, e.g., flash, and notifies the system
manager, instead of crashing the system. For online testing,
the major faulty actions are faulty memory accesses that may
result in a system crash or generating irreversible damages
to the on-bus devices. Therefore, preventing a faulty access
coming from the processor or cache controller is a crucial
step when performing an online test.

In this paper, we propose an efficient method to create an
environment for high fault-coverage SBST testing, including
CPU and caches, on an SoC platform governed by an OS.
This environment can overcome the above system related
issues without modifying the internal design of the proces-
sor or changing the target instruction set architecture (ISA).
The proposed method can seamlessly switch the SBST process
and the kernel process.

Our method is called processor shield, including a soft-
ware framework and design for testing (DFT) hardware. The
processor shield technology can support tests for CPU and
caches respectively. The software framework constructs a non-
preemptive privileged process to request the required resources
from the OS. The framework performs the SBST programs
and then returns the control to the OS as if the test were
never executed. The DFT hardware blocks the faulty accesses
and redirects shielded accesses to the available memory space
prepared by the software framework.

We present a case study that performs SBST programs to
test the processor core and cache system under Linux kernel
on an ARMv5-compatible processor system. For CPU online
testing, the achieved stuck-at fault coverage is 99.01% while
the transition fault coverage is 93.25%. For cache control
logic testing, the stuck-at fault coverage is higher than 99%,
and the transition fault coverage is over 95%. For data cache
RAM modules, the fault coverage is 100%. For instruction
cache RAM modules, the fault coverage is 99.99%. The DFT
hardware overhead is 0.494% of the whole processor area. The
proposed processor shield design can effectively support SBST
programs to execute under Linux kernel and successfully
achieve the expected high fault coverages without interfering
with other processes and on-bus devices.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III discusses the online
SBST challenges for processor core and caches. Section IV
describes the proposed processor shield. Section V demon-
strates a case study and the experimental result. Section VI
presents several fault-coverage enhancement methods and an
SBST-dynamic voltage and frequency scaling application that
can calibrate the required minimal guardband. Section VII
presents a conclusion.

II. RELATED WORK

Several online SBST methods have been proposed to deal
with various problems on different platforms [1], [24]–[28].
Some works perform SBSTs without hardware support, and
others leverage hardware to achieve their purposes. Table I
shows the comparison of the proposed processor shield
methodology and relevant online SBST techniques.

Bernardi et al. [24] have proposed an SBST development
flow for automotive microcontroller. As the automotive design
is a safety-critical system, all the self-test routines must be
preempted at any time. They separated the processor design
into many sub-modules and tested one sub-module at a time
in order to meet the time constraint specification. Their test
programs did not test the shielded addresses, and this work
was not allowed to use absolute addresses during testing. As a
result, the achieved fault coverage was less than 88% for the
32-bit power architecture.

Skitsas et al. [25] demonstrated a fine-grained selective
testing method in a multicore system. They proposed that only
the functional module which is recently stressed needs to be
tested. They used many performance counters that counted
the activation times of all function units. A function unit
is tested when the corresponding counter value reaches a
threshold. Their method can successfully run under an OS.

2348 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 8, AUGUST 2017

TABLE I

COMPARISON OF RELEVANT ONLINE TESTING METHODS

However, testing for interrupt and shielded addresses was not
mentioned in their research. The achieved fault coverage was
relative low, i.e., 88% for UltraSPARC III.

Paschalis and Gizopoulos [1] proposed a periodic online
testing method for embedded processors. They classified the
component units according to the relationship of the data
paths. During testing, the faults in control-path-bound units
can be additionally observed when testing the data-path-bound
devices. Their proposed test program features small code size
and short execution time. However, interrupt and exception
handler circuits were regarded as non-testable units. They did
not discuss whether the same high fault-coverage was achieved
when executing an SBST under an OS.

Constantinides et al. [26] presented an online testing method
that utilized an enhanced ISA with special testing instructions.
A DFT hardware was combined with scan chains to perform
fault detection and isolation. Structural test patterns were
applied to the DFT hardware by a software routine using the
special testing instructions. Intrusive processor modifications
were implemented to enable structural testing through the
scan-chain infrastructure. Therefore, their design achieved
very high fault coverage, i.e., 99% for OpenSPARC T1.
However, this also leads to 5.8% area overhead, special
instructions for testing, and the modification of the processor
internal structure.

Bernardi et al. [27] proposed a hardware module, MIcro-
processor Hardware Self-Test unit (MIHST), which is used
to support online SBST. In order to reduce code size, they
encoded the SBST program. The encoded program is stored
in the MIHST unit that dynamically decodes the program
for testing. The MIHST unit can fully control the processor
execution flow during testing and redirect all memory accesses
to MIHST itself. However, this method blocks the normal
operations of the system bus during testing. In addition, they
proposed an online testing scenario using the MIHST unit, but

they did not discuss interrupt testing and the impact on fault
coverage when performing an SBST under an OS.

Theodorou et al. [28] proposed the direct cache
access (DCA) instructions that can directly read/write all
cache RAM cells, including tag and data RAM. The DCA
instructions perform March sequence by reading/writing
March DBs/CDBs from/to the target cache RAM cells. How-
ever, these DCA instructions are not fully supported in com-
mon ISAs, especially the instructions to directly read/write
tag RAM. How to test the control logics of caches was not
mentioned in their work.

The above prior works used techniques including DFT test
assisted hardware, pure SBST test, or changing the target ISA.
For some works, including [1], [24], [25], the authors did
not discuss how to test the shielded addresses. The untested
shielded addresses reduce the fault coverages of fetch unit
and the load/store unit. For faulty effect isolation, pure SBST
methods rely on memory management unit (MMU) or memory
protection unit (MPU) to block the faulty memory accesses.
However, for the faulty actions that do not query MMU, e.g.,
writing back a dirty line from a physical tagged cache, there
is no way to prevent this from occurring.

Consequently, a DFT hardware is an efficient method to
block all faulty operations during online testing. For DFT
methods, including [26], [27], shielded address testing can
be tested through the support of the DFT. However, there
exists a tradeoff between the DFT hardware overheads and
the fault coverage achieved. Our method can leverage fewer
hardware areas to achieve very high fault coverage and prevent
the system from being affected at the same time.

III. ONLINE SBST CHALLENGE FOR CPU AND CACHE

In the introduction, we have addressed three system
related issues when conducting online SBST testing. In this
section, we further present the challenges due to these

LIN AND CHEN: PROCESSOR AND CACHE ONLINE SELF-TESTING METHODOLOGY 2349

system related issues when developing and executing a native
SBST program.

A. Challenge for CPU Core Online SBST

SBST programs typically bear the same requirements in
order to achieve a high fault coverage, regardless of the devel-
opment methods. The first is that all supported instructions,
including their addressing modes, must be executed more than
once. The processor mode needs to be changed to perform
privileged instructions.

The second is interrupt handling circuit testing. Before
testing interrupt circuits, an SBST process needs to build
an interrupt vector table and service routines for testing.
During interrupt testing, the system interrupt vector table
must be redirected to the prepared one. For precise interrupt,
an interrupt has to be triggered at the deterministic time with
respect to the SBST instruction sequence. Hence, for online
testing, an SBST process must both test the precise interrupt
and maintain the expected test instruction sequence without
being switched to other processes.

