o5B-2

Processor Shield for L1 Data Cache Software-Based On-line Self-testing

Ching-Wen Lin

Institute of Computer and
Communication Engineering,
National Cheng Kung University,
Tainan, Taiwan, R.O.C.
kliolin@mail.ee.ncku.edu.tw

Abstract - Conventional software-based cache self-tests typically
ignore system related testing issues, such as physical memory
layout, virtual memory mapping, and isolating faulty effects,
especially for on-line testing. We propose an architectural
support for data cache software-based self-testing (SBST):
Processor Shield, which can tackle difficult-to-test issues during
on-line SBST. The proposed processor shield includes a software
framework and design for testing (DFT) hardware, which
enables SBST program to run without influencing other
processes and on-bus devices even if a cache test fails. The
proposed SBST process can be iteratively executed and
cooperate with dynamic voltage frequency scaling (DVFS)
system to calibrate the required guardbands to accommodate
transistor aging effects. Finally, we present a case study that
performs SBST programs under Linux kernel on an ARMv5-
compatible processor system. Our method can successfully
switch between the SBST process and the kernel process and
achieve the expected high fault coverages for cache control logic
and RAM module testing.

I. Introduction

On-line testing is an effective method to capture
operational faults, detect the transistor aging, and improve the
system reliability. The cache system plays an important role
in a modern processor by bridging the speed gap between the
processor and the main memory, and it typically dominates
the power consumption of a processor. In a low-power system
design, dynamic voltage frequency scaling (DVFS) system is
the most common method to balance the performance and
power consumption.

Transistor aging may increase the threshold voltage and
then degrade the max working frequency (e.g., the NBTI
aging). A conventional solution is to use guardbanding, which
reduces the working frequency or increases the operating
voltage to tolerate the degradation during the chip lifetime [1].
The higher guardbands imply the lower performance or the
higher power consumption. On-line self-test not only can
capture the operational faults, but it is also able to provide the
feedback to the DVFS system to calibrate the required
guardbands against the transistor aging.

Software-based self-testing (SBST) is the most common
on-line testing method since it can perform at-speed testing
and critical path testing with no design modification and no
additional power consumption. This paper presents a
methodology to perform an on-line D-cache SBST under the
operating system by preserving the contexts of other

This work is supported by the Ministry of Science and Technology, Taiwan,
R.O.C., under Grant MOST 105-2218-E-006-024 -

978-1-5090-1558-0/17/$31.00 ©2017 IEEE

Chung-Ho Chen

Institute of Computer and
Communication Engineering,
National Cheng Kung University,
Tainan, Taiwan, R.O.C.
chchen@mail.ncku.edu.tw

processes and on-bus devices unaffected even if a test fails.

To test memory cells, March algorithms are widely used
for memory cell built-in self-testing (BIST) and SBST [3], [4],
[5], [7], [8]. Various March algorithms are implemented to
perform a cache SBST in a non-OS platform. The authors
propose many methods to resolve encountered challenges
during executing the March sequences on their target cache.
However, the system related issues of on-line testing are
typically ignored since the manufacturing test is the main
purpose of previous works.

The first system related issue when conducting an on-line
test is the system memory mapping, including physical
memory layout and the virtual memory. The system memory
mapping places limits on accessing the memory for on-line
testing. The physical memory layout decides how a physical
address is mapped to the main memory, the memory-mapped
/O (MMIO), or the reserved space, and this mapping
typically depends on the hardware or platform configuration.
The virtual memory is managed by the operating system, and
the test process has to request the required memory regions
from the operating system.

The above system memory mappings place limits of
memory addresses during on-line testing, and a test process
may have no right to access the required addresses. Accessing
the required addresses in sequence is an essential operation
for testing; however, these limits may make these accesses
illegal. We call these addresses, which are required for testing
but limited by the system memory mapping, shielded
addresses, and an on-line SBST has to redirect these shielded
addresses to the available memory space acquired from the
operating system; otherwise, the test may result in a system
crash.

The second system related issue is the faulty effect
isolation which is necessary to keep other processes and on-
bus devices unaffected during an on-line cache SBST. For a
data cache test, the major syndrome, which interferes with
other processes or on-bus devices, is the faulty address, and it
comes from testing physical tag RAM or the controller. For
instance, when the cache cleans a dirty line, the corresponding
content of physical tag RAM is used to build the full physical
address to directly access the system bus. If there is a fault in
the RAM cell, the faulty address may cause irreversible
damages to other processes or result in a system crash.
Therefore, how to prevent the processor or a bus master, for
example, the cache controller, from accessing the bus using a
faulty address is the another challenge of performing an on-
line cache SBST.

