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Abstract—Network I/O virtualization plays an important role in cloud computing. This paper addresses the system-wide virtualization
issues of TCP/IP Offload Engine (TOE) and presents the architectural designs. We identify three critical factors that affect the
performance of a TOE: I/O virtualization architectures, quality of service (QoS), and virtual machine monitor (VMM) scheduler. In
our device emulation based TOE, the VMM manages the socket connections in the TOE directly and thus can eliminate packet copy
and demultiplexing overheads as appeared in the virtualization of a layer 2 network card. To further reduce hypervisor intervention, the
direct I/O access architecture provides the per VM-based physical control interface that helps removing most of the VMM interventions.
The direct I/O access architecture out-performs the device emulation architecture as large as 30%, or achieves 80% of the native
10 Gbit/s TOE system. To continue serving the TOE commands for a VM, no matter the VM is idle or switched out by the VMM, we
decouple the TOE I/O command dispatcher from the VMM scheduler. We found that a VMM scheduler with preemptive I/O scheduling
and a programmable I/O command dispatcher with deficit weighted round robin (DWRR) policy are able to ensure service fairness and
at the same time maximize the TOE utilization.

Index Terms—Hypervisor, I/O Virtualization, TCP/IP Offload Engine, VMM scheduler.
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1 INTRODUCTION

A S cloud computing becomes widespread, there are
many emerging issues which have been discussed

and addressed, such as security, quality of service [1],
data center networks [2], and virtualization [3], [4].
For cloud applications, virtualization is one of the key
enabling technology, which possesses two features that
make it ideal for cloud computing, i.e., service partition-
ing and isolation. With partitioning, virtualization is able
to support many applications and operating systems to
share the same physical device while isolation enables
each guest virtual machine to be protected from system
crashes or viruses in the other virtual machines.

Virtualization abstracts the physical infrastructure
through a virtual machine monitor (VMM) or hypervisor,
which is the software layer between virtual machines
and the physical hardware. VMM enables multiple vir-
tual machines or guest operating systems to share a
single physical machine securely and fairly. VMM makes
the virtual machine under the illusion that it has its own
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physical device.
Cloud computing provides computing resources as

a service over a network, and therefore servers need
to provide high network bandwidth to effectively sup-
port cloud applications. To this end, one approach is
to offload the TCP/IP protocol stacks from the host
processors to an accelerator unit called TCP/IP Offload
Engine (TOE) [5]. Unfortunately, in a virtualization envi-
ronment, the network performance may be burdened by
the overheads of network I/O virtualization.

For instance, the major overheads of network I/O
virtualization can be distilled down to four categories:
(1) packet copy, (2) packet demultiplexing, (3) VMM
intervention, and (4) interrupt virtualization. Specifically,
the received packets must be copied to the driver domain
for software packet demultiplexing, and then the driver
domain copies the packets to the target guest domain.
Also an I/O instruction from the guest is trapped by
the VMM, and the VMM handles and emulates the
instruction. Physical interrupts are also trapped by the
VMM, and then the VMM will issue the correspond-
ing virtual interrupts to the designated guest operating
system. These virtualization overheads have caused the
loss of 70% network throughput when compared to the
native system [6].

Cloud computing service also has to satisfy users’
various requirements, i.e., I/O-intensive domains or
CPU-intensive domains. An I/O-intensive domain may
not get enough CPU resource to achieve high network
throughput or it may not be scheduled in time to do
so [7]. As a result, the I/O-intensive application will
suffer from poor network throughput because of the
inadequate scheduling policy.
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This paper first identifies three critical factors that af-
fect the performance of a TCP/IP Offload Engine (TOE)
in a virtualization environment: (1) I/O virtualization
architectures, (2) quality of service (QoS) of network
bandwidth, and (3) VMM scheduler. We address the
system-wide architecture issues of TOE virtualization
with respect to the above three factors and present the
architectural designs as a whole.

The major contributions of this paper are as follows:
• We develop an electronic system level (ESL) net-

work platform for the full system evaluation of TOE
virtualization, which includes a behavioral TOE and
an on-line TCP/IP verification system.

• We develop two TOE virtualization architectures,
including device emulation and direct I/O access.
In the device emulation architecture, our approach
has eliminated the major overheads of network I/O
virtualization such as packet copy and packet de-
multiplexing. In the direct I/O access architecture,
we develop a multi-channel TOE to offload the
management of virtual device in device emulation.
This design further eliminates most of the VMM
intervention overheads occurred in the device emu-
lation and achieves higher network throughput.

• To guarantee the quality of TOE service while at
the same time maximize the TOE utilization, we
propose a decoupled design of the VMM scheduler
and the TOE command dispatcher. Our approach
allows the TOE commands from a VM to be issued
according to the chosen I/O dispatching policy, not
affected by the VMM scheduler.

The remainder of this paper proceeds as follows.
Section 2 presents the background of the virtualization
and TCP/IP Offload Engine. Section 3 describes the
TOE virtualization using device emulation architecture
and direct I/O access architecture, respectively. Section
4 presents the full system virtualization platform. Section
5 gives the performance evaluation results. Section 6
reviews the related works. We conclude the paper in
Section 7.

2 BACKGROUND AND PRELIMINARY

In this section, we first introduce the network I/O vir-
tualization and then the TCP/IP Offload Engine.

2.1 Network I/O Virtualization

I/O virtualization architecture can be classified into three
types, including full virtualization, para-virtualization,
and software emulation. CASL Hypervisor [8] and
VMware ESX server [9] are implemented in full virtual-
ization architecture. VMware ESX server is a standalone
hypervisor and it controls the I/O devices as well as
emulates multiple virtual devices for a virtual machine.
When an application in the virtual machine raises an
I/O request, a virtual device driver in the virtual ma-
chine first handles the request and translates it into a

privileged IN or OUT instruction. Once the privileged
instruction is executed on the virtual machine, the VMM
will trap the instruction, and the emulation function
in the VMM will handle the instruction and direct the
physical device to complete the request. This approach
is efficient and transparent; however, the VMM needs
to control the physical hardware by itself without the
aid of legacy device driver. This is more complicated to
implement since one needs to know the control interface
of the device in detail, and if the device is updated, the
VMM requires modification.