A processor core online SBST typically needs to obtain the
access right for almost all of the memory space managed by an
OS. Therefore, the third requirement is to access all the needed
addresses, including shielded addresses, without violating the
memory protection scheme of an OS [40].

B. Challenge for Cache System Online SBST

The cache SBSTs, introduced in the previous
work [28]–[32], can be divided into four types of device
testing: data RAM, virtual tag RAM, physical tag RAM, and
control logic. For RAM cells, March algorithms are the most
popular methods to capture various types of faults [21], [22].
A control logic SBST development is based on the cache
control functions and the cache read/write policies.

1) Cache RAM Cell Testing: In order to test cache RAM
cells, an important issue is to acquire the memory regions
for the March read/write operations. For all tag RAM cells,
including virtual and physical, the accessed memory addresses
must conform to the March DBs/CDBs since the March DB is
the address rather than the value. On an automatic test equip-
ment (ATE), there is no problem in accessing the required
addresses. However, a problem occurs when performing a
cache SBST on a platform hosted by an OS.

This problem comes from the physical memory alloca-
tion, and we call it physical memory limitation. In order
to test the physical tag RAM, the March algorithm needs
to access the specified physical pages that conform to the
March DBs/CDBs. These pages are required when testing
the physical tag RAM so we call them PATAG (Physical
Address TAG) pages. There are two limitations in performing
March read/write accesses in the PATAG pages, and these
limitations come from an OS and hardware platform.

The first limitation comes from the memory protection
scheme of an OS. To acquire a specific physical memory
page typically requires alteration of the current system state,
for example, releasing of the requested page from the owner
process. Specifically, if the required PATAG page is dispatched
to another process by the OS, the SBST process has to either

copy and protect this page or request the OS to release it.
These two actions cause additional system overhead due to
the copy function or the swap out routine. In addition, if the
PATAG page is released by the OS, a page fault may occur
when the original owner process resumes its operation.

The second limitation is the physical memory allocation on
the target platform. When an SBST process obtains the right to
access the PATAG pages, however, these physical pages might
belong to the shielded addresses, which are not allocated in
the main memory. Accessing these shielded addresses directly
disturbs the testing execution flow, and the results cannot be
used to examine the test.

Through the address redirection function, the proposed
processor shield design can effectively tackle these two limi-
tations without interfering with other processes.

2) Cache Controller Testing: Many cache control functions
are typically dependent on the memory attributes such as the
cache read/write policy specified in the page table. However,
the OS-dispatched page table typically does not contain all
the required memory attributes for testing. A feasible method
is either to modify the page descriptors by system calls or to
build a manual page table for cache controller testing [41].

IV. PROPOSED PROCESSOR SHIELD DESIGN

In this paper, we propose an architecture level methodology
called processor shield, which includes a software framework
and DFT hardware. Before executing a native SBST program,
the software framework has to initialize the testing environ-
ment. We call a native SBST program, which is developed
by the methods introduced in the previous work [10]–[15],
a testing kernel. The processor shield DFT hardware performs
address redirection function, and all the memory accesses,
including the shielded accesses, can be redirected to the
memory regions acquired from the OS by the SBST process.
This can also prevent other processes and MMIOs from being
affected by the testing kernels or faulty actions. The DFT
hardware employs a multiple-input signature register (MISR)
to compress the processor output values [33], and includes a
time-out counter. After a testing kernel finishes or is timed-out
by DFT time-out counter, the OS can take over the control as
if the testing kernel were never executed.

A. Processor Shield Software Framework

Constructing an SBST program and used as a system
call, is a feasible method to obtain the privileged right to
perform online testing, and we call this system call an SBST
service routine. As shown in Fig. 1, an SBST service routine
can be divided into three major parts: testing environment
initialization, SBST body function, and result examination.
Since the SBST service routine gets the privilege right to use
all the supported instructions, we can directly deal with the
first CPU SBST challenge discussed in Section III-A.

In testing initialization, an SBST service routine acquires
several free pages from the OS. For instance, get_free_pages
Linux system call allocates a continuous physical memory
space and returns a virtual address pointer to the caller. These
free pages are read-writable, and they are divided into three
regions: code region, data region, and backup region. The code

2350 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 8, AUGUST 2017

region is used to store the interrupt vector table, interrupt
service routines for testing, and SBST body function. The data
region is used to store the required testing data and testing
results. The processor state backup is stored in the backup
region. Note that all the pages in the code region have to be
executable before branching to the SBST body function stored
in the code region.

The physical addresses of the above three regions are passed
to the DFT hardware as configuration arguments. The relevant
physical addresses can be obtained from the system calls.
For instance, virt_to_phys Linux system call can return the
corresponding physical address for a given virtual address.

Once an SBST service routine has prepared the memory
regions and notified the DFT hardware of their physical
addresses, the SBST service routine stores the current proces-
sor state, including all register contents, processor status,
MMU status, and page table base pointer to the backup region.
When restoring processor state from the backup region, this
enables the SBST service routine to return to the state before
entering the SBST body function.

Before calling the SBST body function, the cache must
be flushed to make sure that the testing results are not com-
promised by these unrelated cache contents. Then, the SBST
service routine branches to the SBST body function stored in
the code region. The SBST body function first enables the
DFT hardware and disables the interrupt, which makes the
SBST body function non-preemptive. Then, there are different
requirements for testing CPU and caches respectively. We will
introduce them separately as follows.

For a high fault-coverage CPU SBST, the right to access
almost all of the memory space is required. Disabling the
MMU is an effective method, allowing the CPU to directly
use logical addresses to fetch instructions and data without any
restriction. However, disabling the MMU makes the following
address access unpredictable. The proposed DFT hardware
can maintain the expected execution flow when disabling the
MMU since it can redirect all instruction fetches to the code
region. Note that the disabling of the MMU is performed after
the DFT hardware is activated; otherwise, this may result in a
system crash.

For cache testing, the physical memory limitations men-
tioned in Section III-B need to be overcome. We propose
an efficient method to access any required page without
influencing the current system state. This method can be used
to test all shielded addresses. First, an SBST service routine
prepares a new page table, which contains the page descriptors
of PATAG pages and other required pages. Then, the page
table base pointer is changed from the OS-dispatched one
to the prepared one by SBST body function. In this way,
the processor can access all the required pages, including
shielded pages, without causing any page fault.

However, the shielded pages cannot be directly accessed;
nonetheless, this problem can be resolved by the DFT. For
instance, the DFT hardware redirects all the memory accesses
in PATAG pages (shielded pages) to the code or data region
depending on the tested target cache. Therefore, all physical
page numbers can be directly read/written from/to the physical
tag RAM without adding any special instruction to the ISA.

In this way, when testing shielded addresses, interference with
the current system state can be minimized since the SBST
service routine only acquires free pages without performing
any memory protection operation introduced in Section III-B.

After the initialization stage, the SBST service routine
branches to SBST body function allocated in the code region.
Since the physical address mapping in the DFT is configured
in the initialization stage, the address redirection function can
be activated once the interrupt is disabled by the DFT. After
configuring the MMU (disable or change page table base),
the DFT time-out counter and the MISR can be enabled. The
MISR enabling sequence will be described in Section IV-B4.
A testing kernel can be executed after the MISR is enabled.

