
An OpenCL Runtime System for a Heterogeneous 
Many-Core Virtual Platform 

Kuan-Chung Chen and Chung-Ho Chen 
Inst. of Computer & Communication Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. 

edi@casmail.ee.ncku.edu.tw, chchen@mail.ncku.edu.tw 
 

Abstract—We present a many-core full system 
simulation platform and its OpenCL runtime system. The 
OpenCL runtime system includes an on-the-fly compiler 
and resource manager for the ARM-based many-core 
platform. Using this platform, we evaluate approaches of 
work-item scheduling and memory management in 
OpenCL memory hierarchy. Our experimental results 
show that scheduling work-items on a many-core system 
using general purpose RISC CPU should avoid per work-
item context switching. Data deployment and work-item 
coalescing are the two keys for significant speedup.   

Keywords—OpenCL; runtime system; work-item coalescing; 
full system simulation; heterogeneous integration; 

I.  INTRODUCTION 

OpenCL is a data parallel programming model introduced 
for heterogeneous system architecture [1] which may include 
CPUs, GPUs, or other accelerator devices. Through the 
OpenCL application programming interface, a programmer can 
offload the parallel task to the target devices by programming 
the control thread and the parallel kernel codes. Performance of 
the underlying hardware architecture is significantly affected 
by the efficiency of the OpenCL runtime system and program 
code itself.  

Several previous works have implemented the OpenCL 
framework on existing multi-core architectures such as Intel 
single-chip cloud computer, IBM cell BE, and Intel Nehalem. 
Twin peaks proposes a work-item context switch method with 
low-level optimizations on the Intel Nehalem and AMD 
Istanbul system [4]. Jaejin Lee et al. proposed a work-item 
coalescing technology to reduce the context switch overheads 
in multiple instruction, multiple data CPU architecture [2][3]. 
Dan Connors et al. have introduced a FPGA-based MPSoC 
system with OpenCL runtime supporting [7]. Raphael Poss et 
al. proposed a heterogeneous integration methodology which 
offloads the heavy system calls to the host operating system [5]. 
Ali Bakhoda et al. implemented the GPGPU-sim that exploits 
the host operating system for CUDA or OpenCL runtime 
execution and uses the ptx-simulator to execute CUDA kernel 
thread [6].  

To examine the interplay of an interested target platform 
and its runtime system, a flexible ESL (Electronic System 
Level) simulation platform is useful for architecture 
exploration and runtime system design. In this paper, we 
present an ARM-based many-core simulation platform and its 
OpenCL runtime system. To improve simulation efficiency, we 
propose a full system simulation platform based on a 
heterogeneous integration approach where the OpenCL runtime 

is executed on a Linux PC while the kernel code execution is 
simulated on an ESL many-core system.  

The rest of this paper consists of the following sections. In 
Section 2, we briefly introduce the OpenCL execution model 
and our heterogeneous full system simulation platform. Section 
3 discusses the OpenCL runtime implementation in detail and 
its enhancements. Section 4 presents the evaluation system and 
results. We conclude this paper in Section 5.  

II. OPENCL MODEL AND VIRTUAL PLATFORM 

In this section, we first introduce the OpenCL programming 
model and followed by our SystemC-based virtual platform 
architecture.  

A. OpenCL Platform Overview 

Fig. 1 shows a conceptual OpenCL platform which has two 
execution components: a host processor and the compute 
devices. The host processor executes the control thread and, via 
OpenCL APIs, dispatches the tasks to the compute devices, 
which in our case are the many-core system. A kernel thread in 
OpenCL is referred to as a work-item. A work group consists 
of a various number of work-items, determined by the 
programmer. A work group of kernel threads can be mapped 
onto a compute unit, a processor core for example, either by the 
OpenCL runtime or by a specific hardware thread scheduler.  

Besides the execution model, OpenCL also well defines the 
memory source hierarchy and its programming keywords 
(__global, __local, __constant, and __private). A kernel thread 
accesses these four distinct memory regions with the pointer 
variable declared in the kernel source code. OpenCL takes the 
relaxed consistency memory model. The visible memory 
region of kernel threads in a work-group is guaranteed to be 
consistent whenever they reach the barrier function. In addition, 
there are no memory synchronization mechanism between 
work-groups.  