In VMware ESX server, when a packet is received,
the NIC first transmits the packet into the buffer of the
VMKernel, and then issues an interrupt to notify the
VMKernel that the packet is in the buffer. A vSwitch
in the VMKernel demultiplexes the packet and copies
the packet to the buffer of designated virtual machine.
Finally, the VMKernel notifies the VMM to raise a virtual
interrupt to the designated virtual machine. The virtual
machine receives the packet as if it were from the
physical directly.

2.2 TCP/IP Offload Engine (TOE)

With the increasing demand for high network band-
width, high-end servers have become burdened with the
processing of the TCP/IP protocol stacks. It has been
reported that a single host CPU cannot perform TCP/IP
processing satisfactorily as the network bandwidth is
greater than 10 Gbit/s because one CPU clock is re-
quired for 1bps of TCP/IP work [10]. Therefore, TCP/IP
Offload Engine (TOE) has been proposed to offload
the TCP/IP protocol stacks from the host CPU to the
network processing unit for high network performance
and alleviate the CPU loading [5], [11], [12], [13], [14].
The specialized hardware can accelerate the protocol
processing to enhance the network performance.

In this work, we use the electronic system level (ESL) ap-
proach [15] to build an approximate-timed model of the
TOE. This ESL methodology enables us to verify the TOE
driver, the socket API, and the TOE functional hardware
at the same time. Fig. 1 shows the system architecture
of the TOE and the host system. The TOE consists of
a control channel, a TOE engine, and a network inter-
face while the host consists of the TOE driver and the
socket API. The socket API provides the communication
between the user application and the TOE driver. The
driver controls the I/O operation of the TOE and handles
the interrupt event from the physical hardware. The host
communicates with the TOE engine through the control
channel and transmits/receives packets via the network
interface.

The Linux kernel currently does not support TOE
hardware because of security and complexity issues
[16]; therefore, existing applications should be modified
and recompiled to use a TOE device. In this work, we
develop our own TOE driver as well as the socket API
similar to the BSD socket API used in Linux kernel. In
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Fig. 1. System architecture of the TCP/IP Offload Engine.

the following, we illustrate how to design the TOE as
well as its driver and socket API.

TOE Engine. The lower part of Fig. 1 shows the
TOE engine including TCP/IP protocol processing mod-
ule (PPM), connection control buffer (CCB), and local
buffers. The PPM performs the TCP/IP protocol suite
such as TCP, UDP, IP, ICMP, and ARP. An internal mem-
ory is needed for the inbound packet (Rx Local Buffer)
and outbound packet (Tx Local Buffer) respectively, and
the CCB is used to keep the information of the socket
connection such as the Transaction Control Block (TCB)
in TCP.

In the data transmission path, after the data payload is
fetched from the host memory by the TxDMA, the PPM
processes the data payload, and generates the packet
header. Finally the MAC transmits the packet to the
network. In the data reception path, the PPM receives
the packet from the MAC for protocol processing. After
handling the protocol, the PPM invokes the RxDMA to
copy the data payload to the host memory. We have
verified the above TOE operations in a real network
platform with on-line packet transmissions.

TOE Control Channel. The middle part of Fig. 1
shows the control channel, i.e., the communication entity
between the driver and the TOE engine similar to the
work in [17]. The control channel consists of four queues,
including a command queue, a send queue, a receive
queue, and an event completion queue. These queues
provide simple and abstracted communications between
the kernel driver and the TOE engine. The driver orga-
nizes these queues in a series of ring buffers and the TOE
manages the circular queues with the respective head
and tail pointers.

The driver registers a new context through pro-
grammed I/O when the host driver wants to notify the
TOE a new request. The TOE polls these circular queues,
and after the request has been finished, the TOE updates
its consumer pointer and adds finished information into

the event completion queue (ECQ). Then, the TOE raises a
physical interrupt to notify the driver that the request is
finished.

The connection requests like listen(), accept(), close(),
and connect() are registered in the command queue
(CmdQ). Once the application wants to send data, the
driver registers a context that includes the payload
length, physical address, and some control flags through
the send queue (SendQ). The contexts of the send queue
point to the host buffers that will be transmitted by the
TOE, and the intelligent DMA inside the TOE reads the
contexts and moves the data from the host memory to
the TOE’s local buffer.

When an input packet comes, the TOE stores the
packet into a fixed-length buffer in the host memory
through DMA operations. When the buffer is full, the
TOE raises an interrupt to notify the host. If the host
needs the data immediately, the host can add a context
to the receive queue (RecvQ), and the TOE will raise
an interrupt as soon as the input packet is received
regardless of whether the buffer is full or not.

We implement the one-copy mechanism in which the
data payload needs to be copied to the kernel buffer
and then to the user buffer. In this way, there is one
extra copy compared to the zero-copy approach where
the TOE can directly move the packet to the user buffer
[5]. However, in this work, we focus on the TOE virtu-
alization, and we implement the conventional one-copy
approach.

TOE Driver and Socket API. The socket API man-
ages the connection data structure and enables multiple
processes or multiple threads to use the TOE, whereas
the TOE driver is responsible for handling the interrupt
from the TOE device and passes the commands from the
socket API to the command buffers in the TOE.

In the transmission path, whenever the data buffer or
the command buffer is full, the application process waits
for the completion of the command. When the command
is completed, the TOE registers a context which contains
the information of the completed request in the event
completion queue (ECQ) and then the TOE issues a
physical interrupt to notify the host. The ECQ holds
the context which includes, for instance, socket identifier,
status flags, packet length, and packet pointer.

