
Dynamic SIMD Re-convergence with Paired-Path

Comparison

Yun-Chi Huang

†
, Kuan-Chieh Hsu

†
, Wan-shan Hsieh

†
, Chen-Chieh Wang, Chia-Han Lu, and Chung-Ho Chen

†

†
Inst. of Computer and Communication Engineering, National Cheng-Kung University, Tainan, Taiwan

Industrial Technology Research Institute, Hsinchu, Taiwan

Abstract—SIMD divergence is one of the critical factors that

decrease the hardware utilization in contemporary GPGPUs

(General Purpose Graphic Processor Unit). Both the re-

convergence scheme and control flow detection have to be well

considered. In the emerging HSA (Heterogeneous System

Architecture) platform, we develop an effective dynamic stack-

based re-convergence scheme that can be implemented without

the insertion of re-convergence instructions generated by the

finalizer. The stack keeps track of the minimal necessary

information of the taken and non- taken paths; the additional

end-of-branch instruction insertion is no longer required under

our design. Using the scheme we propose, the divergent warp

dynamically re-converges at opportunistic re-convergence

points. The activity factor improves for 13.36% on average

from opportunistic early re- convergence in the unstructured

control flow. Our design has eased the development of a

finalizer that no longer needs to reason about the re-

convergence point after a branch divergence, especially for

unstructured control flow.

Keywords— Branch divergence, GPGPU, HSA, SIMD, warp

I. INTRODUCTION

Being a parallel computing device, GPU not only serves
as a graphic computing engine but recently is employed for
general parallel applications. The distinctive SIMD (Single
Instruction Multiple Data) feature of GPU architecture brings
out the potential of high performance computing; yet the
divergent control flow degrades the utilization of the parallel
hardware resource.

In SIMD scheme, there are dozens of execution lanes
performing the same instruction on different data. When a
conditional branch instruction is executed, some of the active
lanes will follow different control flow than others do. Since
the divergent paths cannot be executed simultaneously due to
SIMD design, both of them will be visited. When one of the
divergent control paths is executed, the condition mask
indicates which lanes are active during this path; whereas the
others remain idle.

One of the common way handling control divergence is
stack-based re-convergence scheme, such as the design used
in contemporary GPUs [2][7]. The present stack-based re-
convergence schemes all re-converge at the immediate post-
dominator (IPDOM) points. The IPDOM is the point where
all of the divergent paths leaving from the same conditional
branch firstly re-converge [1]. Based on our observation,
there are opportunistic early re-convergence points from
which the IDPOM re-convergence can’t benefit in an
unstructured control flow kernel program. We propose a

detection algorithm with dual-path stack structure to
effectively support the opportunistic early re-convergence.

In the following, Section 2 introduces the background of
warp-based GPU models and the categories of re-
convergence schemes. Section 3 points out the observation
and combination of previous work and our innovation.
Section 4 provides the evaluation of the proposed
mechanism. We conclude this paper in Section 5.

II. BACKGROUD

Conventional GPU contains multiple parallel computing
units called SMs (“streaming multiprocessors” in Nvidia’s
terminology, and “SIMD units” in AMD’s). The grid, a
conceptual computation domain of a kernel, is defined in
runtime stage, and each of the workgroups splitted from the
grid is assigned to a corresponding streaming multiprocessor
(SM) by a workgroup distribute unit. Also, the workitems in
a workgroup may be divided into multiple warps due to SM
hardware resource constraint. All workitems execute the
same kernel program, but different workitems may execute
in different control flow. As an example, a warp comprises
32 workitems in NVIDIA Fermi GPU architecture [10], and
64 workitems in AMD Evergreen Family Architecture [11].
The warp scheduler in the SM selects a ready warp, and
fetches an instruction of the warp from the instruction
memory. Each workitem is mapped to a processing lane in a
SM, and all processing lanes execute the same instruction.
When executing a warp, the processing lanes fetch data from
per workitem’s register file and execute the same instruction
for active workitems. After executing an instruction, the
results of a warp are written back to respective register file.
A workgroup is finished if all warps of the workgroup are
completed.

A. Stack-Based Re-convergence Schemes

Each workitem in a warp executes the same kernel code
but may have independent control flow. If the workitems in a
warp execute the same conditional branch instruction but
yield different results, branch divergence or SIMD control
divergence would occur. The commonly used mechanism for
maintaining branch divergence is through divergence stacks
[1][8].

Fig. 1 shows a code example of divergent branch BRA

and the corresponding control flow graph with stack status.
As a warp encounters a divergent branch, the branch unit
pushes 2 divergent stack entries that record the starting PC
(Program Counter)

values of the two following basic blocks (B and C) and their
respective execution masks of both the warp-splits. The warp
goes through either A-B-C-D or A-C-B-D flow to resolve
branch divergence by referring to the stack entries.