A testing kernel either finishes the test normally or is time-
out by the DFT time-out counter, not a system timer. In both
cases, the SBST body function enters the recovery stage. In the
recovery stage, first, the DFT time-out counter is disabled
and the MISR stops any further update. Then, the processor
returns to the state before entering the SBST body function
by recovering the backup register contents, processor status,
MMU status, and the page table base pointer. After finishing
processor state recovery, the address redirection is disabled
and the interrupt is enabled.

Later, the SBST service routine can examine the test results
stored in the data region and MISR. The test results in the
MISR can be read by the coprocessor instruction or MMIO
read while the test results in the memory can be directly
fetched by load instructions. Note that the MISR can only
indicate whether the test passes or not. During testing caches,
the testing kernel can write the fault information into the data
region. Therefore, the test results in the data region can be
used to diagnose the fault location. Before the SBST service
routine exits, all the pages acquired from the OS are released.

As shown in Fig. 1, the SBST body function is non-
preemptive in order to obtain the expected testing sequence,
and this non-preemptive environment is controlled by the
DFT hardware. During executing the SBST body function,
the on-bus system interrupt controller still performs its normal
functions, but the interrupt signal is blocked by the DFT
hardware until the test finishes.

If there are critical interrupts that must be serviced immedi-
ately, this means that the system interrupt cannot be blocked
by the DFT hardware. In this case, the initialization stage
has to back up the system interrupt controller settings. Then,
it reconfigures the interrupt controller so that only the critical
interrupts will be serviced while the rest are disabled. The
prepared interrupt test ISR needs to check the interrupt source
originated from the DFT hardware or the interrupt controller.
If it is triggered by the interrupt controller, the current test
aborts immediately and the SBST service routine enters the
recovery stage. In this case, the interrupt controller settings
are also restored in the recovery stage.

Note that the system interrupt is not served by the interrupt
test ISR. After the processor state and the interrupt controller
are recovered, the control is returned to the OS and this critical
interrupt will be served by the OS. The interrupt response
time is architecture dependent, and it mainly comes from
the recovery stage. For the case of ARMv5 platform shown

LIN AND CHEN: PROCESSOR AND CACHE ONLINE SELF-TESTING METHODOLOGY 2351

Fig. 1. SBST service routine execution flow.

Fig. 2. Processor shield DFT hardware architecture.

in Section V, the response time is about 650 ns for 1-GHz
processor.

Since the proposed methodology uses an MISR to compress
the test results, each testing kernel must be atomically executed
in order to obtain a valid test signature. So it is required to
rerun an aborted test. One way to reduce the occurrences of
incomplete tests is to divide the testing kernel into smaller
modules that can be performed separately.

B. Processor Shield DFT Hardware

As shown in Fig. 2, the processor shield DFT hardware is
inserted between the processor and system bus, and it works
like a bus wrapper. The DFT hardware is largely dependent
on the target bus architecture, not the processor architecture,
so it can be easily reused to test other processors that use the
same bus architecture.

If the target processor is a multi-core design, the DFT
placed in the system bus may not work efficiently. In this

Fig. 3. Address redirection from CPU memory view to main memory.

case, inserting the DFT into the internal private core bus can
provide the required protection for the entire system.

The DFT hardware can be constructed as either an
MMIO or a coprocessor. An MMIO design is a universal
method. Other processors can access the DFT control through
the same bus interface. A coprocessor design is a relative
low-cost method, which delivers configuration arguments to
DFT hardware through a coprocessor interface. A coprocessor
instruction triggers the corresponding DFT function. The DFT
implementation is a tradeoff between portability and overhead.
In this paper, we employ a coprocessor design to implement
the DFT.

The DFT hardware integrates five functions: 1) address
redirection; 2) external signal control; 3) result compression;
4) time-out counter; and 5) faulty effect isolation.

1) Address Redirection for CPU Test: During CPU testing,
the DFT hardware redirects all instruction fetches and data
accesses to the code and data region respectively. The software
framework delivers the physical base addresses, sizes of the
code and data region to the DFT hardware as configuration
arguments.

When a testing kernel is generated by a random instruction
generator, the DFT design performs a random-to-sequential
conversion [12]. The DFT hardware can generate sequential
instruction addresses allocated in the code region, and then the
generated addresses are used to fetch instructions rather than
program counter (PC) of the processor core.

In this way, all the required addresses can be accessed
by the SBST, and the third CPU SBST challenge presented
in Section III-A can be resolved without influencing other
processes and on-bus devices.

2) Address Redirection for Cache Test: For cache testing,
the address redirection function redirects physical addresses
from the processor to the main memory, as shown in Fig. 3.
The SBST service routine forward two physical page numbers
to the DFT hardware: the PATAG page and its redirection
target page. These two page numbers can be dynamically
replaced for different testing requirements. All addresses in
the PATAG page are redirected to the redirection target page
by the DFT hardware.

The addresses in the code and data region can be used to
directly access the system bus without being modified by the
DFT hardware. Other physical addresses, which are neither
in PATAG pages nor in the code/data region, are regarded
as faulty addresses. The DFT hardware discards the faulty
addresses to prevent the system from being crashed.

2352 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 8, AUGUST 2017

When a faulty access comes to the DFT hardware, the DFT
directly replies a bus access success signal to the processor
without requesting the system bus. If the test cannot finish
due to those discarded accesses, the DFT time-out counter
resets the processor in order to break off the test.

This redirection function can effectively overcome the cache
SBST challenges discussed in Section III-B1, including the
memory access rights and the physical memory layout.

3) External Signal Control: The most common external sig-
nals are the interrupt and reset. An interrupt signal is typically
triggered by an on-bus interrupt controller. A processor can
be integrated into various platforms, which have their own
interrupt controllers. Once an interrupt is triggered by the
system interrupt controller, the portability of SBST programs
is degraded due to the customized controls. As an alternative,
utilizing the DFT hardware to trigger/block the interrupt
is an efficient method to perform testing without changing
configurations of the system interrupt controller. In addition,
the DFT hardware can effectively perform precise interrupt
testing as an interrupt signal is directly triggered by executing
the DFT interrupt control instruction. In this way, the second
CPU SBST challenge, i.e., precise interrupt testing, discussed
in Section III-A can be resolved.

The processor reset circuit is typically regarded as an uncon-
trollable unit. In order to test the reset circuit, we construct
the processor reset control in the DFT hardware. The DFT
processor reset is not an overall system reset; all other devices
can still perform their normal operations during processor
reset circuit testing. Note that the system does not enter the
complete reset sequence. Only the processor and caches are
reset so there is no need to load the bootstrap from the flash
memory or reconfigure the on-bus devices. Before performing
a DFT processor reset, the testing kernel must store a unique
value in the data region. The reset ISR can use this value to
distinguish whether the reset signal is triggered by the testing
kernel or by the DFT time-out counter, which does not store
the value.

If additional external signals are required to activate the
hardware circuits, the DFT design can also support testing
kernels to test these circuits. For instance, the ARM proces-
sor contains two external signals, interrupt (IRQ) and fast
interrupt (FIQ). The priority of FIQ is higher than IRQ.
The DFT can implement three control functions, including
individual IRQ trigger, FIQ trigger, and concurrent trigger.
Not only interrupt-handling circuits are tested, but also priority
related circuits are activated for testing. In this way, all the
required external signals can be implemented and controlled
by the DFT hardware.