In this paper, we address the system related issues during a
data cache on-line SBST, and we propose an architectural
approach called processor shield, including the software
framework and the design for testing (DFT) hardware. The
software framework constructs a non-preemptive privileged
process that can provide the required environment for data
cache SBST and return the control to the operating system
after the test is done. The DFT hardware blocks the illegal
accesses due to faulty addresses and on the other hand,
redirects the shielded addresses to the available memory
space prepared by the software framework.

We present a case study which runs the data cache SBST
program under Linux kernel on an ARMvS-compatible
processor system. The proposed method can seamlessly
switch the SBST process and the kernel process, even if a test
fails. Based on various environmental conditions, including
the temperature, the system workload, the operating voltage,
and the frequency, the expected fault coverage, depending on
the controller test program and the March algorithm used, can
be obtained, and the test results can be used as the feedback
to the DVFS system.

The rest of this paper is organized as follows. Section II
describes the background and the related work. Section III
presents the proposed processor shield. Section IV shows the
software-based March algorithm development. Section V
provides a case study and the experimental result. Finally, we
make a conclusion for this paper.

II. Background and Related Work

A March algorithm is a sequence of March elements
composed of pre-defined read/write operations to the test
target memory cells by the special addressing order. In the
word-oriented March algorithm [2], the data that are marched
for read/write are called data backgrounds (DBs) or their
complementary data backgrounds (CDBs). After a March
element has been applied to one memory cell, the element has
to then be applied to the next one according to the pre-defined
addressing order which can be ascending (1), descending (U),
or either (§). As shown in Fig. 1, the word-oriented March C-
algorithm contains six March elements with the write/read
order specified from left to right. The least number of the
required DBs and CDBs to test the intra-word faults of an L-
bit memory cells (word) is defined as follows:

{2 * ([logz L] + 1)} --- Eq. (1)

$(wDB); (rDB, wCDB); ft(rCDB, wDB); U(rDB, wCDB); (rCDB, wDB); $(rDB)

Fig. 1. Word-oriented March C- Algorithm

The caches must cope with the translation of a virtual
address from the processor to a physical address to access the
system bus. The caches can be classified into four types:
virtual index virtual tag (VIVT), virtual index physical tag
(VIPT), physical index physical tag (PIPT), and physical
index virtual tag (PIVT). An L1 cache implementation can be
constructed as a VIVT or VIPT architecture to reduce the
cache access latency. For a data cache, the VIVT architecture
usually builds a physical tag associated with each cache line
so that a dirty cache line can be written back to the next level
memory without querying the MMU. In this paper, we focus

421

o5B-2

on the on-line SBST of the cache system that has both virtual
tag RAM and the physical tag RAM. The proposed method
can be easily extended to the other architecture that uses only
either physical tag RAM or virtual tag RAM.

Testing cache using SBST has been proposed by lots of
researches. Carlo et al. [3] have tried to overcome the
difficulties of set-associative cache testing. They deal with the
issues successfully without using the hardware or special
instruction support; however, there is no detailed discussion
on performing the SBST under the operating system. In the
other work, Theondorou et al. have proposed the direct cache
access instructions (DCA instructions) that can directly
read/write the desired value from/to any location of data
RAM, tag RAM, and physical tag RAM in the cache [4].
Unfortunately, not every ISA has these special cache control
instructions that can fully support cache testing.

III. Proposed Processor Shield Design

In order to deal with the system related issues, we propose
an architecture mechanism called processor shield, which can
prevent the system from entering an unrecoverable status
during testing and then return the control to the operating
system. The unrecoverable statuses include the system crash,
the violated contexts of other processes, and the modified
contests of the MMIOs. All these statuses are caused when the
test process accesses the shielded addresses limited by the
system memory mapping, and these accesses may come from
the test process or the faulty effects.

The proposed processor shield design includes the software
framework and the DFT hardware. Before the processor
executes the cache SBST body to test the RAM cells and the
controller, the software framework has to prepare the required
resources and initialize the test environment. During the
cache SBST, the processor shield DFT has to prevent other
processes and MMIOs from being affected by the test
procedure and the faulty effects. Then, the SBST process has
to return the control to the operating system as if the test
program were never executed. In this paper, the data cache is
assumed to be implemented in monolithic SRAM modules,
including a data RAM bank, a virtual tag RAM bank, and a
physical tag RAM bank. If the target bank is divided into
several blocks, the proposed method can be applied to each
block separately.