Fig. 1. Single path divergent stack status after encountering a
divergent branch BRA.

B. Per-thread PCs Re-convergence Schemes

Instead of using a shared stack that contains starting PCs

in a warp, some GPUs employ per-thread per PCs (PTPCs)

scheme to record status of workitems in a warp [1]. Using

PTPCs, each workitem has a PC to track the execution flow.

Employing PTPCs re-convergence has simpler control logic

but higher hardware overhead. Besides, most of the

comparisons of PCs are redundant when the control

divergent case is rare.

C. Re-convergence Detecting Methods

The re-convergence detecting methods can be classified
into explicit and implicit methods [1]. Explicit methods use
compiler-generated instructions to indicate the re-
convergence point through a finalizer. Specifically, the
finalizer in HSA runtime system, for example, traverses the
kernel code and intelligently inserts the end branch
instruction at the IPDOM points. Implicit methods only rely
on hardware re-convergence PC (RPC) detections without
explicit instructions.

III. PAIRED-PATH COMPARISON RE-CONVERGENCE

We propose a paired-path comparison (PPC) algorithm
that contains dual-path divergence stack to solve PC-based
re-convergence. The dual-path stack (DPS) re-convergence
scheme [2] is an alternative stack-based re-convergence
scheme which records the information of two divergence
warp-splits generated by a divergent branch on a stack entry.
By recording information of both paths, DPS allows
interleaved executions of warps in the SM and more memory
access latency hiding opportunities.

The PC-based re-convergence scheme detects warp re-
convergence by comparing warp-splits PC values instead of
using re-convergence instructions to indicate the re-
convergence address, and this scheme may be benefited from
opportunistic early re-convergence points in the unstructural
control flow [4]. The control flow graphs of unstructural

control flow can’t be presented in hammock graphs [9] since
some branches in unstructural control flow jump out of its If-
else basic block, where the early re-convergence
opportunities in the kernel may exist. This complicates the
reasoning of the re-convergence point for the finalizer.

Our proposed PPC re-convergence scheme which can be
used in both explicit and implicit control convergence
method integrates the DPS with PC-based re-convergence.
With PC-based re-convergence feature, the stack-based
scheme with PPC is able to dynamically support re-
convergence and opportunistic early re-convergence [4]. In
the implicit control convergence scheme, the finalizer is no
longer required to compute the re-convergence PC. The
divergent warp can re-converge without any compiler hint
during execution. This yields to the simplification of
finalizer design.

A. Observation

Previous implicit stack-less PC-based re-convergence
scheme uses PTPCs to store the different program counter
values, as shown in Fig. 2.(a). If a warp consists of 8 threads,
the implicit stack-less re-convergence scheme will require 8
PTPCs to record the divergent PC values of all threads, and it
requires eight comparison modules between warp common
PC and PTPCs. However, only two distinct program counter
values in a warp are generated by a divergent branch.
Numerous PTPCs share the same PC value, but they still
need to be redundantly compared with the warp common PC
separately.

The key observation is that only two divergent execution
flows are generated from a divergent branch. No matter how
many threads are assigned in a divergent execution flow, all
PCs of the threads in the same execution flow share the same
value. Two PCs on a dual-path stack entry are sufficient for
tracking two divergent control flows. Fig. 3(c) presents the
status of DPS after a divergent branch.

Fig. 2. PC arbitration of different re-convergence schemes

B. Dynamic Re-convergence with PPC

To support early re-convergence with divergence stack,

previous researches need to construct a table implemented

by content addressable memory (CAM) which is area costly

to record warp splits’ information during execution.

Instead of using a warp-split table to support

opportunistic early re-convergence, our proposed dynamic

paired-path comparison algorithm provides opportunity of

early re-convergence with a dual-path stack which can be

implemented effectively and benefits from the way of using

stack pointer for searching and comparison at the top of the

stack.

C. PC Arbitration With PPC

Fig. 3. Dual path divergent stack status after
encountering a divergent branch

The operation of paired-path comparison (PPC) for the
detection of warp re-convergence is shown in Fig. 4. The
next PC algorithm is shown in Fig. 5. When a divergent
branch is encountered, the two divergent paths are pushed
onto the stack (line 4, Fig. 5), then PPC function is invoked
(line 31, Fig.5). The fetch unit compares the PC values of the
taken path and the not-taken path. In the beginning, the two
PC values are unequal, the current execution path starts with
the path of smaller PC (line 10, Fig.4). The PC of the
executed path is updated on the stack entry for non-divergent
instructions (line 6 to 16, line 19 to 29, Fig. 5). If the two PC
values equal to each other, the top of the stack (TOS) entry is
deleted and the fetch unit continues execution on the parent
level of divergent path for non-empty stack.

The difference between implicit and explicit schemes is
how frequently the paired-path comparison must be
performed during execution. The explicit scheme takes the
paired-path comparison (PPC) when the warp encounters a
re-convergence instruction while the implicit scheme
performs the PPC for every instruction execution.