B. Heterogeneous Full System Simulation Platform  

In order to design and verify a many-core OpenCL runtime 
system, we implement a many-core simulation platform based 
on the ARMv7a instruction set simulator with transactional 
level bus connections. Furthermore, we apply this full system 
simulation platform to analyze the integration between the 
runtime system and the many-core hardware execution 
environment.  

To provide an intact OpenCL execution environment, the 
host processor has to run an operating system which provides 
the device drivers and the OpenCL runtime. In this case, the 
simulation overheads are likely to hinder the system  

This work was sponsored and supported in part by the National Science 
Council of Taiwan under grand NSC 102-2221-E-006 -272 -  

978-1-4799-3432-4/14/$31.00 ©2014 IEEE 2197



Interconnect Bus

Host
Processor

Main
Memory

Compute
Device 1

Compute
Device 2

Compute
Device N

...

Compute Device

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

...

...

Global 
Memory

Constant 
Memory

Compute Device Memory

Interconnect Network

Local Memory

PE PEPE

...

Private MemoryProcessing 
Element  

Fig. 1. OpenCL conceptual platform model 

SystemC Simulation Platform

ARMv7a
ISS

L2 Unified Cache

L1
I$

L1
D$

MM
U

Compute Unit

ARMv7a
ISS

L2 Unified Cache

L1
I$

L1
D$

MM
U

Compute Unit

ARMv7a
ISS

L2 Unified Cache

L1
I$

L1
D$

MM
U

Compute Unit

Transaction-Level Model Bus

IRQ 
Signals

DRAM 
Controllers

On-Chip

...

Interrupt Handler

Compute Unit
Scheduler

IPC 
Channel
Handler

N DRAM 
Channels

Host program
(C/C++ source code)

CL Program

OpenCL Application Layer

OpenCL Application Programming Interface Layer

OpenCL Runtime Layer

OpenCL Device Driver Layer

Platform Resource
Manager

OpenCL Source Code On-the-
Fly Compiler

Kernel Kernel Kernel...

Host Application

IPC Channel
(Share Memory)

Command Controller

 

Fig. 2. OpenCL System Simulation Platform 

verification and analysis tasks. Since we are interested in the 
kernel thread execution efficiency in the many-core system, we 
employ a heterogeneous simulation methodology to improve 
the simulation speed for architecture exploration. The virtual 
platform only emulates the many-core system while OpenCL 
runtime system and operating system are offloaded onto a 
Linux PC. Specifically, we implement the OpenCL runtime 
system as a user process which runs on the Linux operating 
system. And this OpenCL runtime connects with our many-
core virtual platform through the shared memory inter-process 
communication (IPC) mechanism.  

Fig 2 depicts the overview of our heterogeneous simulation 
platform. The virtual platform emulates a compute device in 
the OpenCL conceptual platform model. The compute device 
has various number of compute units, each of which is mapped 
to an ARM core. A compute unit is an ARM-based instruction 
set simulator with a memory management unit (MMU), private 
L1 I/D caches, and a L2 unified cache. The ARM cores, up to 
32, are connected with a Transaction-Level Model (TLM) 
interconnection which models the arbitration for memory 
controllers and data transfer with fixed cycle delay. There are 
at most four DRAM controllers in our simulation platform. 
Each DRAM controller can access up to 4GB memory region 
by setting the simulation parameter. This implies that at most 
four memory accesses can be proceeded in parallel.  

A typical OpenCL runtime system supports three command 
types: kernel, memory, and event. A kernel command is used 
for assigning work-groups to the compute devices; a memory 
command is used for data transfer among the memory space of 
the host processor and the compute devices.  An event 
command is used for controlling the execution sequence 
between commands. Since the OpenCL runtime and the control 
thread are both processes run on the host Linux, a command 
controller in the many-core virtual platform is required to 
receive and interpret the commands from the two processes. 

The command controller has implemented three major 
functions: compute unit scheduler, interrupt handler, and IPC 
channel handler.  

Whenever the OpenCL runtime receives a kernel or 
memory command requested from the application, the device 
driver passes the command to the command controller via the 
IPC channel. The IPC channel handler decodes the command 
type and takes the corresponding action as follows. When it is a 
kernel command, the compute unit scheduler serves this 
command by appointing the ARM cores to execute the work-
groups of kernel codes. When it is a memory command from a 
control thread, the command controller accesses the device 
DRAM module through the TLM interconnection directly and 
finishes the memory request. Finally, an event command is 
only handled inside the OpenCL runtime system.  