A. Challenge in Virtual Memory System

The virtual memory system places limitations on accessing
the cache so the on-line cache SBST process has to overcome
two challenges on the virtual memory platform. To achieve
the high fault coverage of the cache controller test, the SBST
process has to execute cache control instructions and perform
many read/write operations under various cache policies,
including the write hit/write miss policy. Since the cache
policy is typically set in the page descriptor, this requires to
test the massive pages which have different virtual addresses,
physical addresses, and cache attributes. However, the
accesses to these pages may violate the memory access rights
or protection overseen by the operating system. This is the
first challenge to conquer for data cache on-line testing.

The second challenge is the misalignment problem when
starting the March test from a non-zero cache index. These
accessing sequences cannot meet the March addressing order
since it requires to start from a zero index. Fig. 2 shows the
example of indexing a direct-mapped cache by a paged virtual
address. We assume that the length of the page number is P-
bit, the index length is I-bit, and the tag length is T-bit. When
the cache size is larger than the page size, the (P-T) least-
significant bits of the page number are regarded as a part of
the index field which is used to select a cache line. This
situation occurs regardless of the virtual index or physical
index cache. According to the March algorithm, the test
process must perform the read/write operations from index 0
to index 2'-1, and vice versa. Therefore, these (P-T) least-
significant bits of the virtual page number of the starting page
must be zero.

Processor
[) Page number (P) 4 -+ -+ | R P Page offsetd - - |

\ Paged virtual address \
I
|

+
‘ Tag (T) ‘ Index (I) ‘ Word (x) ‘ Byte ‘
— I
L Tag Wo ‘ W, ‘ W, ‘ ‘ Wi
| I I

T |
+ 4 I il
Mux
Cache hit To processor l Cache

Fig. 2.

Indexing a direct-mapped cache by a paged virtual address

When performing a March test on a non-OS platform, these
(P-T) least-significant bits can be freely set to zeros to meet
the March accessing order. However, the pages allocated by
the operating system to store the test data may lead to the
misalignment problem. By the way, if the cache is n-way set
associative and the one-way size is larger than the page size,
the misalignment problem still exists in the platform.

B. Processor Shield Software Framework

A SBST process has to get the supervisor privilege for
security requirements so adding a system call to initiate the
test process is an attractive way to perform the on-line test for
the system users. Fig. 3 shows the execution flow of the
proposed SBST system call. The major functions for the
cache test environment initialization include the test data
allocation, the manuscript page table generation for testing,
the SBST process context backup for recovery, the processor
control setting, the DVFS control setting, and recording of the
operating environment variables.

First, the SBST process requests free pages from the
operating system to store the test data for testing the data
cache, and then the corresponding page descriptors are
recorded. The page descriptors can be obtained from special
system calls, e.g., the virt_to_phys Linux system call which
can provide the physical page number. Another way is to let
the SBST process itself perform the page table walk to get the
descriptors. These descriptors will be used to construct the
manuscript testing-oriented page table.

The SBST process is implemented as a system call, and its
page table is dispatched by the operating system. The

422

o5B-2

manuscript page table for testing is constructed by the SBST
process itself, and the comparison between these two page
tables is shown in Fig. 4. Each table entry includes the virtual
page number, the physical page number, the cacheable bit, the
cache policy, and the other attributes.

(SB ST system call entry> / March Test data
/ preparation
1
Te St.l nfg‘ e{l‘vm')nment Manuscript testing-oriented
Initialization page table generation
| il
Cache SBST Body ! SBST process context backup

(test controller & RAM) \\ for recovery

! 1

Processor control setting

Data Cache invalidation
(disable interrupt & change page table)

\
\
i \\ 1
\

Processor control setting

(recover page table & enable interrupt) \ DVFS setting
1 \
\ <
Process context recovery \‘ Environment information logging

Test result return

Fig. 3. The SBST system call exectuion flow

In order to seamlessly switch between the OS dispatched
page table and the manuscript page table, the SBST process
has to build shadow pages for the code segment and the
control-dependent data segment in the manuscript page table.
Most of the page descriptors are directly copied from the OS
dispatched pages except for the cacheable bit. If the pc-
relative constants or variables are used in the SBST program,
the code pages must be non-cacheable; otherwise, they can be
cacheable. All control-dependent data pages must be set non-
cacheable.