4) Result Compression: To collect and compress test results,
one way is to employ a multiple-input signature regis-
ter (MISR) on the processor output side. However, there may
be uncertain waiting cycles depending on bus contentions and
memory latencies, and these waiting cycles interfere with the
MISR result. Therefore, the MISR has to exclude all values
in the waiting cycles and only compress the rest. Note that
only the waiting cycles that come from the platform can be
excluded, e.g., bus access and memory latency. If the processor
generates waiting cycles by itself, e.g., pipeline bubbles, all the

processor outputs in these cycles are compressed by the MISR.
Therefore, all effects generated by performance related faults
could be detected by the MISR.

During online testing, in order to obtain a signature that
matches the golden one, all inputs of the MISR must be the
same as running the golden test. The PC value on the address
bus is one of the MISR inputs; therefore, the PC sequence
should remain the same in every test iteration when the
MISR is enabled. Meeting this requirement is challenging
as a testing kernel is allocated in the code region that is
dynamically acquired from the OS.

In order to obtain the same fixed PC sequence as running the
golden test, our method is to change the PC to the same start-
ing address of the golden test. At the same time, the address
redirection function of the DFT hardware is activated so the
changed PC can be redirected to the code region again. Note
that the PC addresses that MISR observes are those before
performing the redirection.

After the fixed PC sequence is obtained, the SBST body
function resets all registers, drains the CPU pipeline with
no-op, enables the MISR, and executes the testing kernel.
In this way, if the processor passes the test, the observed
signature will match the golden one.

5) Time-Out Counter: A time-out counter is required
as operational faults may change the expected instruction
flow or lead to an infinite loop. A simple cycle counter,
which counts the total execution cycles, is insufficient due
to the unpredictable waiting cycles from bus contentions and
memory latencies. Like the MISR, the proposed time-out cycle
counter excludes all these waiting cycles and counts only the
rest.

When executing a testing kernel, including processor core
and cache tests, the time-out function is always enabled.
If time-out is triggered, the DFT hardware resets the processor
core through the DFT reset control. This reset signal forces the
processor core branching to the reset service routine, which is
constructed by the software framework.

If the fault does not crash the system, at the end of the reset
service routine, the processor will branch to the recovery stage
and report a fault to the caller. Otherwise, the test may lead to
a system panic and the user will need to manually reboot the
whole system. In either case, the SBST has indicated a fault
occurring in the processor system.

6) Fault Effect Isolation: In order to record the fault report
and notify the user, the DFT hardware has to block the faulty
actions to prevent the system from crashing. Faulty effects
observed by the DFT hardware appear in the form of erroneous
addresses, incorrect written data or corrupted bus controls.

The address redirection function can resolve the erroneous
address issue. For CPU testing, all addresses, including erro-
neous addresses, are redirected to the code or data region.
During cache testing, the DFT hardware can identify and
discard the access with an erroneous address.

When there comes an access with corrupted bus control,
the DFT hardware directly discards it. At the same time,
the MISR compresses the value of this faulty access.

During testing, the DFT hardware cannot block the proces-
sor to write the incorrect data since there is no way to

LIN AND CHEN: PROCESSOR AND CACHE ONLINE SELF-TESTING METHODOLOGY 2353

Fig. 4. Detailed function block: address redirection & faulty access blocking.

know the correct values. Nonetheless, these incorrect data
do not affect other processes or on-bus devices since the
DFT performs the address redirection. All the written values,
including incorrect values, only can be written to the data
region acquired from the OS. Therefore, we can make sure
that all the other processes or on-bus devices are protected by
the DFT hardware during testing. Although the DFT hardware
cannot block the memory accesses, which use incorrect values,
the MISR can capture these faulty values to examine the
test.

If there are faulty effects triggered before enabling the
DFT hardware, the DFT hardware cannot protect the sys-
tem. In this scenario, the system state is unreliable before
testing. When there are faults detected by the SBST service
routines, how to repair the system is the next challenge.
The common methods can use the checkpoint recovery or
hot spare designs, but this issue is beyond the scope of this
paper.

7) Detailed Function Block: The major functions of the
DFT hardware are address redirection and faulty access block-
ing. These two functions protect the whole system without
being crashed by faulty effects. As shown in Fig. 4, the
detailed function block is majorly constructed by multiplex-
ors and registers. When a memory access comes from the
processor, the DFT hardware checks the current state, which
may be core testing, cache testing, or normal operation. If the
current state is normal, the address, request, and ready control
of the processor are directly connected to the system bus.
When the current state is in core testing, the page number
of the output address is replaced by the page number of the
code/data address configured in the DFT. During performing
CPU random testing, the whole instruction fetch address is
replaced by the code address generated by a random-to-
sequential convertor. The request and ready signal are directly
connected to the system bus.

When testing caches, the DFT compares the processor
address and the PATAG register in the DFT. If the proces-
sor address is in the PATAG region, the page number is
replaced by the redirection target stored in the DFT; otherwise,
the processor address is directly connected to the system bus.
During cache testing, the addresses, which are neither in the
PATAG page nor in the code/data region, are regarded as faulty
addresses, as shown in Fig. 3. All faulty accesses are blocked
by the two control multiplexors, which are used to select the
request or ready signals, as shown in Fig. 4. For a faulty
processor address, the DFT directly replies a ready signal to
the processor without requesting the system bus.

C. Comparison Between Processor Shield
and Conventional SBST

In the following, we compare the proposed processor shield
and conventional methods for resolving the online SBST
challenges. The faulty effect isolation is the first feature of
the processor shield. Conventional SBSTs typically rely on
the MMU/MPU to block the faulty memory accesses, but this
has three disadvantages. First, it cannot block faulty accesses
that do not query the MMU. Second, it cannot work when
testing the MMU itself. Third, the bus-control related faults
cannot be blocked. These three disadvantages can be easily
tackled down by the processor shield.

For CPU testing, the required external signals can be freely
generated by the DFT, but conventional SBSTs encounter two
problems. First, the reset circuits are often uncontrollable.
The second is the precise interrupt test. The conventional
SBST has to configure the interrupt controller and send an
interrupt in a specific time. Hence, locking the bus when con-
figuring the interrupt controller is typically required to make
sure the triggering time for precise interrupt. However, locking
the bus is forbidden in the advance bus, e.g., AMBA AXI4.
In this case, precise interrupt is difficult to implement.

For physically tagged cache testing, the required physical
memory space leads to two issues for the conventional SBSTs.
First, if the memory space is dispatched to other processes,
copying memory is a common method to protect these memory
regions. This method results in longer execution time and
requires additional memory space for backup. Second, con-
ventional SBSTs may not be able to test the entire processor
visible memory space due to the smaller size DRAM installed.
If the required testing addresses are located in the reserved
memory space (no DRAM mapped), the processor cannot
access them. Cache faults in the reserved region are then
not covered. Although these faults may have no impact on
the existing system, the cache has become unreliable. The
processor shield can test all the required testing addresses for
caches.

