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Abstract—SIMD divergence is one of the critical factors that 

decrease the hardware utilization in contemporary GPGPUs 

(General Purpose Graphic Processor Unit). Both the re-

convergence scheme and control flow detection have to be well 

considered. In the emerging HSA (Heterogeneous System 

Architecture) platform, we develop an effective dynamic stack-

based re-convergence scheme that can be implemented without 

the insertion of re-convergence instructions generated by the 

finalizer. The stack keeps track of the minimal necessary 

information of the taken and non- taken paths; the additional 

end-of-branch instruction insertion is no longer required under 

our design. Using the scheme we propose, the divergent warp 

dynamically re-converges at opportunistic re-convergence 

points. The activity factor improves for 13.36% on average 

from opportunistic early re- convergence in the unstructured 

control flow. Our design has eased the development of a 

finalizer that no longer needs to reason about the re-

convergence point after a branch divergence, especially for 

unstructured control flow. 
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I. INTRODUCTION 

Being a parallel computing device, GPU not only serves 
as a graphic computing engine but recently is employed for 
general parallel applications. The distinctive SIMD (Single 
Instruction Multiple Data) feature of GPU architecture brings 
out the potential of high performance computing; yet the 
divergent control flow degrades the utilization of the parallel 
hardware resource. 

 

In SIMD scheme, there are dozens of execution lanes 
performing the same instruction on different data. When a 
conditional branch instruction is executed, some of the active 
lanes will follow different control flow than others do. Since 
the divergent paths cannot be executed simultaneously due to 
SIMD design, both of them will be visited. When one of the 
divergent control paths is executed, the condition mask 
indicates which lanes are active during this path; whereas the 
others remain idle. 

 

One of the common way handling control divergence is 
stack-based re-convergence scheme, such as the design used 
in contemporary GPUs [2][7]. The present stack-based re- 
convergence schemes all re-converge at the immediate post- 
dominator (IPDOM) points. The IPDOM is the point where 
all of the divergent paths leaving from the same conditional 
branch firstly re-converge [1]. Based on our observation, 
there are opportunistic early re-convergence points from 
which the IDPOM re-convergence can’t benefit in an 
unstructured control flow kernel program.  We propose a 

detection algorithm   with   dual-path   stack   structure   to 
effectively support the opportunistic early re-convergence. 

 

In the following, Section 2 introduces the background of 
warp-based GPU models and the categories of re- 
convergence schemes. Section 3 points out the observation 
and combination of previous work and our innovation. 
Section 4 provides the evaluation of the proposed 
mechanism. We conclude this paper in Section 5. 

 
II. BACKGROUD 

Conventional GPU contains multiple parallel computing 
units called SMs (“streaming multiprocessors” in Nvidia’s 
terminology, and “SIMD units” in AMD’s). The grid, a 
conceptual computation domain of a kernel, is defined in 
runtime stage, and each of the workgroups splitted from the 
grid is assigned to a corresponding streaming multiprocessor 
(SM) by a workgroup distribute unit. Also, the workitems in 
a workgroup may be divided into multiple warps due to SM 
hardware resource constraint. All workitems execute the 
same kernel program, but different workitems may execute 
in different control flow. As an example, a warp comprises 
32 workitems in NVIDIA Fermi GPU architecture [10], and 
64 workitems in AMD Evergreen Family Architecture [11]. 
The warp scheduler in the SM selects a ready warp, and 
fetches an instruction of the warp from the instruction 
memory. Each workitem is mapped to a processing lane in a 
SM, and all processing lanes execute the same instruction. 
When executing a warp, the processing lanes fetch data from 
per workitem’s register file and execute the same instruction 
for active workitems. After executing an instruction, the 
results of a warp are written back to respective register file. 
A workgroup is finished if all warps of the workgroup are 
completed. 

 
A. Stack-Based Re-convergence Schemes 

Each workitem in a warp executes the same kernel code 
but may have independent control flow. If the workitems in a 
warp execute the same conditional branch instruction but 
yield different results, branch divergence or SIMD control 
divergence would occur. The commonly used mechanism for 
maintaining branch divergence is through divergence stacks 
[1][8]. 