Fig. 4. Detection of warp re-convergence.

Fig. 5. Next PC algorithm: implicit paired-path comparison
scheme with DPS.

IV. EVALUATION

We model the proposed mechanism in a cycle-accurate
HSAIL(Heterogeneous System Architecture Intermediate
Language)-based[12] GPU simulation platform we develop,
including a finalizer that translates the HSAIL code to our
custom GPU ISA. The wave-front size of the streaming
multiprocessor is 16, i.e., warp size. Several OpenCL
structural control flow benchmarks from AMD SDK [5] and
Rodinia [6] that have divergent branches, and three micro-
benchmarks we write that have unstructural control flow are
evaluated.

Activity factor is an SIMD efficiency measurement
defined by Kerr et. al. [7]. The definition is the average ratio
of masked threads in a warp to all active threads in the warp
during dynamic instruction execution. The measurement
shows the impact of SIMD divergence on the hardware
utilization. Fig. 6 depicts the activity factor comparison of
unstructured control flow benchmarks between opportunistic
early re-convergence and re-convergence at IPDOM point.
In our scheme, the warp can re-converge at early re-
convergence points in unstructral control flow benchmarks,
which leads to higher activity factor.

Fig. 7 shows the activity factor comparison of structural
control flow benchmarks between explicit and implicit re-
convergence. The activity factor of structural control flow
benchmarks gains slight improvement because the
redundant re-convergence instructions are removed. Besides,
the divergent period of the executed warps are also reduced.

Dynamic instruction count is the number of total
instructions executed by the streaming multiprocessors rather
than the code size of the kernel. It measures the extra profit
that comes from early re-convergence scheme. Fig. 8 shows
the different dynamic instruction counts of the explicit PPC
method and the implicit PPC method. Since the compiler-
generated hint instructions are no longer presented in the
implicit scheme, the normalized dynamic instructions in
implicit scheme compared to the ones in explicit scheme can
be reduced. Instructions executed for the pathfinder
benchmark have reduced as much as 7%.

Fig. 6. Activity factor of unstructured control flow
benchmarks

Fig. 7. Activity factor of structured control flow benchmarks
using explicit and implicit methods

V. CONCLUSION

In this paper, we propose a novel algorithm that increases

the streaming multiprocessor’s performance in SIMD

divergence execution. Only slight change on existing SM

model is needed for implementing the algorithm. The

algorithm can be implemented either with or without

finalizer’s support. In the implicit scheme, the SM gains

additional performance improvement owing to avoiding

redundant instructions. The proposed implicit scheme eases

the design of a finalizer which would typically require to

analyze the HSAIL code for the insertion of the explicit

instruction at the re-convergence point.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of

Science and Technology, Taiwan, under Grant MOST 104-

2220-E-006-013.

Fig. 8. Normalized dynamic instruction count

REFERENCES

[1] S. Collange, “Stack-less SIMT Reconvergence at Low
Cost,”ARENAIRE - Inria Grenoble Rhône-Alpes / LIP Laboratoire
de l’Informatique du Parallélisme, 2011.

[2] M. Rhu and M. Erez, “The dual-path execution model for efficient
GPU control flow,” High Performance Computer Architecture (HPCA),
2013

[3] J. Meng, D. Tarjan and K. Skadron, “Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence Tolerance,” In Proc. 37th
Int’l Symp. on Computer Architecture (ISCA), 2010

[4] A. ElTantawy, J.W. Ma, M. O'Connor and T.M. Aamodt, “A scalable
multi-path microarchitecture for efficient GPU control flow,” High
Performance Computer Architecture (HPCA), 2014

[5] AMD SDK: AMD APP Software Development Kit, [Online],
Available : http://developer.amd.com/tools-and-sdks/opencl-
zone/amd-accelerated-parallel-processing-app-sdk/.

[6] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” IEEE International Symposium on Workload
Characterization (IISWC), 2009.

[7] A. Kerr, G. Diamos and S. Yalamanchili, “A characterization and
analysis of PTX kernels,” IEEE International Symposium on
Workload Characterization (IISWC), 2009.

[8] W.W.L. Fung, I. Sham, G.Yuan, and T.M. Aamodt, “Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow,” In Proc.
40th IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2007

[9] Zhang, F.; D'Hollander, E.H., “Using hammock graphs to structure
programs,” Software Engineering, IEEE Transactions on , April 2004.

[10] NVIDIA: NVIDIA’s next generation CUDA compute architecture:
Fermi. Whitepaper, 2010.

[11] AMD: Accelerated Parallel Processing TECHNOLOGY, Evergreen
Family Instruction Set Architecture, Instruction and Microcode, Nov,
2011.

[12] HSA foundation: www.hsafoundation.com

http://developer.amd.com/tools-and-sdks/opencl-