Once the driver receives an interrupt, a kernel thread
in the driver is waked up by the interrupt service routine
(ISR), and then the kernel thread gets the context data
from the ECQ and stores into the control data structure
of the destined socket. The kernel thread also determines
which process to wake up based on the socket ID.

3 TOE VIRTUALIZATION

Virtualized environment is usually used in high-end
servers where many virtual machines provide services
such as cloud computing through high bandwidth net-
work. However, recent computer systems have suffered
from the overheads of processing TCP/IP on very high
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speed network. A TCP/IP Offload Engine (TOE) can be
used to improve the network performance as well as to
alleviate the CPU loading. In this way, many of the CPU
cycles used for TCP/IP processing are freed up and may
be used for high-end servers to perform other tasks such
as virtualization applications.

In TOE virtualization, all of the socket connections of
the physical TOE are shared by all guest operating sys-
tems, and managed by the VMM. Thus, when the TOE
receives a packet for a designated socket connection, the
VMM knows which guest operating system the packet
belongs to, and the TOE can send the data payload to the
guest operating system using DMA. In this way, there
is no need to demultiplex the inbound packets in the
VMM and therefore the overheads of packet copy and
packet demultiplexing in the VMM can be eliminated. In
contrast, for the Layer-2 NIC virtualization, the inbound
packet needs to be moved to the VMM for software
demultiplexing [6].

In this paper, we present TOE virtualization using two
architectures including device emulation and direct I/O
access. We illustrate them in detail in the following.

3.1 Device Emulation Architecture

In order to virtualize an I/O device, the VMM must be
able to intercept all I/O operations which are issued by
the guest operating systems. The I/O instructions are
trapped by the VMM and emulated in the VMM by
software that understands the semantics of a specific I/O
device.

Fig. 2 shows the system architecture of TOE virtual-
ization based on device emulation. The VMM creates
multiple virtual TOEs, and each virtual TOE is assigned
to a guest virtual machine. The VMM manages the
communication between the physical TOE and all virtual
TOEs. The VMM is responsible for managing all guest
operating systems, and provides all guests an efficient
and transparent interface to the physical hardware.

There are three layers in the VMM to handle I/O
operations, including a virtual hardware layer, a virtual
hardware manager layer, and a hardware control layer.
The virtual hardware layer emulates the virtual devices
to the guest operating systems while the virtual hard-
ware manager layer manages all I/O requests from the
virtual devices, and the hardware control layer provides
the device driver to control the physical device.

The virtual TOE manager is a critical component in
our work since it enables the physical hardware resource
to be shared by all the virtual machines and guarantees
secure operations and service fairness. We illustrate the
major modules of the virtual TOE manager in the fol-
lowing.

I/O Translation Table. In our work, a guest operating
system translates the virtual address (VA) to the inter-
mediate physical address (IPA) through the stage 1 page
table. The guest operating system passes the IPA as a
context of the command queue to the physical TOE. The
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Fig. 2. System architecture of the TOE virtualization using
device emulation.

VMM traps the command and translates the IPA to the
physical address (PA) using the I/O translation table and
then the PA is used to address the physical TOE. The
DMA of the physical TOE can therefore copy the data
payload from/to the right physical address according to
the command.

Connection Manager. The TOE is a connection-based
network device which supports multiple connections
and can be shared by all guest operating systems. Thus,
the virtual TOE manager needs to map the real physical
socket connections in the physical TOE to the virtual
connections of all of the guest operating systems.

QoS-based Programmable I/O Command Dispatcher.
To share the physical TOE, a basic policy is that the
VMM serves each virtual machine in a first come first
serve (FCFS) manner with a credit-based scheduler. The
VMM directly passes the commands from the current
guest virtual machine to the physical TOE. Once the
current virtual machine is switched out, the next guest
can pass the command to the physical TOE. In this
case, the credit-based scheduler will have difficulty to
guarantee the quality of service (QoS) because the I/O
dispatching operation and the CPU scheduler, i.e., the
VMM scheduler, is tightly coupled.

In order to decouple I/O command dispatching and
CPU scheduling, we add a virtual control channel to
each virtual TOE, which includes a virtual command
queue, send queue, receive queue, and event completion
queue to buffer the commands from each guest operating
system. As Fig. 3 shows, a command from a guest is
trapped and moved into the designated virtual com-
mand queue. In this way, the command dispatcher can
still dispatch the commands from the virtual command
queues for the idle or the switched-out virtual machines.

In order to serve the pending commands fairly or



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2306425, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2013 5

VMM

Physical

TOE

Virtual

Machine

vTOEvTOEvTOEvTOE

VM0

TOE Control Channel

VM1 VM2 VM3

Decouple

VMM Scheduler (Boost + Tickle)

TOE Engine

QoS-based Programmable I/O Command Dispatcher

Fig. 3. Decoupled TOE command flow with QoS dis-
patcher.

according to the credit bought, we propose the use of
a QoS-based programmable I/O command dispatcher
(QoS dispatcher) which is decoupled from the VMM
scheduler. In this paper, the QoS dispatcher provides
quality of service for the bandwidth a virtual machine
has been credited.

The QoS dispatcher can serve each virtual command
queue in a round robin manner, for example. However,
an ordinary round robin policy cannot guarantee the
QoS in the case of different request message sizes as
will be shown later in the experimental results. Thus, we
employ the deficit weighted round robin (DWRR) algorithm
[18] to remove this flaw. Using DWRR policy can handle
packets of variable size without knowing their mean
size. Fig. 4 shows the pseudocode of the DWRR policy
in our work.

The QoS dispatcher serves each non-empty SENDQn

whose DeficitCountern is greater than the message size
and the remaining amount (DeficitCountern - Message-
Size) is updated in the DeficitCountern which can be
used in next round. Otherwise, the DeficitCountern will
add a Quantumn value and the QoS dispatcher will
serve the next non-empty SENDQ. In order to support
different requested bandwidth from a guest operating
system, we can set different quantum value to each guest
operating system. The guest having more quantum value
has more credits to be debited, and it can get higher
network bandwidth.

