
A Heterogeneous System Architecture Conformed
GPU Platform Supporting OpenCL and OpenGL

Yung Hsu
Dept. of Elec. Eng.,

National Cheng Kung University
csh01279@gmail.com

Heng-Yi Chen
Dept. of Elec. Eng.,

National Cheng Kung University
chen9611@gmail.com

Chung-Ho Chen
Dept. of Elec. Eng.,

National Cheng Kung University
chchen@mail.ncku.edu.tw

Abstract—Graphic Processing Unit (GPU) has powerful par-
allel computing ability, so it is not only used for 3D graphic ap-
plication, but also for general purpose tasks. This work presents
a Heterogeneous System Architecture (HSA) conformed GPU
platform that supports both rendering and general computing
applications. The platform can explore microarchitecture design
and evaluate the performance issues for both the OpenCL and
OpenGL applications.

I. INTRODUCTION

General Purpose Computing on Graphics Processing Units
(GPGPUs) are considered as a promising way to deal with
heavy parallel computing tasks. Furthermore, Advanced Micro
Devices, Inc. (AMD) and other founders funded the Hetero-
geneous System Architecture (HSA) Foundation, which aims
to present an architecture of integrated heterogeneous devices,
like CPU, DSP, and GPU, and make them collaborate more
effectively.

In this work, we present a virtual platform conforming to the
HSA programing model and the HSA Intermediate Language
(HSAIL) specification. This platform has a sophisticated sim-
ulator modeling the modern GPU microarchitecture designed
for Single Instruction Multiple Data (SIMD) processing. The
platform also provides a simulation framework, including
OpenCL and OpenGL API, the driver for simulator, and
compilation flow from OpenCL kernel and OpenGL shader
program to HSAIL and finally to a custom instruction set.

II. GPU SIMULATOR ARCHITECTURE

The proposed platform models the GPU microarchitecture
which is composed of four major parts, task dispatcher,
streaming multiprocessor (SM), fixed-function rendering units,
and memory system containing DRAM and cache model.

The task dispatcher divides the whole task to several sub-
tasks, called workgroups. Then the task dispatcher will assign
these workgroups to a proper SM.

An SM which consists of various number of execution units
is the main component in charge of programmable computing.
Once an SM receives a workgroup, a scheduler within the SM
separates the workgroup to smaller parts, called wavefront,
and schedules these wavefronts to numerous execution units
in the SM. The execution unit is a scalar processing core with
customized instruction set based on the HSAIL binary format
(BRIG). Each SM also has some special functional units.

For instance, texture units are used as coordinate computing
and texture filtering. Branch units handle the SIMD control
divergence issue.

Fixed-function rendering units are a series of dedicated
modules for graphic pipeline, such as primitive assembly,
triangle setup, clipping, culling, rasterization, z-test, etc.

III. SIMULATION FRAMEWORK

One benefit of HSAIL is to provide an efficient intermediate
language for different parallel programing models to run on
a variety of target machines. First, a parallel program is
compiled into HSAIL assembly, and then a tool called finalizer
converts the HSAIL assembly to the target platform ISA.

Our platform supports both the OpenCL and OpenGL
framework. The CL Offline Compiler [1] is applied to compile
an OpenCL kernel to HSAIL. Since we have no available
compiler for GL shading language (GLSL) to HSAIL directly,
we first compile a GLSL shader program to a pseudo assembly,
NV gpu program 4, with the help of the Cg compiler [2].
Then we use in-house translator to convert the assembly to
HSAIL. Both the CL and GLSL programs use the same
finalizer to generate the real binary custom instruction.

Different APIs have their own runtime library, but all
of them share the same HSA runtime, finalizer, and GPU
low level driver. Notice that the graphic pipeline part is not
formulated in the official HSA specification, here we extend
the HSA runtime to support graphic applications.

IV. BENCHMARKS AND EVALUATION

We evaluate this platform with several benchmarks. OpenCL
benchmarks are mainly the AMD sample programs. OpenGL
benchmarks are programs of classic shading algorithms. On
this platform, we can analyze the performance issue in differ-
ent GPU microarchitecture, ISA design, task scheduling algo-
rithms and SIMD control divergence handling mechanisms.

ACKNOWLEDGMENT

This work was supported by Ministry of Science and
Technology of Taiwan under grant 104-2220-E-006-013.

REFERENCES

[1] HSA Foundation, CL Offline Compiler: Compile OpenCL kernels to
HSAIL, URL https://github.com/HSAFoundation/CLOC/.

[2] NVIDIA Corporation, Cg toolkit user’s manual: A developer’s guide to
programmable graphics. NVIDIA Corporation, 2003.