OS dispatched page table

(‘ VN ¢ 1 ‘ PN c 1 ‘(‘
Code :

Manuscript page table
‘ ‘ VN ¢ 1 ‘ PN c I \‘;\ Gache

Cache
policy

policy

Segment - N
L VNecm | PNecm |¢ ‘ ‘ ‘ ‘ ¢ ‘ ‘
- N
Control- | VN_cd_ I | PN_cd 1 |c¢ ¢
data : ~
seement | VN_cd n | PN_edn | ¢ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
[— — c
—
VNMd_I | PNMd_I | ¢ VN_d_1 c| Cache
March test -~ - - policy
data :
Segment
¢ VN Mdx | PNMdx |¢ VN d x c| Cache
. —e -V - policy
Aliased -
DB page | ¥ Alizsed DB | P Aliased DB | ¢ ‘ ‘ ‘ ‘ ‘ c ‘ ‘ ‘
C/[\)]::ZZC V_Aliased_CDB | P_Aliased CDB | ¢ ‘ ‘ ‘ ‘ ‘ c ‘ ‘ ‘
' .
V va | | p_Shielded_I | C C:l‘l'c‘c
This descriptor is directly copied Shielded Pages Lt
|:| from the corresponding page in (PA-Tag testing) o
the OS dispatched page table. V. va z | PShieldedz | C| 2
\ — = policy

Fig. 4. Comparsion between two page tables

To test virtual tag RAM and data RAM, the March test data
segment provides the required memory space to perform the
March read/write operations. In the manuscript page table, the
virtual page number (VN _d_x), the cacheable bit (C), and the
cache policy of data RAM pages are set manually. To avoid
the non-zero index problem, the (P - T) least-significant bits

of the virtual page number of the starting page must be zeros,
and the virtual page numbers of data RAM pages have to be
a continuous sequence.

To test physical tag RAM and the controller, the SBST
process has to access various physical pages through the
physical addresses which conform to the March DBs or the
March CDBs. These physical pages may be shielded pages,
and the SBST process needs to build a table entry for each
shielded page in the manuscript page table. Then, the SBST
process requests two physical pages from the operating
system, and we call these pages aliased DB page and aliased
CDB page respectively. All the shielded physical pages will
be redirected to the aliased DB page or the aliased CDB page.
The redirection function is provided by the processor shield
DFT hardware. How to use the aliased pages to test physical
tag RAM will be described in the section I1I-C.

After the manuscript testing-oriented page table is prepared,
the SBST process has to back up its process context, including
all register contents, processor status, and MMU status. Then,
the SBST process sets processor controls, including disabling
the interrupt, switching to the manuscript page table, and
cleaning the TLB. When these processor controls have been
set in sequence, the SBST process becomes a non-preemptive
process which uses the manuscript testing-oriented page table.

Before entering the SBST body which includes the
controller and the RAM tests, the SBST process can set the
desired operating voltage and frequency through the DVFS
mechanism. First, if the test fails on the maximum operating
voltage and the minimum frequency, the faults are likely
operational faults. As shown in Fig. 5, the operating voltage
is set to the minimum, and the frequency is set to the expected
maximum, which is workable previously. If the test fails, the
SBST process decreases the frequency and iterates the test.
Until the test is passed, the frequency is the current workable
maximum, which may be degraded by the transistor aging.
The maximum workable frequency on the any operating
voltage can be obtained by performing the above iteration.

Set voltage (V) to
the minimum
Set frequency to
the expected max

Decreases

¥ Perform the March test
frequency

Get the max
frequency on V

Fig. 5. How to get the maximum workable frequency on the
minimum operating voltage

During the chip lifetime, the DVFS system can reduce the
aging guardbands in the beginning and then increase the
required guardbands according to the maximum workable
frequencies on various operating voltages. The lower
guardbands imply the lower operating voltage or the higher
working frequency, and the desired balance between the
power and performance can be achieved effectively. The

423

o5B-2

SBST process can record the environment information,
including the temperature, the operating voltage and
frequency. The information and the test result are passed to
the DVFS system to calibrate the required guardbands.