III. OPENCL RUNTIME IMPLEMENTATION AND 

ENHANCEMENT 

In this section, we describe the detailed implementation of 
our OpenCL runtime. Since we choose the ARM core as the 
compute-unit, kernel thread emulation and memory 
management are two main challenges and will be discussed in 
this section.  

A. OpenCL Runtime Overview 

In order to explain the OpenCL execution flow, we divide 
the host application into four layers as shown in Fig. 2. An 
OpenCL application includes a host program and kernel codes 
that are to execute on compute devices. The host program 
manages the command queues and the abstract memory objects 
through OpenCL APIs defined in the OpenCL specification. 
For instance, a programmer uses the clCreateBuffer() API to 
create an abstract memory object for controlling the device 
memory on the target device.  

In the OpenCL runtime layer, we have implemented two 
principal functions, a platform resource manager and an on-
the-fly compiler. As a programmer uses OpenCL APIs to 
declare an abstract object such as memory object or command 
queue, the platform resource manager creates a specific data 
structure to record the relationship of the abstract objects and 
device resources. The platform resource manager returns a 
pointer of that data structure to the host application. And then 
the host application uses this pointer to indicate the device 
resources for the kernel and memory commands that follows.  

Besides resource management, the OpenCL runtime has to 
compile the kernel source code into an executable binary of the 
target compute device. Fig. 3 illustrates the on-the-fly compiler 
system in our OpenCL runtime system. We use the LLVM 
framework and the GNU GCC cross-compiler for ARM 
processor. As shown in the figure, the LLVM compiler 
translates the OpenCL source code to the intermediate 
representation, LLVM-IR, through its front-end compiler. Then, 
the LLVM compiler performs the LLVM-IR to ARM assembly 
code translation, and last the GCC cross compiler assembles 
the assembly code into the binary code. The compiling flow is 
triggered in runtime whenever the programmer uses the 
clBuildProgram() API.  

2198



B. Work-item execution: context switch & work-item 
coalescing 

 We assume that the total number of work items, i.e., the 
kernel threads greatly outnumbers the CPU cores as in a typical 
situation. In this work, we assign a work group of parallel 
kernel threads to one of the CPU cores in the many-core 
system.  To perform kernel thread scheduling in a work group, 
we use a work-item management thread (WMT) running on 
each core. As shown on the left side of Fig. 4, an intuitive 
implementation, the WMT sequentially schedules all the work-
item threads in a work group by supporting a fine-grained 
work-item context-switch. When a barrier function is reached, 
the WMT backups the CPU registers to the private memory 
region and then restores the next work-item’s resisters. After 
all the work-items pass through the barrier, the WMT switches 
to the first work-item thread and continues the executing 
iteration until completing the work-group or reaching the next 
barrier.  

However, treating each work-item as an execution thread in 
a general purpose CPU architecture will cause heavy context-
switch overheads owing to registers backup and restore. To 
reduce the context switching overheads, a more attractive 
alternative is to combine or coalesce all work-items in a work-
group into an execution thread during the compiling time. 
SNUCL [3] supports an OpenCL-C-to-C compiler for work-
item coalescing. The OpenCL-C-to-C compiler translates the 
kernel source code into for-loop iterations according to the 
barrier function. We adopt this OpenCL-C-to-C compiler to 
translate kernel source code into for-loop iteration form and use 
the translated code for compiling into the binary code as 
described in Section II. As shown on the right side of Fig 4, the 
WMT schedules the for-loop iterations to emulate a work-
group processing until reaching barrier or termination without 
any additional register backup and restore.  

C. Memory Management 

We leverage the virtual memory system to approach 
OpenCL memory hierarchy on a unified main memory. As 
shown in Fig. 5, all the work-groups scheduled by the WMTs 
execute on the same virtual address. Through the memory 
management unit (MMU), the virtual address is translated to 
the physical address as the WMT executes. By this manner, the 
private and the local memory pages of a work-group are 
mapped to the unique physical pages according to the 
execution core. In addition, the WMT setups the page table of 
the instruction memory before executing the work-items in a 
group.  

