
Unambiguous I-Cache Testing Using Software-Based
Self-Testing Methodology

Ching-Wen Lin and Chung-Ho Chen
Institute of Computer and Communication Engineering, National Cheng Kung University,

Tainan, Taiwan, R.O.C.
kliolin@mail.ee.ncku.edu.tw and chchen@mail.ncku.edu.tw

Abstract—We propose an unambiguous instruction cache

software-based self-testing methodology that can generate a
reliable result to precisely determine the test passed or not. We
present testing cases that cause ambiguous cache testing results
and propose five principles of test pattern selection to prevent
these situations from occurring. To preserve the order of March
sequence in testing an I-cache, we leverage cache bank and cache
disable operations. In this way, we are able to implement any
March algorithm without violating the sequence order. Finally, we
present a case study for ARM v5 ISA processor that has an 8KB
instruction cache. We use the March C- algorithm and achieve
100% of inter-word coverage and more than 97% of intra-word
coverage evaluated by the RAMSES simulator.

Keywords—I-cache testing; SBST; March algorithm; ARM

I. INTRODUCTION

Software-based self-testing (SBST) for processor systems is
an attractive testing solution due to its non-intrusiveness and
flexibility. In SBST, the testing result is usually interpreted from
the execution result of the testing program. March algorithms are
widely used for memory cell built-in self-testing (BIST) and
SBST [1]-[3]. A typical March algorithm consists of special
sequences of March elements that are memory operations
applied to the memory cells by specific addressing orders.
However, an I-cache cannot be tested by SBST easily because
the I-cache is usually regarded as a read-only device from the
viewpoint of the program execution. The first issue to resolve is
how to give the testing patterns which at the same time are also
valid instructions. This is a common problem for testing I-cache
in SBST since it is not always possible to find the instruction
encoding that satisfies a test pattern and an instruction at the
same time. Despite that test patterns can be made available from
instructions, simply determining testing result bases on the
outcome of instruction execution might not be reliable enough.
As an example, if instruction “AND R0, R0, R0” is selected as
a test pattern which is read into the I-cache, the program
examines the result of R0 to see if this instruction memory has
passed the test or not. Assume that the faulty bits have changed
the instruction to an “OR R0, R0, R0” instruction. Examining
R0 in this case, we cannot tell if the fault has occurred or not.
We define the testing result of this nature as ambiguous. In this
paper, we present a method to prevent these ambiguous
situations and obtain reliable testing result.

Another aspect in testing I-cache is how to minimize the
impact of program execution on the order of the March sequence
since the deviated March sequence in memory testing may result
in the lower fault coverage. In testing an I-cache line by line, it

is required to ensure that the last word of a target cache line
should be also tested. Nevertheless, when a pipelined processor
is executing the last instruction from a cache line, the next cache
line will be fetched into the cache. The addressing order of the
March sequence is broken at the same time. To prevent this from
occurring, we leverage a common cache operation, cache disable
that changes the next instruction is fetched from a non-cacheable
memory reference. In this way, we are able to maintain the order
of the required March sequence and obtain the expected fault
coverage.

Testing cache using SBST has been proposed by lots of
researches. S. D. Carlo [2] has tried to overcome the difficulties
of the set-associative cache testing. They deal with the problems
for data cache memory successfully; however, there is no
detailed discussion on testing the intra-word faults of the I-cache.
The other work, G. Theondorou [3], has proposed the direct
cache access instructions (DCA instruction) that can read and
write the data array of the I-cache. Unfortunately, not every ISA
has the DCA instructions that can fully support cache testing. In
this paper, we present an unambiguous I-cache SBST
methodology without DCA instructions, and we discuss three
ambiguous testing models and propose five principles of test
pattern selection to prevent these ambiguous situations from
occurring.

The rest of this paper is organized as follows. Section II
describes the implementation of the March algorithm. Section
III presents our proposed unambiguous principles. Section IV
provides a case study and the experimental result. Finally, we
make a conclusion for this paper.

II. TRANSLATE MARCH ALGORITHM INTO SBST PROGRAM

A March test is a sequence of March elements composed of
pre-defined read or write accesses to the tested memory cells by
the special addressing order. The values of March read or write
are called data backgrounds (DBs) or their complementary data
backgrounds (DBs) [4]. After one March element has been
applied to a memory cell, the element should then be applied to
the next one according to the specified addressing order which
can be ascending (⇑), descending (⇓), or either (⇕). Fig. 1 shows
that the word-oriented March C- algorithm which contains six
March elements with the write/read order specified from left to
right. The least number of the required data backgrounds,
including the complementary, to test the intra-word faults of an
L-bit memory cells (word) is defined as follows:

logଶڿ) * 2} Eq. (1) --- {(1 +	ۀܮ

This work is supported by the National Science Council, Taiwan, under
Grant NSC 102-3113-P-006-018.