After setting of the operating voltage and frequency, the
SBST process can perform the test body, including the
controller and RAM tests. When the test body is finished, the
SBST process needs to invalidate all the cache lines. The
SBST process sets the processor controls to return the control
to the OS. The processor control sequence includes switching
to the OS dispatched page table, cleaning the TLB, and
enabling the interrupt.

According to the proposed software framework, the SBST
process can perform an on-line D-cache test under the
operating system and cooperate with the DVFS system to
calibrate the required guardbands. The remaining system
related issues are the shielded address redirection and the
faulty effect isolation. The software framework can block the
part of faulty effects to prevent the system from crashing.

The RAM of the data cache can be classified into three
modules, including data RAM, virtual tag RAM, and physical
tag RAM. The SBST process has arranged all the constants
and control variables in the non-cacheable pages so a faulty
data RAM cell cannot change the program flow since the
required variables come from the main memory rather than
the D-cache. A faulty virtual tag RAM cell only increases the
cache misses since the virtual tag is used to distinguish
whether the target line is a hit or not. If there is a cache miss,
the virtual address used to query the MMU comes from the
processor rather than virtual tag RAM.

However, the values of physical tag RAM are directly used
to access the next level memory when the cache performs the
clean or replacement on a dirty cache line. Consequently, the
DFT hardware is necessary to block faulty accesses when
testing physical tag RAM.

C. The Physical Tag RAM Testing

To test physical tag RAM, the SBST process writes the
target cache line a datum which is different from that set in
the same address of the next level memory. This cache line is
marked as dirty. When the SBST process performs a clean
operation on the target dirty line, its physical page number in
physical tag RAM is directly used to copy the dirty line to the
next level memory. If the copied-back datum matches the one
in the next level memory, the cached physical page number is
deemed correct.

According to the word-oriented March algorithm [2], there
are several pairs of the March DB and CDB, and each March
DB/CDB represents a physical page number. The SBST
process has to perform a complete March execution flow for
each pair of the March DB and CDB. Before performing a
March run, the SBST process has to configure the processor
shield DFT with two target physical page numbers, i.e., the
March DB and CDB. The March DB page and the March
CDB page will be redirected to the aliased DB page and the
aliased CDB page, respectively. Other physical pages will be
blocked by the DFT hardware since they are the faulty targets
generated by the faulty physical tag RAM.

D. Processor Shield DFT Hardware

Fig. 6 shows the processor shield DFT which is inserted
between the processor and the system bus to block faulty
accesses and redirect shielded addresses. The processor shield
DFT works like a bus wrapper and can be implemented as
either an MMIO device or a coprocessor. An MMIO
implementation requires a bus slave interface and the system
memory mapping. Consequently, to implement the processor
shield DFT hardware like a coprocessor is a relative low-cost
method. For the DFT hardware, the configuration parameters
are passed through the coprocessor interface, and each
specified coprocessor instruction triggers the corresponding
function of the DFT hardware.

Bus Read Write

| Addlress | control Rea}dy &}a data
|

- Address

redirection

FI Faulty access blocking |

Shield | 1 i
- I I
| System bus interface |

Processor

Coprocessor
interface

Controller

Fig. 6. Processor shield DFT hardware architecture

During on-line testing, a faulty physical tag RAM will lead
to faulty accesses which use unexpected physical addresses.
The DFT hardware has to block these faulty accesses to keep
other processes unaffected. When a faulty access comes, the
DFT hardware directly replies a success signal to the
processor without accessing the system bus. Thus, this faulty
access can’t appear on the system bus, and the SBST process
can go on the expected execution flow.

I'V. Data Cache Software-Based March Development

In this section, we present the basic pseudo test instructions,
and show how to use these instructions to build the March
read/write operations for each memory module.

A. Pseudo Test Instructions

Pseudo test instructions, which can be easily translated into
any target ISA, are used to improve portability of developed
test programs [5]. To index the data cache, the entire virtual
address can be divided into tag, index and word, and we use
T, I, and x to denote tag, index, and word fields, respectively.
The symbol [T,I,x] denotes a virtual address. Table 1 shows
all the pseudo instructions used in this paper and their
functions. For all the pseudo read instructions, including R, R,
and RM, the value D is the expected value, but it may be
changed by a faulty RAM.