V. CASE STUDY AND EXPERIMENTAL RESULTS

In this section, we present a case study that preforms SBSTs
under Linux kernel on an ARMv5-compatible pipelined
processor, which has a 16-KB direct-mapped instruction
cache and a 16-KB direct-mapped data cache. This processor
has been fabricated in 90-nm technology and used to run
Linux 2.6.33 to verify the design. The instruction cache is a
virtual-index and virtual-tag architecture. The data cache is a
virtual-index and virtual-tag architecture, which also contains
a physical tag associated with each cache line. This physical
tag is used to write back a dirty line without querying
the MMU.

We implement a Verilog and SystemC co-simulation plat-
form to verify the proposed processor shield design. In this
platform, processor core, MMU, cache system, and DFT hard-
ware are implemented in Verilog. The platform components,
including system bus, main memory, interrupt controller, timer,
and other peripherals are implemented in SystemC.

The processor design, including core, cache control
logic, and processor shield DFT hardware, is synthesized

2354 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 8, AUGUST 2017

TABLE II

HARDWARE SYNTHESIS RESULTS

TABLE III

LOGIC CIRCUIT POWER ANALYSIS: PROCESSOR AND DFT (MILLIWATT)

by TSMC 40-nm technology library, and the highest frequency
is set to 1 GHz. The synthesis results are shown in Table II,
and the area overhead of the processor shield is 0.494% with
respect to the whole processor, including caches. The DFT
circuits increase the latency between the processor bus and
the system bus by 0.1 ns, which majorly comes from the
multiplexors.

We use the processor gate-level netlist to execute the test
programs, including core test, I-cache test, D-cache test,
and normal program. During program execution, the timing
related information is recorded. This record and the processor
netlist are used to perform the time-based power analysis by
Synopsys PrimeTime [42]. Table III shows the power analysis
for the logic part of the circuits of the processor, excluding
cache RAMs. The total power consumption of the DFT is
about 2.4% of the total logic circuit power, including leakage
and dynamic power.

For CPU testing, we develop two testing kernels, including
deterministic and hybrid based on our prior works [11], [12].
To test the data cache, including RAM modules and control
logics, we use the methods proposed in [31] and [41]. For
the data RAM of instruction cache testing, we employ the
method proposed in [32]. Furthermore, we develop the SBSTs
for the control logic and tag RAM module of the instruction
cache according to the method demonstrated in [31]. All the
developed SBST programs are regarded as testing kernels,
and we build an SBST service routine for each of the testing
kernels.

Except the applied methods mentioned above, some pre-
vious works are also proposed to achieve the high fault
coverage for cache RAM and controller testing. For instance,
Perez et al. [43] demonstrated a method to construct SBST
programs based on the cache accesses and read/write policies.
The basic concept is that all the cache functions are performed
on every cache line during testing. This is similar to the

TABLE IV

FAULT COVERAGES FOR CPU FUNCTIONAL MODULES

methods in [31] and [41]. All the methods can be used to
design the testing kernel for cache controller testing. Our
proposed processor shield focuses on how to enable testing
kernels to be executed effectively on the platform hosted by
an OS.

In the following, we demonstrate the experimental results of
the SBST programs assisted by the processor shield. The test
results are shown in the subsections for CPU, cache RAM
modules, and cache control logics. Finally, we profile the
executions of SBST service routines under Linux.

A. Processor Core Test Results

When an SBST service routine is activated under Linux
kernel, we capture all the input–output signals of the whole
processor every cycle. The captured signals are translated into
the test pattern format, and then the test patterns and the netlist
of the processor are used to perform the fault simulation by
Synopsys TetraMAX [35]. Table IV shows the fault count and
fault coverage for each module of the processor core.

The deterministic program can achieve 95% stuck-at fault
coverage, but only 61% of the transition fault coverage can be
obtained. As a result, adding an effective random generated
program, i.e., a hybrid SBST, is useful to capture the remaining
stuck-at and transition faults.

The processor shield can assist such a hybrid SBST program
to execute under Linux. For the hybrid SBST, not only 98% of
the stuck-at fault coverage can be achieved but also 93% of the
transition fault coverage is obtained. The fault coverage of the
fetch unit is significantly enhanced since the processor shield
enables the processor to directly access the whole logical
memory space. The fault coverage of the decoder is obviously
enhanced due to the massive random instructions executed.

We compare the test results to the related work in [15].
Gizopoulos et al. [15] proposed a systematic method to
develop the SBST program for pipelined processor. They
focus on the propagation of the address-related information
and the hazard detection. Since their basic testing program
is a loop-based code, the enhanced program unrolls the loop
and adds pipeline propagation controls. The achieved stuck-at
fault coverage is 95.08% while the transition fault coverage
is 92.02% for miniMIPS core.

Our deterministic method performs function module tests
in serial so the triggering times of each fault are less than
their work. Therefore, the stuck-at fault coverages are very
close, but the transition fault coverage is lower than their work.

LIN AND CHEN: PROCESSOR AND CACHE ONLINE SELF-TESTING METHODOLOGY 2355

TABLE V

RAM MODULE FAULT COVERAGES REPORTED BY RAMSES

The hybrid test can significantly improve the transition fault
coverage.

B. Cache RAM Module Test Results

A complex March algorithm can detect diverse fault types
due to its various March read/write sequences. It is a challenge
to develop an SBST program to implement the required
sequences of various March algorithms. According to the
methods demonstrated in [31] and [41], we implement the
March read and write respectively for different RAM modules,
including tag RAM, physical tag RAM, and data RAM. In our
approach, a March element is composed of the implemented
March read/write to avoid the unexpected RAM accesses
appeared on the target RAM module. In this way, for complex
March algorithm, it will require more execution time, but not
compromising the expected fault coverage.

We employ the March C- algorithm which can effectively
capture stuck-at-fault (SAF), transition fault (TF), address
decoder fault (AF), state coupling fault (CFst), inversion
coupling fault (CFin), and idempotent coupling fault (CFid).
The memory accesses are recorded during the simulation, and
then they are applied to RAMSES simulator [34]. Table V
shows the test results reported by RAMSES simulator.

The proposed online SBST executed in the Linux-governed
processor-cache system can obtain 100% of the fault coverage
for data cache testing. The fault coverage of the instruction
cache test does not achieve 100% in intra-word faults of CFst
and CFid. The reason is that the chosen instructions, which
are regarded as the March DBs, are limited by the target ISA
without generating ambiguous test results [32]. The final fault
coverage of the instruction cache is over 99.99%.

C. Cache Control Logic Test Results

The design complexity of the cache control logic is depen-
dent on cache control functions. The data cache controller
provides eight control functions: enable/disable, invalidate,
clear, preload, write-back, write-through, write-allocate, and
write-around policy. The instruction cache controller only
provides three control functions: enable/disable, invalidate, and
preload. Table VI shows the test results for each module
of the cache control logics. As testing the processor core,
we also feed the netlist of cache control logics and the stimuli

TABLE VI

TEST RESULTS FOR CACHE CONTROL LOGICS

TABLE VII

SBST TESTING KERNEL MEMORY USAGES

to Synopsys TetraMAX [35] to obtain these fault coverages,
including the stuck-at and transition fault model. Since the
cache control logics are more regular and controllable, the fault
coverages of cache control logics are higher than the CPU.