Figure 6 illustrates the optimization of using private 
memory in exploiting multiple memory controllers. Since each 
core exclusively accesses their private memory region, we 
spread the pages of the private memory of a core in different 
memory channels. Furthermore, our OpenCL runtime 
sequentially assign a work-group to the compute unit with the 
core ID, so we stagger the private memory pages of the 
adjacent cores to the different memory channel. This ensures 
that the private memory accesses are scattered on all memory 
controllers. Finally, we arrange the pages of global memory 
and instruction memory to the rest of the memory space.  

CL kernel 
source code

LLVM Compiler

OpenCL Front-end 
Compiler

OpenCL 
Intermediate 

Representation 
(IR)

OpenCL Back-end 
Compiler

Assembly Code of 
Target Device

Cross Compiler 
(GNU C/C++)

Target 
Binary Code

 
Fig. 3. On-the-fly Compiler System 

WMT

Work-Group

. . . . . . 

Backup registers of executing work-item
Restore registers of following work-item

wi0 wiNwi1

barrier();

. . . 

. . . 

WI: work-item
WMT: work-item 
management 
thread

Execution WMT

Work-Group

barrier();

Execution

for(all work-item ids)
{

}

Work-item 
content

for(all work-item ids)
{

}

Work-item 
content

 
Fig. 4. Work-item emulation techniques 

Core 0
MMU

Core 1
MMU

Core N
MMU

...

Virtual 
Address

Boot-
strap

Local 
Memory

Private 
Memory

(stack 
memory)

Global 
Memory

Instruction
Memory

Boot-
strap

Global 
Memory

K
er

ne
l 2

K
er

ne
l 1

K
er

ne
l M

. . .

Core 
0

PM

...

Core 
1

PM

Core 
N

PM

Physical 
Address

 
Fig. 5. Memory Management  Mechanism 

Interconnection Nerwork

Core 0 Core 1
Core 

N
...

Memory Controller 
0

Memory Controller 
1

Memory Controller 
2

Memory Controller 
3

Core 2

Main Memory

Core 
0

PM

Core
2 

PM

Core 
1

PM

Core 
3

PM

Global
MEM0

Instruction
Memory

Core 
M

PM

... ... Global
MEM1

Core 
M+1
PM

Global
MEM2

Core 
M+2
PM

Core 
M+3
PM

...
...

Core 3

 
Fig. 6. Staggered Memory Mapping  

D. SExperimental System and Evaluation Results 

Table 1 shows the system configuration of the full system 
simulation platform. We implement an ARM instruction set 
simulator (ISS) [8] based on ARMv7a and VFP 3.0, caches 
also included.  Since there is no synchronization between 
work-groups, cache coherence is not required here. The 
consistency of the global memory is handled by the command 
controller.  

2199



TABLE I.  SYSTEM CONFIGURATION 

Virtual Platform Configuration 
Platform Component Configuration 

No. of cores 1, 4, 8,16, 32 
Processor Model ARM ISS with VFP 3.0 @ 1.25 GHz 

L1 I/D-Cache 2-way, 32B line, size 32 KB, 3 cycles delay 
L2 Unified Cache 8-way, 32B line, size 256KB, 20 cycles delay 

I/D-TLB 32 entries, 20 cycles miss penalty 
DRAM 4 memory controllers, 2GB main memory, 110 ns access time

Interconnection TLM bus with constant 10 cycles NoC delay 

Host System 
Host Machine Intel i7-4770 @ 3.40GHz, 16GB main memory 

Operating System OpenSUSE 12.3 64bit 
Host Compiler GCC 4.7.2 

On-the-fly Compiler LLVM-3.3, arm-elf-gcc 4.8.1 and SNUCL 

E. Work-item Coalescing Enhancement 

For the test suite, we choose MatrixMul, Histogram, 
Transpose, DCT8x8, Convolution-Separable (CS), BitonicSort 
and BoxFilter that are available from NVIDIA and AMD 
OpenCL SDK. Fig. 7 shows the speedup of work-item 
coalescing compared with fine-grained work-item context 
switching in the NoC interconnection platform. The speedup, 
ranging from 2 to 8, is obtained based on the simulated 
benchmark time for both cases.  