We assume that the cache content remains unchanged after
executing the disable cache (DC) instruction. The
ADB/ACDB instruction passes the aliased DB/CDB page
number to the DFT hardware. For instance, the ADB can be
translated to two native instructions. The first instruction
fetches the aliased DB page number, which is stored the
control-dependent data segment, to a general register, and the
second delivers the content of the register to the DFT

424

o5B-2

hardware through the coprocessor interface.
Table 1. Pseudo instructions and their functions

Inst. Function
R([T,Lx],D) |Read value D from the cache, address [T,Lx]
R([T,L,x],D) [R: cache hit; R : cache miss
W([T,I,x],D) |Write value D to the cache, address [T,Lx]
W([T,Lx],D) |W : cache hit; W : cache miss
RM([T,Lx],D) | Directly read/write from/to the main memory
WM([T,Lx],D)|(They are only effective when the cache is disabled)

INV(I) Invalidate the I-th line of the cache
CLEAR(I) |Clear the I-th line of the cache
EC/DC |Enable/disable cache
EPS /DPS |Enable/disable processor shield DFT hardware
ADB(PN) Deliver the aliased DB/CDB page number (PN) to the DFT
ACDB(PN)
SSC]:]))BB(ZE\I?) Deliver the March DB/CDB page number(PN) to the DFT

B. March Read/Write Sequences for Each RAM Module

In this subsection, we introduce the March read/write
implementation for each RAM module, and the widths of the
March DBs depend on the line size of each memory module.

B Data RAM:

wDB: DC; WM([T,1,x],.DB); EC; INV(I); R([T,1,x],DB)
rDB: R([T,1,x],DB)

The SBST process writes a DB to memory and performs a
read miss to move a DB into the target cache line. Then, the
following read is a read hit, and the expected result is the DB.

B Virtual Tag RAM:

wDB: DC; WM([DB,1x],D); EC; INV(I); R([DB,1,x].D)
tDB: DC; WM([DB,Lx],!D); EC; R([DB,1,x].D)

To test virtual tag RAM, the March DB is the virtual page
number, and it is applied to the tag (T) field instead of the data
line. A read miss let the cache fill the target data line with the
value D, and the March DB is written to the tag RAM. Before
performing a read which is expected as a read hit, the SBST
process writes the value !D to the same address in the main
memory. If the target tag RAM is faulty, the read becomes a
read miss and its result is the value !D.

B Physical Tag RAM:

wDB: EPS; EC; INV(I); W([T,,x],D); DPS
tDB: EPS; DC; WM([T,Lx],'D); EC; CLEAR(I); DC; RM([T,Lx],D); DPS

To test physical tag RAM, the March DB is a physical page
number, and its mapped virtual page number is applied to the
virtual tag (T) field. The cache write-miss policy is assumed
to be write-allocate. A write miss let the cache write the value
D to the target data line, and this line is marked as dirty.
Before performing the clean operation on the target dirty line,
the SBST process writes the value !D to the same address in
the main memory. If the target RAM is faulty, the result of
read from memory is the value !D instead of the value D.

V. Case Study and Experimental Results

In this section, we present a case study that executes the
SBST program under Linux kernel on an ARMv5-compatible
pipelined processor, which has 16KB direct-mapped data
cache. In this platform, the processer and the cache system are

implemented in Verilog, and the other system devices,
including the system bus, the main memory, the interrupt
controller, the timer, and other peripherals, are implemented
in SystemC. We capture the stimuli for the test result analysis
during performing the co-simulation, and then we use
RAMSES simulator [6] to run the RAM fault simulation and
Syntest Turboscan to execute the controller fault simulation.
We synthesize the processor core, the cache controller, and
the processor shield DFT by TSMC 40nm technology library,
and the maximum working frequency is set at 1GHz. The
area results are shown in Table 2. The total hardware overhead
is 2.1% compared to the logic part of the ARMv5-compatible
processor. The additional address latency between the
processor bus and the system bus is 0.06ns due to the insertion
of the processor shiecld DFT hardware.
Table 2. Hardware Synthesis Results
Core Cache controller Processor Shield DFT
Area 70,880 2,731 1,488

A. Memory Module Test Results

The processor performs the software-based March
algorithm on each target memory module. We implement the
March C- algorithm which can effectively capture stuck-at-
fault (SAF), transition fault (TF), address decoder fault (AF),
state coupling fault (CFst), inversion coupling fault (CFin),
and idempotent coupling fault (CFid). According to the fault
coverage reported by RAMSES, the proposed on-line SBST
run in Linux can achieve the same fault coverage, i.e., 100%,
as of that runs on a non-OS platform.