D. SBST Service Routine Statistics

Table VII shows the static code size and dynamic memory
usage of testing kernels respectively. During executing a
testing kernel, the dynamic memory usage is the required
memory pages, including code region, data region, backup
region, and March region. The March region is used to perform
the March algorithm for cache RAM testing. During testing
physical tag RAM, the March region contains the PATAG
pages. For ARM architecture, the page size is typically 4 KB
in Linux, and get_free_pages system call can provide two to
the power of n pages. This system call can obtain a continuous
4-MB physical memory space.

During executing the SBST service routine, the data region
stores the shared data, which are used in three stages, including
initialization, SBST body function, and result examination.
When testing CPU, only the required input patterns are stored
in the data region, and the size is about 900 B. When
testing caches, the shared data include program flow control
variables, March data backgrounds, testing results, and values
for logic device testing. The size of the shared data ranges from
0.8 to 2.1 KB.

2356 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 8, AUGUST 2017

TABLE VIII

SBST SERVICE ROUTINE EXECUTION TIMES (NANOSECOND)

Table VIII shows the execution time breakdown for each
of the SBST service routines. The SBST execution time is
measured after the OS has performed the context switching
and gives the control to the SBST process until the end of the
SBST process. Since the entire SBST process is preemptive
except the body function, only the time executing the SBST
program is counted as the SBST execution time. In Table VIII,
one row represents an SBST service routine, and each of the
SBST service routines can be executed independently.

The memory allocation and data copy dominate the execu-
tion time of the initialization stage. The get_free_pages system
call is the major function of memory allocation, and it requires
1500–80 000 ns depending on the requested numbers of pages.
The data copy execution time is dependent on the static code
size and the required testing data size. For the hybrid method,
the initialization stage needs over 2 ms. Since the code size
of the hybrid testing kernel is larger than 3 MB, the SBST
service routine has to acquire the maximum number of free
pages, i.e., 4 MB, and copy the program into the code region.

Since the ARMv5 processor uses virtual-tag virtual-index
cache architecture, the cache contents are flushed by the Linux
during context switching. This context switching overhead
depends on the volume of the dirty cache data; for instance,
to flush 16 KB dirty data in our experimental system would
require about 10 000 ns. This overhead time is not included in
the execution time shown in Table VIII.

The processor state backup is another architecture depen-
dent task. For the target ARMv5 architecture, the processor
state backup contains 43 32-bit registers, including the register
file, processor status register, and the MMU controls. This
backup operation requires 432 ns, which is already counted in
the initialization execution time shown in Table VIII.

Since the SBST body function is non-preemptive, the exe-
cution time of this part represents the longest uninterruptable
period. The hybrid method for core testing requires 5.6 ms
to execute the testing kernel without being interrupted. Note
that a commonly used context-switch interval is 4 ms in
Linux. This means non-preemptive SBST testing kernels can

TABLE IX

CPU STUCK-AT FAULT COVERAGES WITH ENHANCEMENT METHODS

be scheduled as general processes, and there is almost no
impact to the system operations.

After the testing kernel, the SBST body function enters the
recovery stage. This stage is also an architecture dependent
procedure. For the target ARMv5, the 43 32-bit values in the
backup region are restored into the corresponding registers.
This recovery operation requires 446 ns, which is included in
the body function execution time shown in Table VIII.

The result examination stage includes MISR signature check
and releases of the acquired memories. The release system call,
i.e., free_pages Linux system call, requires 1000–100 000 ns
depending on the released number of pages. This system call
dominates the execution time of the result examination stage.
For cache testing, the execution times of the result examination
are almost the same since their memory usages are very close.

The rightmost column in Table VIII shows the overall
execution times to test CPU core, I-Cache, and D-Cache,
respectively. When testing data RAM of the instruction cache,
one March read value, i.e., one instruction, typically needs
more than five instructions to examine the test result. This is
the reason why the required time of I-Cache testing is longer
than the D-Cache testing.

VI. DISCUSSION

In this section, we discuss fault coverage enhancement
and related issues: interrupt controller online testing, and the
cooperation between the SBST and DVFS.

A. CPU Fault Coverage Enhancement

We use two methods to improve the CPU stuck-at fault cov-
erage: uncovered fault first (UFF) random program generation
and flip-flop replacement.

In our previous work [12], the developed random program
generator is a basic block-based generator. The generated
random program is composed of three types of basic blocks:
in-order, fully random, and mode change. This generator builds
a random program that includes about 800-k instructions. The
random program along with the deterministic program in [11]
has achieved the fault coverage of 98.14% for stuck-at fault.
This is the original method shown in Table IX.

The idea of the UFF random program generation is to gen-
erate effective random programs to test the uncovered faults
iteratively. We explore the following procedure to improve

LIN AND CHEN: PROCESSOR AND CACHE ONLINE SELF-TESTING METHODOLOGY 2357

Fig. 5. Uncovered fault count for each best UFF random program.

the fault coverage. First, the faults tested by the deterministic
program are removed from the whole fault set. The remained is
called the uncovered fault set. The random program generator
first produces about 200 smaller test programs, each containing
about 100-k instructions for fault simulation. The test program
having the best fault coverage for the uncovered fault set is
chosen as a testing kernel. Then, the tested faults are removed
from the original uncovered fault set and we repeat the above
procedure several times to get more testing kernels.

As shown in Fig. 5, the first UFF random program can
test more than 3000 uncovered faults, which are not tested
by the deterministic SBST program. The 11th UFF random
program can test 33 more faults. However, the following
UFF random programs cover less than 10 faults, a more
dramatic change occurring here. Therefore, we can choose
the first 11 UFF random programs for SBST testing, totally
including 1.1 million instructions. All the tested faults are the
union of the covered faults of all UFF random programs and
the deterministic program. The achieved fault coverage has
increased to 98.62% for stuck-at fault, as shown in Table IX.

Note that these testing kernels can be executed indepen-
dently with their own golden MISR signatures. Once all the
testing kernels are performed, the expected fault coverage can
be obtained without executing them in order. For each testing
kernel, the non-preemptive execution time is less than 1 ms.

The second method is the flip-flop replacement. From the
uncovered fault set, we discover that many faults on the reset
pin of flip-flops are untested. We further observe that almost all
these flip-flops are located in the data paths. During testing,
when a CPU active-low reset is triggered, the flip-flops on
control paths or data paths are reset at the same time. If there
is a reset stuck-at-one fault in the data path flip-flop, this flip-
flop will still keep the original value without being reset. This
reset fault is not observable since the flip-flop data cannot
be propagated to the next stage. When a fetched instruction
comes, the new value overwrites the original one. Therefore,
the reset signals of the flip-flops in the data paths are un-
testable and become redundant faults.

We replace all the flip-flops in the data paths with ones
without the reset input. Note that the flip-flops in the control
paths still keep their reset pins. The post-synthesis simulation
can verify the correctness of the replacement. The replaced
flip-flop count and fault coverage is shown in the rightmost two
columns in Table IX. Based on the above two improvement

methods, we have achieved 99.01% fault coverage of stuck-at
faults for the target ARMv5 processor.

B. Interrupt Controller Online Testing

The functions of the interrupt controller directly change
the processor execution flow. In order to test the interrupt
controller, the processor has to enter the testing mode to
execute test programs. In general, the interrupt controller
circuits can be divided into three parts: external inputs, priority
comparison, and processor notification. The test controllability
is directly dependent on the external input signals. However,
to control these input signals is challenging.