978-1-4799-3432-4/14/$31.00 ©2014 IEEE 1756

Fig. 1. Word-oriented March C- algorithm

A. March data backgrounds

Our SBST concentrates on the data array of the I-cache.
Before we introduce how to find March elements that are also
valid instructions, we will illustrate the data array banking model
with Fig. 2. The cache banking is a common technique to reduce
the access time and dynamic power [5], [6]. Fig. 2(a) shows a
single bank data array which consists of eight instructions, and
Fig. 2(b) shows an eight-bank data array with interleaved
instruction storage. Different banking models will impact the
length and the content of one data background.

Single Bank

Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 6 Inst 7 Inst 8

Data arrayTag array

Tag

(a) Single bank cache model

Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7 Bank8

Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 6 Inst 7 Inst 8

Data arrayTag array

Tag

(b) Eight banks cache model

Fig. 2. Cache banking models

For the single bank model, the length of the March data
background is the line size, i.e., 256 bits, and at least nine pairs
of March data backgrounds is required to test the intra-line faults
according to Eq. (1). This implies that there are eight instructions
per March data background. For March data backgrounds and
the complementary, we need to find more than 144 valid
instructions. This number makes the translation difficult if not
impossible. To resolve this difficulty, we choose the
implementation of the eight-bank data array. For this cache
banking model, the data background is 32 bits, the same length
of an instruction. According to Eq. (1), if all the data
backgrounds can be regarded as valid instructions, we only need
to find twelve valid instructions.

B. SBST program establishment

We have introduced a feasible method to reduce the number
of March data backgrounds. In this section, we present the
translation between the March algorithm and the SBST program.
The crucial requirements for our SBST program development
are: (1) having a non-cacheable memory region, and (2) having
a privilege instruction which can disable cache access even the
memory region is cacheable. These two features can be found in
modern microprocessors.

We divide the testing program into four segments: an initial
segment, a sequence control segment, a test pattern segment, and
a result verification segment. As illustrated in Fig. 3, these four
segments have different memory attributes: cacheable or non-
cacheable, which is defined by the program allocation model of
our SBST. The memory management unit decides which region
can be cached or not by these attributes. Fig. 3 also shows our

SBST program execution flow. The sequence control segment
determines which line of the test patterns to be fetched into the
I-cache. The sequence of fetching the test patterns must conform
to the addressing order of the specified March operations. The
sequence control segment for a direct-mapped cache is
straightforward by using the linear index when addressing a
cache line. For an N-way set-associated cache, it is required to
have additional operations to modify the replacement policy
state in order to obtain the specified addressing order [2].

Main memoryI-Cache

1

2

3

4

5

6

7

Test pattern Segment
(cacheable)

Result verification segment
(non-cacheable)

Sequence control segment
(non-cacheable)

Initial segment
(non-cacheable)

Pattern
sequence

Fig. 3. Program segments for I-Cache SBST

The key segment transition is how to jump to the result
verification segment from the test pattern segment without
bringing in unnecessary instructions into the I-cache. We notice
that the pipeline architecture will fetch instructions until the
jump instruction is actually executed. This may violate the order
of the March sequence since the instructions following the jump
are written into another cache line.

For example, a classical five-stage pipeline processor
finishes the jump operation at the decode stage, and there is a
redundant instruction fetched in the fetch stage. This redundant
instruction might violate the read/write order of the March
sequence and degrade the fault coverage. Considering the
characteristic of the pipeline and the cache banking model, we
employ the disable cache instruction to accomplish the segment
jump operation without violating the specified March sequence.

Due to the pipeline architecture, there are several
instructions fetched from the I-cache before the disable cache
instruction is executed. We name these instructions as the
“follower.” The number of follower, IF is depended on the
processor architecture, i.e., the pipeline depth.

As Fig. 4(a) shows, assuming we test the cache lines in the
first bank, and the first bank is also the entry point from the
sequence control segment. To conform to the specified March
sequence, the first requirement is that

IF < (IL – IBR -1) --- Eq. (2)

where IL is the number of instructions per line, IBR is the number
of instructions per row in a bank. In this example, testing the
second bank uses the similar test pattern layout as in Fig. 4(a).

Fig. 4(b) shows the test pattern layout in a cache line when
testing the last bank. For this situation, we must use the follower
instructions to serve as the data background. Notice that the
disable cache instruction is allocated at the left neighboring bank
of the target bank. After the follower instructions are executed
by the processor, the jump instruction to be executed is fetched
from the main memory since the cache is disabled. Nevertheless,

 ⇕(wDB); ⇑(rDB, wDB); ⇑(rDB, wDB); ⇓(rDB, wDB); ⇓(rDB, wDB); ⇕ (rDB)

1757

at the time of cache line filling, the jump instruction for testing
last row is also brought into the cache along with the rest of the
cache line. To test the last bank, the requirement is given as
follows:

IBR <= IF --- Eq. (3)

To test the entire cache line, the above two requirements must
be met at the same time:

IBR <= IF < (IL – IBR -1) --- Eq. (4)

Testing bank 3 and bank 4 in this example uses the similar test
pattern layout.