Interrupt Handler. In our work, a physical interrupt
from TOE is first trapped by the VMM, and the VMM
determines the target guest operating system of the
physical interrupt. Then the VMM allocates the result
context from the physical event completion queue (ECQ)
to the corresponding virtual ECQ in the virtual TOE.
After moving the result context to the virtual ECQ, the
VMM raises a virtual interrupt to notify the target guest
operating system that an event has occurred. The guest
handles the interrupt as if the interrupt were from the

Enqueue ( SENDQn , SendCommand )

FOR n = 1 to N    (N is the number of virtual machines)

ENDFOR

DeficitCountern 0

Initialization:

Enqueuing Operation: 

IF a send command comes from the n-th virtual machine THEN

Dequeuing Operation: 

RoundRobinPointer 0

n RoundRobinPointer

WHILE(1)

IF SENDQn is NOT_EMPTY THEN

IF MessageSize DeficitCountern THEN

MessageSize = Size( Head( SENDQn ) )

Send ( Dequeue ( SENDQn , SendCommand ) )

DeficitCountern DeficitCountern MessageSize

BREAK

ELSE

DeficitCountern DeficitCountern + Quantumn

RoundRobinPointer (n +1) mod N

ENDIF

ELSE

RoundRobinPointer (n +1) mod N

ENDIF

ENDWHILE

Fig. 4. The DWRR algorithm for QoS dispatcher.

physical device, and then the guest reads the context
from its virtual ECQ, instead of the physical ECQ.

3.2 Direct I/O Access Architecture

In the direct I/O access architecture, each guest operat-
ing system is connected to its own physical TOE control
channel and the guest operating system can access the
physical TOE directly.

Fig. 5 shows the comparison between the device emu-
lation architecture and the direct I/O access architecture.
In the device emulation architecture, each guest oper-
ating system is assigned a virtual TOE device where
all control operations are intercepted and managed by
the VMM while the direct I/O access provides multiple
physical control channels in the physical TOE inter-
face. Each physical control channel acts as if it is an
independent control channel and therefore the device
driver within the guest operating system can directly
interact with its own physical control channel. Instead
of assigning the ownership of the entire TOE to the
VMM, the VMM treats each control channel as if it were
a physical TOE and assigns the ownership of a control
channel to a guest operating system.

With the direct I/O access, not only the communica-
tion overheads between the guest and the physical TOE
are eliminated but it also avoids the frequent context
switching between the guest operating systems and the
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direct I/O access.

VMM. However, the physical TOE now must provide
multiple physical control channels and add control logic
to multiplex these physical control channels, which in-
crease the hardware complexity.

The TOE provides multiple physical control channels
for the guest operating systems and also a control in-
terface to the VMM. With the stage 2 page table in
the MMU, the VMM assigns a control channel to a
guest operating system by mapping the I/O locations of
the designated control channel into the guest’s address
space. Therefore, a guest operating system can directly
access its own control channel in the TOE interface with-
out the VMM intervention. All control channels share
the single execution resource. In addition, the direct
I/O access provides an interrupt controller that enables
all control channels assigned to each guest operating
systems to share the same physical interrupt. In the
following, we present the major components of the direct
I/O access architecture.

Multiple Control Channel. The VMM assigns a phys-
ical control channel to a guest simply by mapping the
I/O locations into the guest’s address space. The VMM
must ensure a VM will not access memory space which
is allocated to other VMs during DMA operation.

To multiplex outbound network traffic, the TOE en-
gine fairly serves all of the control channels in a round
robin manner or based on the QoS policy. Note that
the concept of QoS dispatcher in the device emulation
architecture can also be implemented in the direct I/O
access architecture. When a packet is received by the
TOE, it is first demultiplexed, and then the TOE transfers
the packet to the appropriate guest memory. After that,
the TOE adds an event data into the event completion
queue (ECQ) in the designated control channel.

In a multi-channel TOE, the number of control chan-
nels is limited by the hardware that the TOE provides.
If the number of the guests exceeds the number of the
control channels, some of the guest operating systems
need to share the same channel. The guests sharing the
same channel can use the device emulation approach
presented before.

Interrupt Delivery. In the direct I/O access archi-
tecture, all physical control channels on the TOE must
be able to interrupt their respective guest operating
systems. Whenever the TOE fills up the receive buffer or
sends the data payload from a guest operating system,
the TOE enqueues the result information into the ECQ
in the designated control channel, and raises a physical
interrupt to notify the guest operating system that a new
event has occurred.

In the direct I/O access architecture, all control chan-
nels share the same physical interrupt. The VMM needs
to determine which guest operating system the interrupt
is for. The TOE keeps tracking with the ECQs in all of
the TOE channels. If a new event has occurred since the
last physical interrupt, the TOE records the interrupt
information in an interrupt bit vector in the multi-
channel control unit.

After the VMM receives a physical interrupt from
the TOE, it first reads the interrupt bit vector in the
multi-channel control unit, and the VMM then decodes
the pending interrupt bit vector and raises the corre-
sponding virtual interrupts for the target guest operating
systems. When a guest operating system is activated, the
guest operating system will receive the virtual interrupt
as if it were sent from the physical TOE.

SystemMMU and Memory Protection. During DMA
operation, an I/O device must use physical address,
which is invisible to the guest operating system. The
intermediate physical address can be translated to the
machine address in the VMM in device emulation archi-
tecture. However, in the direct I/O access architecture,
without the VMM intervention, the DMA is not able to
read or write the device using correct physical address.
Moreover, without the memory protection of the VMM,
some untrusted guest operating systems can even access
the memory allocated to other guests through DMA and
crash the whole system.

In order to get the correct physical address and guar-
antee the memory protection in the direct I/O architec-
ture, we integrate a SystemMMU [19] into our platform.
Similar to the MMU of a processor, the SystemMMU
translates the addresses requested by the physical device
into valid physical address.