If the interrupt controller is embedded into the processor,
the proposed processor shield can directly control the input
signals and generate the required scenarios for testing. In our
simulation platform, the interrupt controller is constructed as
a behavioral standalone peripheral; the SBST testing of the
interrupt controller itself is not investigated in this paper.

C. SBST and DVFS: Required Guardband Calibration

The proposed processor shield methodology not only con-
structs the required testing environment but also isolates all
the faulty effects to prevent the system from crashing. Hence,
each of the SBST testing kernels can be repeated even if
the test fails. This inspires us to integrate the processor
shield with the dynamic voltage and frequency scaling (DVFS)
technique to calibrate the required guardbands, which is used
to accommodate transistor aging.

Transistor aging, e.g., NBTI aging [37], typically causes
increase of the threshold voltage for operation and degrades
the highest working frequency, which may result in 20%
speed degradation [38]. To accommodate aging effects, a
conventional solution is to use guardband, which reduces the
working frequency or increases the operating voltage. Design-
ers usually incorporate one-time worst case guardband (OWG)
at the beginning of chip lifetime. This guardband is assumed
for the worst case aging effects at the end of chip lifetime.
In order to obtain the expected performance, OWG typically
increases the operating voltage. However, this increases the
power consumption and accelerates the aging effect at the
same time.

The guardbands can be reduced in the beginning of chip life-
time, and the minimal required guardbands can be dynamically
recomputed without using OWG. In this paper, we propose
using the online self-test which can provide feedback to the
DVFS system to calibrate the minimal required guardbands.

In the proposed method, the SBST service routine coop-
erates with the DVFS system to regulate a voltage and
frequency pair based on a previous workable setting. For
instance, the Linux system provides an operating performance
point (OPP) library, which records the workable voltage and
frequency pairs for each device. The DVFS system can query
the OPP library to set the operating voltage and frequency.

As shown in Fig. 6, the DVFS system sets the frequency to
a specified value and programs the voltage to the expected
lowest value from the OPP record. If an SBST fails, this
SBST is iterated with a higher voltage. When the processor
passes the test, the current voltage is the new workable lowest.

2358 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 8, AUGUST 2017

Fig. 6. Flow to get the workable lowest voltage for a specified frequency.

This voltage and frequency pair is used to update the record
in the OPP library. The workable lowest voltage for any
frequency can be acquired by executing the above loop. In
this way, the guardbands can be calibrated for processor core,
instruction cache, and data cache, respectively.

In order to perform SBSTs for guardband calibration,
the SBST programs may be executed several times under dif-
ferent operating conditions, including voltage and frequency.
Therefore, all faulty actions must be blocked without influenc-
ing system operations. The proposed processor shield design
can effectively construct the testing environment where the
SBST programs can be executed many times even if the
SBST fails.

A similar concept has been proposed in [39], but the
authors used the inserted hardware devices to collect real-
time information for guardband calibration. This needs to
modify the internal architecture of the processor. Our proposed
method can collect an accurate amount of the accumulated
aging effects without changing the processor design through
the method shown in Fig. 6.

VII. CONCLUSION

This paper has addressed system related issues in the proces-
sor online testing, including redirecting shielded address, con-
trolling interrupt signal, isolating faulty effect. We propose the
processor shield, which efficiently creates the required testing
environment to tackle the system related issues. The processor
shield design is an architectural methodology, including the
software framework and the DFT hardware.

The software framework requests the required resources and
privilege right from the OS. The DFT redirection function
enables the test program to access any required physical
address without violating memory protection scheme, includ-
ing the shielded one. The DFT can trigger the interrupt
signal at the deterministic time with respect to the instruction
sequence of the test program for precise interrupt testing. The
DFT hardware also can isolate all faulty actions. The software
framework recovers the processor state even if the SBST fails.
A fault report can be obtained after testing, and the user
will be notified, instead of crashing the system. The SBST
service routines can completely run under an OS without
affecting other processes and on-bus devices. Our method can
seamlessly switch between the SBST service routine and the
kernel process.

We present a case study that demonstrates the SBST service
routine executions under Linux on an ARMv5-compatible

processor system. For CPU testing, the stuck-at fault coverage
is over 99% while the transition fault coverage is higher
than 93%. For cache control logic testing, the stuck-at fault
coverage is over 99% while the transition fault coverage
is higher than 95%. For RAM module testing, the fault
coverage is nearly 100%. For online testing, these results
show that the expected high fault-coverage can be achieved
through the processor shield design. The hardware overhead
is 0.494% compared to the whole processor area. In addition,
we have discussed an SBST-DVFS application that calibrates
the dynamic minimal guardbands to reduce operating power
consumption and mitigate transistor-aging effect.

REFERENCES

[1] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 24, no. 1,
pp. 88–99, Jan. 2005.

[2] F. Corno, E. Sánchez, M. S. Reorda, and G. Squillero, “Automatic test
program generation: A case study,” IEEE Des. Test Comput., vol. 21,
no. 2, pp. 102–109, Mar. 2004.

[3] M. Scholzel, T. Koal, and H. T. Vierhaus, “Systematic generation of
diagnostic software-based self-test routines for processor components,”
in Proc. IEEE Eur. Test Symp. (ETS), May 2014, pp. 1–6.

[4] P. Singh, D. L. Landis, and V. Narayanan, “Test generation for
precise interrupts on out-of-order microprocessors,” in Proc. IEEE
Int. Workshop Microprocessor Test Verification (MTV), Dec. 2009,
pp. 79–82.

[5] E. Sánchez and M. S. Reorda, “On the functional test of branch
prediction units,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 23, no. 9, pp. 1675–1688, Sep. 2015.

[6] D. Sabena, M. S. Reorda, and L. Sterpone, “A new SBST algorithm for
testing the register file of VLIW processors,” in Proc. Des. Autom. Test
Eur. Conf. Exhibit. (DATE), Mar. 2012, pp. 412–417.

[7] P. Bernardi et al., “On-line software-based self-test of the address cal-
culation unit in RISC processors,” in Proc. IEEE Eur. Test Symp. (ETS),
May 2012, pp. 1–6.

[8] P. Bernardi et al., “On the functional test of the register forwarding
and pipeline interlocking unit in pipelined processors,” in Proc. IEEE
Int. Workshop Microprocessor Test Verification (MTV), Dec. 2013,
pp. 52–57.

[9] P. Bernardi et al., “On the in-field functional testing of decode units
in pipelined RISC processors,” in Proc. IEEE Int. Symp. Defect Fault
Tolerance Nanotechnol. Syst. (DFT), Oct. 2014, pp. 299–304.

[10] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
based self-testing of embedded processors,” IEEE Trans. Comput.,
vol. 54, no. 4, pp. 461–475, Apr. 2005.

[11] C. H. Chen, C. K. Wei, T. H. Lu, and H. W. Gao, “Software-based self-
testing with multiple-level abstractions for soft processor cores,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 5, pp. 505–517,
May 2007.

[12] T.-H. Lu, C.-H. Chen, and K.-J. Lee, “Effective hybrid test program
development for software-based self-testing of pipeline processor cores,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 3,
pp. 516–520, Mar. 2011.