 

Fig. 1 shows a code example of divergent branch BRA 

and the corresponding control flow graph with stack status. 
As a warp encounters a divergent branch, the branch unit 
pushes 2 divergent stack entries that record the starting PC 
(Program Counter) 



values of the two following basic blocks (B and C) and their 
respective execution masks of both the warp-splits. The warp 
goes through either A-B-C-D or A-C-B-D flow to resolve 
branch divergence by referring to the stack entries. 
 

 
 

Fig. 1. Single path divergent stack status after encountering a 
divergent branch BRA. 

 
B. Per-thread PCs Re-convergence Schemes 

Instead of using a shared stack that contains starting PCs 

in a warp, some GPUs employ per-thread per PCs (PTPCs) 

scheme to record status of workitems in a warp [1]. Using 

PTPCs, each workitem has a PC to track the execution flow. 

Employing PTPCs re-convergence has simpler control logic 

but higher hardware overhead. Besides, most  of the 

comparisons of PCs are redundant  when the control 

divergent case is rare. 
 

C. Re-convergence Detecting Methods 

The re-convergence detecting methods can be classified 
into explicit and implicit methods [1]. Explicit methods use 
compiler-generated instructions to indicate the re- 
convergence point through a finalizer. Specifically, the 
finalizer in HSA runtime system, for example, traverses the 
kernel code and intelligently inserts the end branch 
instruction at the IPDOM points. Implicit methods only rely 
on hardware re-convergence PC (RPC) detections without 
explicit instructions. 

 
III. PAIRED-PATH COMPARISON RE-CONVERGENCE 

We propose a paired-path comparison (PPC) algorithm 
that contains dual-path divergence stack to solve PC-based 
re-convergence. The dual-path stack (DPS) re-convergence 
scheme [2] is an alternative stack-based re-convergence 
scheme which records the information of two divergence 
warp-splits generated by a divergent branch on a stack entry. 
By recording information of both paths, DPS allows 
interleaved executions of warps in the SM and more memory 
access latency hiding opportunities. 

 

The PC-based re-convergence scheme detects warp re- 
convergence by comparing warp-splits PC values instead of 
using re-convergence instructions to indicate the re- 
convergence address, and this scheme may be benefited from 
opportunistic early re-convergence points in the unstructural 
control flow [4]. The control flow graphs of unstructural 

control flow can’t be presented in hammock graphs [9] since 
some branches in unstructural control flow jump out of its If- 
else basic block, where the early re-convergence 
opportunities in the kernel may exist. This complicates the 
reasoning of the re-convergence point for the finalizer. 

 

Our proposed PPC re-convergence scheme which can be 
used in both explicit and implicit control convergence 
method integrates the DPS with PC-based re-convergence. 
With PC-based re-convergence feature, the stack-based 
scheme with PPC is able to dynamically support re- 
convergence and opportunistic early re-convergence [4]. In 
the implicit control convergence scheme, the finalizer is no 
longer required to compute the re-convergence PC. The 
divergent warp can re-converge without any compiler hint 
during execution. This yields to the simplification of 
finalizer design. 

 
A. Observation 

Previous implicit stack-less PC-based re-convergence 
scheme uses PTPCs to store the different program counter 
values, as shown in Fig. 2.(a). If a warp consists of 8 threads, 
the implicit stack-less re-convergence scheme will require 8 
PTPCs to record the divergent PC values of all threads, and it 
requires eight comparison modules between warp common 
PC and PTPCs. However, only two distinct program counter 
values in a warp are generated by a divergent branch. 
Numerous PTPCs share the same PC value, but they still 
need to be redundantly compared with the warp common PC 
separately. 

 

The key observation is that only two divergent execution 
flows are generated from a divergent branch. No matter how 
many threads are assigned in a divergent execution flow, all 
PCs of the threads in the same execution flow share the same 
value. Two PCs on a dual-path stack entry are sufficient for 
tracking two divergent control flows. Fig. 3(c) presents the 
status of DPS after a divergent branch. 

 

 
 

Fig. 2. PC arbitration of different re-convergence schemes 

 
B. Dynamic Re-convergence with PPC 

To support early re-convergence with divergence stack, 

previous researches need to construct a table implemented 

by content addressable memory (CAM) which is area costly 

to record warp splits’ information during execution. 

Instead of using a warp-split table to support 

opportunistic early re-convergence, our proposed dynamic 



paired-path comparison algorithm provides opportunity of 

early re-convergence with a dual-path stack which can be 

implemented effectively and benefits from the way of using 

stack pointer for searching and comparison at the top of the 

stack. 
 