Unprivileged physical address is not accessible to the
device because no mapping is configured in the Sys-
temMMU, which guarantees the memory protection. The
VMM is responsible for managing the SystemMMU, and
the SystemMMU can translate the intermediate physical
address to the physical address for the DMA engines in
the TOE.

4 FULL SYSTEM VIRTUALIZATION PLATFORM

Our virtualization platform is a full system based on the
ARMv7 processor system, including a hardware simula-
tion platform, a CASL Hypervisor [8] for the VMM and
a Network Virtual Platform (NetVP) [20], [21] for on-line
TCP/IP verification. In the following, we illustrate how
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to virtualize the platform that enables multiple guest
operating systems to share the same physical machine
and communicate with real world computers in TCP/IP.

4.1 Hardware Simulation Platform

The simulation time is different between various abstract
models of simulation accuracy [15]. In this paper, an
approximate-timed simulation platform is developed us-
ing SystemC to help co-verifying software and hardware
interwork while at the same time keeping reasonable
simulation performance. In order to develop and verify
the hypervisor, we implement a hardware simulation
platform, as shown in the central part of Fig. 6. The
hardware simulation platform consists of an instruction
set simulator (ARMv7), an interrupt controller, memory
modules, and other peripherals (timers and UARTs), all
of which are necessary to successfully boot the Linux op-
erating system. All of the system modules are connected
via a transaction level modeling bus (TLM 2.0) released
by OSCI (Open SystemC initiative).

An instruction set simulator (ISS) is a computer pro-
gram which mimics the behavior of a target processor.
The ISS implemented in this paper is based on the
ARMv7 architecture with virtualization extensions and
its correctness has been verified by successfully booting
a Linux kernel.

In the ARMv7 architecture, the address translation,
access permissions, attribute determination and checking
are controlled by the memory management unit (MMU).
With virtualization extensions, the MMU can support
two stages of virtual address translation. If the MMU
is configured to use only one stage, the output address
is either the physical address (PA) or the intermediate
physical address (IPA). On the other hand, if the MMU
is configured to use two-stage address translation, the

MMU also translates the intermediate physical address
to the physical address (PA). Through the use of routed
second stage data abort, the hypervisor can trap a spe-
cific guest operating system’s I/O access and do the
necessary emulation.

4.2 CASL Hypervisor Architecture

The CASL Hypervisor [8] is a virtual machine monitor
designed for the ARM architecture; it can virtualize ARM
Linux without any source-level modification. Based on
the ARMv7 architecture with virtualization extensions,
the CASL Hypervisor enables multiple guest operating
systems to share the same physical platform, including
the TOE design described previously.

CPU Virtualization. To support full virtualization,
ARMv7 virtualization extension adds an additional CPU
mode called Hypervisor mode. The CASL Hypervisor
runs under the Hypervisor mode while the guest oper-
ating system runs under the Supervisor mode. Since the
CASL Hypervisor uses full virtualization, only hyper-
visor traps, physical interrupts, and routed data aborts
can reclaim the control from the guest operating systems.
The CASL Hypervisor can trap privileged operations
from the virtual machines, also the guest data abort can
be routed to the hypervisor and all physical interrupts
are handled directly by the hypervisor.

VMM Scheduler. The CASL Hypervisor schedules
guest virtual machines based on Xen’s credit scheduler
[22]. The credit scheduler can fairly share the CPU re-
source. The baseline credit scheduler divides the virtual
machines into two states: UNDER or OVER. If a virtual
machine has credits remaining, it is in the UNDER state;
otherwise, in the OVER state. Credits are debited on
periodic scheduler interrupts that occur every 10 msec
while a typical virtual machine switch interval is 30 msec
[23]. When the sum of the credits for all virtual machines
goes negative, all virtual machines are given new credit.

When making scheduling decisions, the baseline credit
scheduler only considers whether a virtual machine is
in UNDER or OVER state. Guests in the same state are
simply serviced in a first-in, first-out manner. A new or
switched guest is inserted into the tail of a run queue of
the same state. The scheduler selects the guest requiring
the CPU from the head of the run queue in UNDER state
first. If there are no CPU requests in UNDER state, the
scheduler serves the guests in OVER state in the same
way.

The baseline credit scheduler can fairly share the pro-
cessor resources; however, it does not consider the I/O
performance. As an example, a CPU-intensive domain
can solely consume 30 msec before it is switched out. On
the other hand, an I/O-intensive guest may consume far
less than 30 msec of CPU time waiting for I/O responses.

In Fig. 7, four VMs share a 1 Gbit/s TOE using device
emulation for virtualization. A VM runs either an I/O
domain application or a CPU-intensive application. The
baseline credit scheduler is used. As Fig. 7 shows, the
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network throughput gets lower when the number of
CPU-intensive applications is increased. For the TOE,
this in turn can significantly reduce the TOE utilization.
The detailed simulation system is illustrated in a later
section.

In order to enhance the network throughput, the credit
scheduler adds an additional state: BOOST which has
higher priority than the UNDER and OVER state. A
guest enters the BOOST state when it receives an event
while it is idle. Moreover, the credit scheduler applies the
Tickle mechanism which enables the VM in the BOOST
state to preempt the current virtual machine and execute
immediately. Therefore, the waiting time for an I/O
domain can be lowered. The Boost and Tickle mechanism
can improve the I/O throughput as will be shown later
in the experimental results.

Memory Virtualization. In a system where each guest
OS is running inside a virtual machine, the memory that
is being allocated by the guest OS is not its true physi-
cal memory, but instead it is an intermediate physical
memory. The VMM directly controls the allocation of
the actual physical memory and therefore the guests can
share the physical resources arbitrated by the VMM.

There are two approaches in handling the two-stage
address translation (VA to IPA and IPA to PA) [19].
In systems where only one stage of memory address
space translation is provided in hardware, for exam-
ple using the MMU in the CPU; the VMM hypervisor
must manage the relationship among VA, IPA, and PA.
The VMM maintains its own translation tables (called
shadow translation tables), which are derived by inter-
preting each guest OS translation table. However, this
software address translation mechanism causes perfor-
mance overheads. The alternative is to use hardware
assistance for both stages of translation.