Bank 3Bank 2Bank 1

DB Disable Cache

Data array

Jump

Bank 4

Bank 1

Jump

Data array

Bank 2 Bank 3

Disable Cache

Bank 4

DB

Target bank
Follower

instruction
Entry point

(a) First bank testing

(b) Last bank testing

DB

DB

Don’t care
instruction

Fig. 4. The test pattern layout

III. UNAMBIGUOUS INSTRUCTION CACHE TESTING

We have described how to generate a March sequence
conformed SBST program. As mentioned previously, an SBST
testing result may be ambiguous if only interpreting the register
value and memory content for test verification. In this section,
we elaborate the causes of the ambiguity and propose the
principles of test pattern selection to eliminate them.

A. Ambiguous factors

In SBST, any instruction that has the same encoding as a data
background can be chosen as a candidate test pattern. There are
various reasons for the occurrences of ambiguity, and we
classify them into three categories:

Factor 1: Many instructions may produce the same result.

For example, an ADD instruction, assuming it is a data
background, can be changed into a SUB instruction due to the
faulty cache. Simply interpreting the destination register value
cannot determine whether the test is passed or not. This situation
often occurs on data-processing type of instructions, especially
bit-operation instructions.

Factor 2: Many memory words may have the same values.

For example, the contents of R1 and R3 point to an
individual memory word respectively, but these two memory
words have the same values. In the register-indirect addressing
mode, “Load R0, [R1]” produces the same result as the “Load
R0, [R3]”. When either instruction is the data background,
interpreting the result of R0 cannot tell which instruction is
executed.

Factor 3: Repeated instructions may conceal the faults

The repeated instructions may generate ambiguous results
even if they can produce unambiguous results individually. In

the eight-bank model, a carefully-chosen “Load R0, [R1]” could
test each bank row alone without producing the ambiguity.
Nevertheless, in the four-bank model, this instruction must be
repeated twice for each bank row. In this case, we cannot
discover the faulty bits of the first word in the bank row since
this error is concealed by the second run.

B. Principles to eliminate the ambiguity

We have introduced three reasons that cause the ambiguity
in testing result. We propose five principles in test pattern
selection. These principles serve as the base guidelines that are
applicable to the ISA of modern processors.

(1) Choose a unique value for the source register.

A unique value of the source register can imply a non-
reproducible result, especially for data-processing type
instructions. Before applying this instruction for testing, the test
program should reset the rest of registers to zero so that there is
no room for ambiguity to occur.

(2) Prohibit the instructions that have undefined bits.

Some instructions have the undefined bits because of the
encoding. Those bits are usually ignored at the decoder stage, so
the failures of these bits could not be propagated by the normal
functions of the processor. Therefore, the instructions that have
undefined bits should be prohibited to be the test patterns.

(3) Clear the target memory and program status register
before testing.

A clean target memory and status register can reflect the test
result of the chosen test pattern. This principle is suitable for
every type of instructions especially for load/store instructions.
These clean operations can be finished at the sequence control
segment shown in Fig. 3.

(4) Employ the encoding of an undefined instruction as the
destination register value of a load instruction or the
result to be stored for a store instruction.

To prevent Factor 2 from occurring, to use uncommon
values for load/store instructions is a good method. The
undefined instructions cannot be generated by the tool chain, so
they can be exclusive in the memory.

 (5) Select either post-indexed or pre-indexed addressing
instructions.

To distinguish testing results of multiple instructions in a
bank row, using an addressing instruction that has auto-
increment mode can tell the difference of each testing result in a
bank row.

We apply the above five principles in test pattern selection
for testing the I-cache of the ARMv5 ISA processor.

IV. CASE STUDY: ARM V5 PIPELINE PROCESSOR

In this section, we demonstrate the unambiguous SBST test
program development on the direct-mapped I-cache of an ARM
v5 ISA pipelined processor. We concentrate on the data array
testing of the I-cache that is physically implemented as eight
32x256 SRAM banks, and the method for testing the tag array
of the I-cache can refer to the work in [1].

1758

A. Experimental environment

We have implemented an ARM-compatible processor and
its direct-mapped I-cache by Verilog. For our experiment, we
simulate the processor running the testing program and log the
read/write signals of the I-cache, and then we apply these signals
as the input patterns to the RAMSES simulator [7] to perform
the RAM fault simulation. We implement the March C-
algorithm that can effectively detect all SAF, TF, AF, CFst, CFin,
and CFid faults. TABLE I shows the relationship between the
March data backgrounds and our testing instructions selected
based on the above five principles.