[13] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, and
D. Gizopoulos, “Hybrid-SBST methodology for efficient testing of
processor cores,” IEEE Des. Test Comput., vol. 25, no. 1, pp. 64–75,
Jan./Feb. 2008.

[14] N. Kranitis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Effective
software self-test methodology for processor cores,” in Proc. Des.
Autom. Test Eur. (DATE), Mar. 2002, pp. 592–597.

[15] D. Gizopoulos et al., “Systematic software-based self-test for pipelined
processors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16,
no. 11, pp. 1441–1453, Nov. 2008.

[16] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, “A scalable software-
based self-test methodology for programmable processors,” in Proc.
IEEE/ACM Des. Autom. Conf. (DAC), Jun. 2003, pp. 548–553.

[17] L. Lingappan and N. K. Jha, “Satisfiability-based automatic test program
generation and design for testability for microprocessors,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 5, pp. 518–530,
May 2007.

LIN AND CHEN: PROCESSOR AND CACHE ONLINE SELF-TESTING METHODOLOGY 2359

[18] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-
based self-testing of delay faults in pipelined processors,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 11, pp. 1203–1215,
Nov. 2006.

[19] A. Riefert, R. Cantoro, M. Sauer, M. S. Reorda, and B. Becker,
“A flexible framework for the automatic generation of SBST programs,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 10,
pp. 3055–3066, Oct. 2016.

[20] K. Batcher and C. Papachristou, “Instruction randomization self test
for processor cores,” in Proc. IEEE VLSI Test Symp. (VTS), Apr. 1999,
pp. 34–40.

[21] S. M. Al-Harbi, F. Noor, and F. M. Al-Turjman, “March DSS: A new
diagnostic march test for all memory simple static faults,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 9, pp. 1713–1720,
Sep. 2007.

[22] S. Hamdioui, A. J. van de Goor, and M. Rodgers, “March SS: A test
for all static simple RAM faults,” in Proc. IEEE Int. Workshop Memory
Technol., Des. Test (MTDT), Jul. 2002, pp. 95–100.

[23] A. J. van de Goor, I. B. S. Tlili, and S. Hamdioui, “Converting
March tests for bit-oriented memories into tests for word-oriented mem-
ories,” in Proc. Int. Workshop Memory Technol., Des., Test. (MTDT),
Aug. 1998, pp. 46–52.

[24] P. Bernardi, R. Cantoro, S. De Luca, E. Sánchez, and A. Sansonetti,
“Development flow for on-line core self-test of automotive microcon-
trollers,” IEEE Trans. Comput., vol. 65, no. 3, pp. 744–754, Mar. 2016.

[25] M. A. Skitsas, A. Nicopoulos, and M. K. Michael, “DaemonGuard:
Enabling O/S-orchestrated fine-grained software-based selective-testing
in multi-/many-core microprocessors,” IEEE Trans. Comput., vol. 65,
no. 5, pp. 1453–1466, May 2016.

[26] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “A flexible
software-based framework for online detection of hardware defects,”
IEEE Trans. Comput., vol. 58, no. 8, pp. 1063–1079, Aug. 2009.

[27] P. Bernardi, L. M. Ciganda, E. Sánchez, and M. S. Reorda, “MIHST:
A hardware technique for embedded microprocessor functional on-
line self-test,” IEEE Trans. Comput., vol. 63, no. 11, pp. 2760–2771,
Nov. 2014.

[28] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos,
“Software-based self-test for small caches in microprocessors,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 33, no. 12,
pp. 1991–2004, Dec. 2014.

[29] J. Sosnowski, “In system testing of cache memories,” in Proc. Int. Test
Conf. (ITC), Oct. 1995, pp. 384–393.

[30] S. M. Al-Harbi and S. K. Gupta, “A methodology for transforming
memory tests for in-system testing of direct-mapped cache tags,” in
Proc. IEEE VLSI Test Symp. (VTS), Apr. 1998, pp. 394–400.

[31] Y.-C. Lin, Y.-Y. Tsai, K.-J. Lee, C.-W. Yen, and C.-H. Chen, “A software
based test methodology for direct mapped data cache,” in Proc. Asian
Test Symp. (ATS), Nov. 2008, pp. 363–368.

[32] C.-W. Lin and C.-H. Chen, “Unambiguous I-cache testing using
software-based self-testing methodology,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Jun. 2014, pp. 1756–1759.

[33] D. K. Pradhan and S. K. Gupta, “A new framework for designing and
analyzing BIST techniques and zero aliasing compression,” IEEE Trans.
Comput., vol. 40, no. 6, pp. 743–763, Jun. 1991.

[34] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: A fast memory
fault simulator,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Syst. (DFT), Nov. 1999, pp. 165–173.

[35] (Feb. 2017). TetraMAX Version L-2016.03. Synopsys Inc., San Jose, CA,
USA. [Online]. Available: http://www.synopsys.com/

[36] (Feb. 2017). Cacti Version 5.3. HP Inc., Palo Alto, CA, USA. [Online]
Available: http://www.hpl.hp.com/research/cacti/

[37] G. Chen et al., “Dynamic NBTI of PMOS transistors and its impact
on device lifetime,” in Proc. IEEE Int. Reliab. Phys. Symp. (IRPS),
Mar. 2003, pp. 196–202.

[38] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-aware
processor,” in Proc. IEEE Int. Symp. Microarchitecture (MICRO),
Dec. 2007, pp. 85–96.

[39] E. Mintarno et al., “Self-tuning for maximized lifetime energy-efficiency
in the presence of circuit aging,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 30, no. 5, pp. 760–773, May 2011.

[40] C.-W. Lin and C.-H. Chen, “A processor shield for software-
based on-line self-test,” in Proc. IEEE Asia–Pacific Conf. Circuits
Syst. (APCCAS), Oct. 2016, pp. 149–152.

[41] C.-W. Lin and C.-H. Chen, “Processor shield for L1 data cache software-
based on-line self-testing,” in Proc. Asia South Pacific Des. Autom.
Conf. (ASPDAC), Jan. 2017, pp. 420–425.

[42] (Feb. 2017). PrimeTime Version M-2016.12. Synopsys Inc., San Jose,
CA, USA. [Online]. Available: http://www.synopsys.com/

[43] W. J. Perez, J. Velasco, D. Ravotto, E. Sánchez, and M. S. Reorda,
“A hybrid approach to the test of cache memory controllers embedded
in SoCs,” in Proc. IEEE Int. On-Line Test. Symp. (IOLTS), Jul. 2008,
pp. 143–148.

Ching-Wen Lin received the B.S. and M.S. degrees
in electrical engineering from National Cheng Kung
University, Taiwan, in 2006 and 2008, respectively.
He is currently working toward the PhD degree from
National Cheng Kung University. His research inter-
ests include computer architecture, online testing,
and software-based self-testing.

Chung-Ho Chen received the MSEE degree in
electrical engineering from the University of
Missouri-Rolla, Rolla, in 1989 and the PhD degree
in electrical engineering from the University of
Washington, Seattle, in 1993. He then joined the
Department of Electronic Engineering, National
Yunlin University of Science and Technology.
In 1999, he joined the Department of Electrical Engi-
neering, National Cheng-Kung University, Tainan,
Taiwan, where he is currently a professor. His
research areas include advanced computer architec-

ture, graphics processing, and full system ESL simulation systems. He is a
member of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