In our work, there are two page tables being used in
the translation process under the virtualization environ-
ment. The fully virtualized guest operating system re-
tains the control of its own stage 1 page table. This table
translates a virtual address (VA) to an intermediate phys-
ical address (IPA). The intermediate physical address is
then translated via the stage 2 page table managed by the
hypervisor. Note that the guest operating systems cannot

Generic Interrupt ControllerGeneric Interrupt Controller
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Fig. 8. Backup (OS0) and restore (OS1) interrupt control
registers during virtual machine context switch.

be aware of the existence of the stage 2 page table.
The results of the second stage translation can be

either a valid physical address or a translation fault. If
the translation succeeds, the guest operating system’s
memory-mapped I/O is directed to the physical mem-
ory, or a physical device; otherwise, the hypervisor traps
the translation fault and emulates a specific load/store
instruction. Virtual devices can be implemented using
routed second stage data abort, and pass-through de-
vices can be redirected to its corresponding guest by the
stage 2 page table.

Interrupt Virtualization. Virtual interrupt is an impor-
tant mechanism for device virtualization by which the
VMM needs to manage all physical interrupts and map
a physical interrupt to a virtual interrupt for the guest
operating system. The Generic Interrupt Controller (GIC)
in ARM provides a hardware mechanism to support
interrupt virtualization [24].

The Virtual CPU Interface inside the GIC can forward
virtual interrupt requests to a target processor and trig-
ger it to take virtual IRQ exceptions. A virtual machine
receives its virtualized interrupts from this interface as
if it were sent from the CPU Interface.

The GIC Virtual Interface Registers provide an extra
programming interface to the hypervisor. The hypervisor
can use this programming interface to forward interrupt
requests to the GIC Virtual CPU Interface. As Fig. 8
shows, with the help of the interrupt control registers
in the GIC, the VMM stores the interrupt information
for each guest operating system. Whenever a context
switch occurs, the VMM backups the control registers
in the physical GIC and restores the control registers of
the next-switched guest to the physical GIC control reg-
isters. The virtual CPU interface then raises the virtual
interrupt based on the control registers in the physical
GIC and the guest operating system therefore receives
their interrupt.

4.3 Network Virtual Platform (NetVP)

Developing a complex network system such as a TOE
is of a great challenge since it needs software/hardware
co-development to verify the correctness of the design.
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TABLE 1
Configurations of the Host Environment.

Toolchain Version
Host OS Suse 12.1
GCC (Native) 4.7.1
GCC (Cross Compiler) 4.4
SystemC 2.2.0
TLM 2.0.1
Boost Library 1.4.48

To this end, we employ the ESL design methodology
that provides a faster simulation environment. Moreover,
we integrate a Network Virtual Platform (NetVP) [20],
[21] into our platform to provide on-line verification
capability. In this way, our virtualization system can
communicate with a real outside world computer system
for functionality verification. See the lower part of Fig. 6
for the NetVP system.

The NetVP connects the vMAC in the simulation plat-
form with an outside real network using semi-hosting
method through the RAW Socket API of the Linux kernel
and therefore a user can employ a packet analyzer,
such as Wireshark [25], to trace the packet traffic of the
network. In addition, we develop a multithreaded micro-
benchmark called NetVP Costar, as shown in the right
hand side of Fig. 6, which can support multiple simul-
taneous connections to communicate with the multiple
guest operating systems in the simulation platform. The
NetVP Costar uses the standard TCP/IP protocol stacks
in the Linux kernel to form a golden testbench to verify
the correctness of the TOE. We employ the IP aliasing
function in Linux to associate more than one IP address
to a network interface.

5 EXPERIMENTAL RESULTS

The system configuration of the host environment is
shown in Table 1. Our full system virtualization platform
has been implemented in SystemC modules that can
be scaled and reconfigured easily and promptly. The
approximately timed SystemC instruction set simulator
model is fully compatible with the ARMv7 architecture
and has been verified by booting the Linux OS. The de-
tailed parameters of the target architecture for simulation
are listed in Table 2. We configure the TOE bandwidth
for 1 Gbit/s or 10 Gbit/s and evaluate the network
throughput under different virtualization approach. A
programmed-I/O based kernel system call is used to
transfer the data payload between an application and
the kernel buffer in virtual machines.

5.1 Single Virtual Machine Evaluation
Fig. 9 (a) compares the packet transmission performance
of the two evaluated TOE virtualization architectures
and the native system for 10 Gbit/s TOE. The achieved
network throughput of the native system (without vir-
tualization) is about 5 Gbit/s for the 8,000-byte message

TABLE 2
Configurations of the Virtualization Platform.

Platform Component Configuration
Processor Model ARMv7-A ISS
D-Cache, I-Cache 32 KB
Processor Frequency 2 GHz
Device Frequency 400 MHz
DRAM Capacity 1024 MB
DRAM Bandwidth 6.4 Gbit/s
Memory per Guest OS 128 MB
Virtual Machine Switch Interval 30 ms
Guest OS Context-Switch Interval 2.5 ms
Busybox version 1.19.4
Newlib version 1.19.0

size. This performance limit is due to the programmed
I/O operations performed by the 2 GHz CPU system.

The device emulation (DE) architecture has commu-
nication overheads resulted from the VMM interven-
tion while the direct I/O access (DA) architecture can
eliminate the communication overhead and improve the
network performance. However, in the direct I/O access
architecture, a physical interrupt is still intercepted by
the VMM and therefore the performance of the direct
I/O access architecture is slightly lower than the native
non-virtualized system.

For the message size of 8,000 bytes, the transmission
performance of the native system can achieve 4,991
Mbit/s, and the device emulation can only reach 3,022
Mbit/s, about 60% of the native system. In contrast,
Xen’s NIC virtualization has obtained about 30% of the
native network throughput [6]. After removing most
of the VMM interventions, the performance of direct
I/O access is 32% higher than the device emulation
architecture, or 80% of the native system.