C. PC Arbitration With PPC 

 
 

Fig. 3. Dual path divergent stack status after 
encountering a divergent branch 

 

The operation of paired-path comparison (PPC) for the 
detection of warp re-convergence is shown in Fig. 4. The 
next PC algorithm is shown in Fig. 5. When a divergent 
branch is encountered, the two divergent paths are pushed 
onto the stack (line 4, Fig. 5), then PPC function is invoked 
(line 31, Fig.5). The fetch unit compares the PC values of the 
taken path and the not-taken path. In the beginning, the two 
PC values are unequal, the current execution path starts with 
the path of smaller PC (line 10, Fig.4). The PC of the 
executed path is updated on the stack entry for non-divergent 
instructions (line 6 to 16, line 19 to 29, Fig. 5). If the two PC 
values equal to each other, the top of the stack (TOS) entry is 
deleted and the fetch unit continues execution on the parent 
level of divergent path for non-empty stack. 

 

The difference between implicit and explicit schemes is 
how frequently the paired-path comparison must be 
performed during execution. The explicit scheme takes the 
paired-path comparison (PPC) when the warp encounters a 
re-convergence instruction while the implicit scheme 
performs the PPC for every instruction execution. 

 

 

Fig. 4. Detection of warp re-convergence. 

 
 

Fig. 5.  Next PC algorithm: implicit paired-path comparison 
scheme with DPS. 

 
IV. EVALUATION 

We model the proposed mechanism in a cycle-accurate 
HSAIL(Heterogeneous System Architecture Intermediate 
Language)-based[12] GPU simulation platform we develop, 
including a finalizer that translates the HSAIL code to our 
custom GPU ISA. The wave-front size of the streaming 
multiprocessor is 16, i.e., warp size. Several OpenCL 
structural control flow benchmarks from AMD SDK [5] and 
Rodinia [6] that have divergent branches, and three micro- 
benchmarks we write that have unstructural control flow are 
evaluated. 

 

Activity factor is an SIMD efficiency measurement 
defined by Kerr et. al. [7]. The definition is the average ratio 
of masked threads in a warp to all active threads in the warp 
during dynamic instruction execution. The measurement 
shows the impact of SIMD divergence on the hardware 
utilization. Fig. 6 depicts the activity factor comparison of 
unstructured control flow benchmarks between opportunistic 
early re-convergence and re-convergence at IPDOM point. 
In our scheme, the warp can re-converge at early re- 
convergence points in unstructral control flow benchmarks, 
which leads to higher activity factor. 



Fig. 7 shows the activity factor comparison of structural 
control flow benchmarks between explicit and implicit re- 
convergence. The activity factor of structural control flow 
benchmarks gains slight improvement because the 
redundant re-convergence instructions are removed. Besides, 
the divergent period of the executed warps are also reduced. 

 

Dynamic instruction count is the number of total 
instructions executed by the streaming multiprocessors rather 
than the code size of the kernel. It measures the extra profit 
that comes from early re-convergence scheme. Fig. 8 shows 
the different dynamic instruction counts of the explicit PPC 
method and the implicit PPC method. Since the compiler- 
generated hint instructions are no longer presented in the 
implicit scheme, the normalized dynamic instructions in 
implicit scheme compared to the ones in explicit scheme can 
be reduced. Instructions executed for the pathfinder 
benchmark have reduced as much as 7%. 

 

 
 

Fig.   6.   Activity   factor   of   unstructured   control   flow 
benchmarks 

 

 

Fig. 7. Activity factor of structured control flow benchmarks 
using explicit and implicit methods 

 
V. CONCLUSION 

In this paper, we propose a novel algorithm that increases 

the streaming multiprocessor’s performance in SIMD 

divergence execution. Only slight change on existing SM 

model is needed for implementing the algorithm. The 

algorithm can be implemented either with or without 

finalizer’s support. In the implicit scheme, the SM gains 

additional  performance  improvement  owing  to  avoiding 

redundant instructions. The proposed implicit scheme eases 

the design of a finalizer which would typically require to 

analyze the HSAIL code for the insertion of the explicit 

instruction at the re-convergence point. 
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Fig. 8. Normalized dynamic instruction count 
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