Because the computing unit is an ARM-based core with 
VFP support, there are 16 regular registers, a CPSR, and 32 
vector registers needed to backup or restore in the per work-
item context-switch approach. On the other hand, the work-
item coalescing saves the overheads of these context-switches. 
As an example, for the Transpose program, the kernel thread 
loads the target operand, reaches the barrier, and then writes 
back the result without any computing. This makes the ratio of 
context-switching instructions to the computing instructions 
relatively high and as a result, the work-item coalescing has 
outstanding performance improvement. In summary, work-
item coalescing can achieve about four times faster than per 
work-item context-switching in the ARM-based many-core 
environment.  

F. Scalability 

Fig. 8 shows the scalability of the work-item coalescing 
approach in the many-core platform using NOC or bus for 
interconnection. The comparison basis is the single bus 
platform with one CPU core. In the NoC platform with four 
memory controllers, because we distribute the private memory 
pages across the available memory channels, the speedup of 
arithmetic benchmarks such as MatrixMul, Histogram, and CS 
is more linear than the single bus platform. However, 
BitonicSort and BoxFiler do not scale well and reach the 
speedup upper bound quickly. This is because each of the 
work-items only performs a few operations and then 
completes the write back for global memory where contention 
occurs.  

IV. CONCLUSIONS 

We have presented a many-core full system simulation 
platform and its OpenCL runtime system in this paper. By the 
heterogeneous integration method, we design an OpenCL 
runtime system, including an on-the-fly compiler and resource 
manager, on an ARM-based many-core virtual platform. 

Furthermore, we use this platform to evaluate various 
approaches in work-items execution and memory management. 
The results show that running work-items on a general purpose 
RISC CPU should avoid per work-item context switching. 
Work-item coalescing through CL code translation has 
achieved about four times of speedup on average.  This is 
accomplished along with the deployment of a staggered 
memory mapping strategy for private memory region.  

 
Fig. 7. Comparison of work-item coalescing and  fine-grained context switch 

 
Fig. 8. Speed up between multiple memory controllers and single bus 

REFERENCES 
[1] Khronos OpenCL Working Group, “The OpenCL Specification Version 

1.2,” 2012, http://khronos.org/opencl.  

[2] J. Lee, J. Kim, S. Seo, S. Kim, J. Park, H. Kim, T. T. Dao, Y. Cho, S. J. 
Seo, S. H. Lee, S. M. Cho, H. J. Song, S.-B. Suh, and J.-D. Choi, “An 
OpenCL Framework for Heterogeneous Multicores with Local 
Memory,” in Proceedings of the 19th International Conference on 
Parallel Architectures and Compilation Techniques, PACT’10, Sep. 
2010, pp. 193-204. 

[3] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: an OpenCL 
framework for heterogeneous CPU/GPU clusters,” in Proc. of  the 26th 
ACM international conf. on Supercomputing, ICS’12, Dec. 2012, pp. 
341-352.  

[4] J. Gummaraju, L. Morichetii, M. Houston, B. Sander, B. R. Gaster, and 
B. Zheng, “Twin Peaks: A Software Platform for Heterogeneous 
Computing on General-Purpose and Graphic Processors,” in Proc. of the 
19th International Conf. on Parallel Architectures and Compilation 
Techniques, PACT’10, Sep. 2010, pp. 205-216.  

[5] R. Poss, M. Lankamp, M. I. Uddin, J. Sýkora, and L. Kafka, 
“Heterogeneous integration to simplify many-core architecture 
simulations,” in Proc. of the 2012 Workshop on Rapid Simulation and 
Performance Evaluation: Methods and Tools, RAPIDO’12, Jan. 23, pp. 
17-24.  

[6] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, 
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in 
IEEE International Symp. on Performance Analysis of Systems and 
Software, ISPASS 2009, Apr. 2009, pp. 163-174.  

[7] D. Connors, E. Grover, and B. Caldwell, “Exploring Alternative Flexible 
OpenCL (FlexCL) Core Designs in FPGA-based MPSoC Systems,” in 
Proc. of the 2013 Workshop on Rapid Simulation and Performance 
Evaluation: Methods and Tools, RAPIDO’13, Jan. 21, Article No.: 3.  

[8] C.-T. Liu, K.-C. Chen, and C.-H. Chen, “CASL Hypervisor and its 
Virtualization Platform,” in IEEE International Symp. on Circuit and 
Systems, ISCAS 2013, May, 2013, pp. 1224-1227.  

2200