Fig. 9 (b) shows the receiving performance where the
network performance can achieve 4,633 Mbit/s with the
native system while the device emulation architecture
can only achieve 2,745 Mbit/s for the 8,000-byte message
size. After eliminating most of the VMM interventions,
the direct I/O access architecture can achieve 3,750
Mbit/s that is 36.6% higher than the device emulation
architecture. The receiving performance is slightly lower
than the transmission path. This is because the host is
only notified by the TOE after the kernel receiving buffer
is full.

Fig. 9 (c) compares the CPU utilization of single guest
operating system between the device emulation and
direct I/O access with 1 Gbit/s TOE. We measure the
transmission time of sending 128 Mbytes of data in
different message size. The transmission time of 1 Gbit/s
TOE to send 128 Mbytes data is normalized to 100% of
time as shown in the figure. The CPU idle time becomes
larger as the message size is increased because the CPU
can handle more data payload with the same number of
system calls.

With the same message size, there are 5% to 23% more
CPU idle time in the direct I/O access than in device
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emulation primarily due to the less time spent in the
VMM. For the DE-1000 case, the system can not achieve
1 Gbit/s sending rate, so it shows a transmission time
larger than 100%. Note that the DA-1000 case can achieve
1 Gbit/s.

Fig. 9 (d) compares the CPU utilization between the
device emulation and direct I/O access during packet
reception with 1 Gbit/s TOE. With the same message
size, direct I/O access uses fewer time in hypervisor
and gets 7% to 15% more CPU idle time than device
emulation.

As indicated in Fig. 9 (a)(b), the achieved network
throughput of a 10 Gbit/s TOE is limited to 5 Gbit/s
by the performance of the CPU system used while the
same CPU system is able to sustain 1 Gbit/s TOE except
the DE-1000 case.

5.2 Scalability
Fig. 10 shows the network throughput using 10 Gbit/s
TOE. We evaluate the performance of device emulation
and direct I/O access with different message size and
the number of virtual machines. For either the device
emulation or the direct I/O access, the total network
throughput has shown no degradation as the number
of guests is increased.

In our work, the TOE has no need to do hardware
context switch because the connections in the TOE are
shared by the virtual machines. Therefore, the context
switch overhead of the VMM is low and it is too small
to have significant influence on the network throughput.

5.3 Bandwidth Quality of Service
In the virtualization environment, the behavior of guest
systems may be different from each other and can be
classified into CPU-intensive domain and I/O-intensive
domain. In this section, we evaluate the network I/O
performance with different requirement of either CPU-
intensive or I/O-intensive applications. For the evalua-
tion, the CPU-intensive domains run infinite while loop
to fully utilize a guest’s processor resources while the
I/O-intensive domains run the network application to
fully utilize a guest’s network resources.

In order to share the physical 1 Gbit/s TOE fairly in
the virtualized environment, the VMM allocates the TOE
resource to each guest operating system in the round
robin manner as default. In the case that four I/O-
intensive guest operating systems transmit the packets
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with the same message size at the same time, the TOE
can be shared fairly. However, as shown in Fig. 11 (a),
once the message size is different with the four virtual
machines, the round robin based dispatcher cannot guar-
antee the fairness. To solve the problem, we use deficit
weighted round robin (DWRR) based QoS dispatcher to
ensure service fairness.

In Fig. 11 (b), four guest operating systems transmit
the packets with the different message size simultane-
ously using the QoS dispatcher. Although the message
size is different with the four virtual machines, the QoS
dispatcher can still guarantee the bandwidth quality of
service such that the guest operating systems can fairly
share the TOE.

In cloud computing environment, different user may
request different network bandwidth. The QoS dis-
patcher can support different requested network band-
width from different guest virtual machines. Fig. 12
shows that the QoS dispatcher can guarantee the re-
quested network bandwidth. Assume that the QoS dis-
patcher assigns the bandwidth requirement for the four
VMs in the ratio of 4:1:2:2. In phase 1, the four guest op-
erating systems use the TOE according to their requested
network bandwidth ratio. In phase 2, VM0 does not use
the TOE and in this case other guest virtual machines can

share the TOE according to their proportion of weighted
values (1:2:2) and the TOE can still operate to 1 Gbit/s.
In phase 3, assuming only VM1 uses the TOE; in this
case VM1 can own the whole TOE resource.

So far, we have discussed the cases that all virtual
machines are I/O-intensive domains. However, in mixed
domain applications, the total network throughput can
be significantly reduced by the CPU-intensive guest. The
solution for this lies in the VMM scheduler as will be
examined in the following section.

5.4 CPU Scheduler with I/O Preemption

If the VMM scheduler has no knowledge of I/O require-
ment, this may result in poor I/O throughput as well as
high latency. This is because the scheduler only guaran-
tees the fairness in using the CPU resources rather than
the I/O resources. When a CPU-intensive application
has owned the CPU resource, I/O-intensive applications
may not be scheduled in time to use the TOE; moreover,
a CPU-intensive application can consume up to 30 msec
of CPU time before VM switching. As illustrated in
Fig. 7, the network throughput gets lower when the
workload of CPU-intensive applications is increased,
which in turn significantly reduces the TOE utilization.

In Fig. 13 (a), VM0 runs the network I/O job while
the rest of VMs do CPU workload. The original credit
scheduler gets very poor performance in network I/O
throughput in this case. With only Boost mechanism, the
network performance still cannot saturate the 1 Gbit/s
TOE because the pending guest cannot preempt the
current running guest to handle the I/O event immedi-
ately. The Tickle mechanism enables the pending guest to
preempt the current guest if the priority of the pending
guest is higher than the current running guest.

As Fig. 13 (b), (c), and (d) show, with the increase in
the number of the I/O domains, the CPU resource can
be shared more fairly with these three configurations.
When the guest virtual machines all are of I/O-intensive
domains, all of the scheduling policies can guarantee the
fairness to share the CPU resource and also the full TOE
utilization can be obtained.