B. Test Results of the Cache Logic Devices

The cache controller implements seven control functions
for the data cache: enable/disable, invalidate, clear, write-
back, write-through, write-allocate, and write-around policy.
We feed the netlist and the stimuli to Syntest Turboscan for
the fault coverage simulation. The proposed on-line SBST
process can capture 41699 of 42125 collapsed faults of the
cache logic devices (98.99% fault coverage). Table 3 shows
test results of the cache controller and other logic devices.

Table 3. Test results for the collapsed stuck-at faults

Module Detected Undetected + Total Fault
faults Untestable faults faults coverage
Controller 1,437 108 1,545 93.01
Multiplexer 1,034 9 1,043 99.14
Valid unit 12,980 86 13,066 99.34
Dirty unit 25,681 199 25,880 99.23
Others 567 24 591 95.94
Total 41,699 426 42,125 98.99

C. SBST Process Statistics

Table 4 shows the code size, memory usage, and execution
times of each component of the data cache. The total code size
is about 33KB, and the execution time is nearly 1.25 million
processor cycles. The total memory usage is 75.5 KB,
including 32KB March test data pages and 8 KB aliased pages,
and this means the proposed SBST process can ecasily be
applied to small embedded systems. Since processor shield
redirects all shielded pages to aliased pages, only two physical
pages are required to test physical tag RAM and logic devices.

425

o5B-2

Table 4. Data cache SBST process statistics

Code Execution
. Memory usage .
Target size (KB) time
(KB) (CPU cycle)
Data RAM 0.69 0.99 32KB 327,432
Tag RAM 2.77 3.21 March test pages 132,543
Phy. Tag RAM 5.24 6.17 8 KB 157,331
Logic device 24.11 25.13 Aliased Pages 631,521
Total 32.81 75.5 1,248,737

VI. Conclusion

This paper has addressed system related issues during on-
line L1 data cache SBST, including performing the test non-
preemptively, constructing the manuscript testing-oriented
page table, redirecting shielded physical pages, blocking the
faulty effects, and returning the control to the operating system.
The proposed processor shield is an architectural solution,
including the software framework and the DFT hardware. The
processor shield can recover the SBST process context as if
the test were never executed. Thus, the SBST process can be
iteratively executed under various conditions, including the
voltage, the frequency, and the temperature, even if the test
fails. The processor shield can cooperate with the DVFS
system to calibrate the required grandbands against the
transistor aging. The SBST process can completely run under
the operating system without affecting other processes and on-
bus devices. We demonstrate the methodology using a case
study that executes the SBST program under the Linux kernel
on an ARMv5-compatible processor system. Our method can
successfully switch between the SBST process and the kernel
process and achieve the expected fault coverage as of that run
on a non-OS platform. The hardware overhead of the
processor shield is nearly 2.1% compared to the logic part of
the processor.

References

[1] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-aware
processor,” in Proc. IEEE/ACM Int’l Symp. Microarchitecture (Micro),
Dec. 2007, pp. 85-96.

[2] A.J.van de Goor, I. B. S. Tlili, and S. Hamdioui, “Converting march
tests for bit-oriented memories into tests for word-oriented memories,”
in Proc. Int. Workshop on Memory Technology Design and Testing
(MTDT), Aug. 1998, pp. 46-52.

[3] S.DiCarlo, P. Prinetto, and A. Savino, “Software-based self-test of set-
associative cache memories,” IEEE Trans. on Computer, vol. 60, no. 7,
pp. 418-423, July 2011.

[4] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos,
“Software-based self test methodology for on-Line testing of L1 Caches
in multithreaded multicore architectures,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 21, no. 4, pp. 786—790, Apr. 2013.

[5] Y.-C. Lin, Y.-Y. Tsai, K.-J. Lee, C.-W. Yen, and C.-H. Chen, “A
softwarebased test methodology for direct mapped data cache,” in Proc.
Asian Test Symp. (ATS), Nov. 2008, pp. 363-368.

[6] C.-F.Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault
simulator,” in Proc. Int. Symp. Defect and Fault Tolerance in VLSI Syst.
(DFT), Nov. 1999, pp. 165-173.

[7] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos,
“Software-based self-test for small caches in microprocessors,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 12, pp.
1991-2004, Dec. 2014.

[8] S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, and P. Prinetto,
“MarciaTesta: An automatic generator ot test programs for

microprocessors’ data caches,” in Proc. Asian Test Symp. (ATS), Nov.
2011, pp. 401-406.