6 RELATED WORK

In this section, we review related works for network I/O
virtualization, in terms of software-based solutions and
hardware-based solutions.

Software-based Solutions. Xen’s para-virtualization
driver model uses a shared-memory-based data channel
to reduce data movement overhead between the guest
domain and driver domain [26]. Page remapping and
batch packet transferring are proposed to improve the
performance of network I/O virtualization [27]. Xen-
Loop improves inter-VM communication performance
also using shared memory [28]. Within these software-
based solutions, the received packet still needs to be
copied to the VMM for demultiplexing, which limits the
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performance of network I/O virtualization, and there-
fore there are many hardware-assisted solutions [6], [29],
[30], [31], [32] which have been proposed to improve the
performance of network I/O virtualization.

Hardware-based Solutions. Intel’s Virtual Machine
Device Queue (VMDq) offloads network I/O manage-
ment burden from the VMM to the NIC, which enhances
network performance in the virtual environment, freeing
processor cycles for application work [29], [30]. It im-
proves the performance of packet transactions from NIC
towards the destined VM. As a packet arrives at the NIC,
the dispatcher in NIC sorts and determines which VM
the packet is destined based on the MAC address and
the vLAN tag. The dispatcher then places the packet in
the target buffer assigned to the VM. When a packet
is transmitted from a virtual machine, the hypervisor
places the transmitted packet in their respective queue
located in the NIC.

To prevent network blocking and service each queue
fairly, the NIC transmits the queued packets in round
robin manner, to guarantee quality of service. In the sim-
ilar concept, Ram et al. [31] utilized multi-queue network
interface to eliminate the software overheads of packet
demultiplexing and packet copying. However, in the
above solutions, the VMM involvement is still required
in packet processing for memory protection and ad-
dress translation in Xen. For optimization, a grant-reuse
mechanism between the driver domain and the guest
domain has been proposed to mitigate the overhead of
virtualization. The solutions above do not present how
to virtualize the communication between the NIC and

the virtual machines clearly. In our work, we illustrate
how to virtualize the communication between the TOE
interface and the virtual machines.

Willmann et al. [6] illustrate how to virtualize the com-
munication between network interface and the VMM in
detail, and they propose a concurrent direct network
access (CDNA) architecture to eliminate the overheads
of the communication, packet copy, and packet demul-
tiplexing. When the NIC receives a packet, it uses the
Ethernet MAC address of a VM to demultiplex the
traffic, and transfers the packet to the appropriate guest
memory using DMA descriptors from the context of
target virtual machine.

In a non-virtualized environment, the NIC uses phys-
ical memory address to read or write the host system
memory. The device driver in the host translates a virtual
address to a physical address and notifies the DMA in
the NIC with the correct physical address for moving
packets. However, this direct I/O access architecture
is dangerous in a virtualized machine since the VMM
cannot find out whether there is a malicious driver in the
virtual machine or not. If there is a buggy or malicious
driver in the virtual machine, it could easily pollute the
memory region of other virtual machines [6]. To prevent
the malicious driver from illegal accesses, the VMM is
required to stay in the path of enqueue operation for
DMA memory protection, and this results in a protection
overhead. In the direct I/O access architecture of our
work, we can perform enqueue operation without the
VMM involvement through an I/O MMU approach and
ensure the memory protection.
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Y. Dong et al. [32] propose a single-root I/O virtu-
alization (SR-IOV) implemented in generic PCIe layers.
SR-IOV inherits I/O MMU to offload memory protection
and address translation, and to eliminate the overhead
of the VMM intervention. SR-IOV can create multiple
virtual functions (VFs) which can be assigned to virtual
machines for direct I/O access while the physical device
is shared by all the VMs. The main overhead in SR-
IOV comes from handling the interrupts from a network
device. This is because the interrupt is still intercepted
and routed to the virtual machines by the VMM. As
a result, they optimize the interrupt processing using
mechanisms such as interrupt coalescing.

7 CONCLUSION
In this paper, we identify three critical factors to provide
a robust network service in the virtualization environ-
ment: I/O virtualization architectures, quality of service
(QoS), and VMM scheduler.

First, we develop two virtualization architectures in-
cluding device emulation and direct I/O access to virtu-
alize a TCP/IP Offload Engine. In the device emulation,
the VMM intervention causes the communication over-
head and limits the network performance. To this end,
we employ the direct I/O access architecture to eliminate
the VMM intervention overhead. The TOE provides the
multiple control channels where each channel can be
assigned to a guest operating system. Thus, the guest
virtual machine can directly access the TOE and most of
the VMM intervention overheads can be eliminated.

For quality of TOE service, in order to decouple the
I/O command dispatcher and the CPU scheduler, we
add virtual command queues into each virtual TOE
to buffer I/O commands from the virtual machines. A
command from a guest is trapped and decoded by the
hypervisor and sent to the designated virtual command
queue. In this way, the I/O command can be dispatched
regardless the virtual machine domain is running or
not. Moreover, we dispatch the commands across all
virtual command queues using deficit weighted round
robin (DWRR) algorithm rather than first come first serve
(FCFS) algorithm to ensure the quality of service.

The VMM scheduler has a significant impact on I/O
performance. In a traditional scheduler, an I/O-intensive
domain may not get enough CPU resource or may not
be scheduled in time. This causes poor I/O throughput.
With the Boost and Tickle mechanisms, once an idle guest
receives an I/O completion event, the guest VM enters
the BOOST state and then it will preempt the current
domain that is in the UNDER or OVER state. This
approach favors an I/O-intensive guest machine and in
turn improves the TOE utilization.

By decoupling the TOE command flow, our work
shows that a VMM scheduler with preemptive I/O
scheduling and a programmable I/O command dis-
patcher with DWRR policy are able to ensure service
fairness and at the same time maximize the TOE utiliza-
tion.
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