According to Eq. (1), the minimal number of test patterns is
12 for our design. We are only able to find one pair of the test
patterns that directly match with two valid instructions. For the
rest of test patterns, we select the instructions that have the best
match, i.e., minimum Hamming distance.

A data background that matches a valid instruction might not
be used as a test pattern due to its ambiguity in test result. For
example, the March data background “0x00000000” can be
mapped directly into an ARM instruction “ANDEQ R0, R0, R0.”
In this case, the test result is ambiguous by examining R0. To
remedy this, we modify this instruction into “ANDEQ R0, R0,
R1.” In this way, the data background used to test is only one-
bit away from the specified one. We explore this method to
select the rest of the test patterns. We also use extra test patterns
to improve the final fault coverage. As the result, we choose
seven pairs of instructions for our data backgrounds which are
listed in TABLE I.

TABLE I. MARCH DATA BACKGROUND TRANSLATION

Minimal

pattern set
Chosen DB (instruction)

Minimal pattern set

(complementary)
Chosen DB (instruction)

00000000
00000001

ANDEQ R0,R0,R1
FFFFFFFF

EA7FFFFF

B 0x1FFFFFC

01FFFE00
01DEEE00

BICSEQ R14,R14,R0,LSL #28
FE0001FF

E71000EE

LDR R0,[R0,-R14,ROR #1]

03FC03FC
03DC03FC

BICSEQ R0,R12,#0xF0000003
FC03FC03

E703EC03

STR R14,[R3,-R3,LSL #24]

E1E1E1E1
E1D1E1E1

BICS R14,R1,R1,ROR #3
1E1E1E1E

151E1E1E

LDRNE R1,[R14,-#0xE1E]

66666666
66466666

STRBVS R6,[R6],-R6,ROR #12
99999999

91999989

ORRSLS R9,R9,R9,LSL #19

55555555
55555555

LDRBPL R5,[R5,-#0x555]
AAAAAAAA

AAAAAAAA

BGE 0xFEAAAAA8

EA7FFFFF

B 0x1FFFFFC

E7EEEFEE

STRB R14,[R14,R14,ROR #31]

B. Experimental results

We compare our results with S. D. Carlo [2] for the data
array of the I-cache. In [2], they use a two-way set-associative
I-cache with 32 sets and eight-word per cache line. We change
the banking model into eight-bank model which is the same as
our setting for the comparison. We perform the perfect March
C- algorithm using their proposed patterns and use the RAMSES
[7] to evaluate the fault coverage. TABLE II shows the results
of the fault coverage. Our proposed method has performed much
better on intra-word testing, AF, CFst, CFid. We also observe
that using the test patterns selected for testing intra-word faults
has performed well for the rest of the fault types. Even with the
DB selection principles which limit the freedom in selecting a
test pattern, we show that testing an I-cache using our proposed
SBST is a viable approach for high quality testing.

TABLE II. DATA ARRAY FAULT COVERAGE LIST

[2], 8KB Our proposed, 8KB
Fault count Coverage Coverage

SAF 131,072 100% 100%
TF 131,072 100% 100%

AF (inter-word) 534,773,760 100% 100%
AF (intra-word) 2,031,616 51.41% 100%

AF (total) 536,805,376 98.53% 100%
CFst (inter-word) 2,139,095,040 100% 100%
CFst (intra-word) 8,126,464 50% 97.83%

CFst (total) 2,147,221,504 98.48% 99.99%
CFin (inter-word) 1,069,547,520 100% 100%
CFin (intra-word) 4,063,232 100% 100%

CFin (total) 1,073,610,752 100% 100%
CFid (inter-word) 2,139,095,040 100% 100%
CFid (intra-word) 8,126,464 50% 97.05%

CFid (total) 2,147,221,504 98.48% 99.98%

TABLE III shows the breakdown of instruction distribution
for our SBST program. We observe that around 50% of the
instruction count is used to ensure unambiguous testing results.

TABLE III. SBST INSTRUCTION DISTRIBUTION

Instruction count Percentage
Initial segment 71,532 1.51 %

sequence control segment 1,355,200 28.60 %
test pattern segment 2,288,647 48.34 %

result verification segment 1,019,552 21.53 %
Total 4,734,931 100.00 %

V. CONCLUSION

This paper has addressed the problems of testing an
instruction cache using SBST. We point out that a testing result
can be ambiguous if only interpreting the resultant value of the
test program in register or memory. We propose five principles
of test pattern selection to prevent ambiguous results from
occurring. To keep March sequence in the specified order, we
leverage the common cache operations, i.e., disable cache, and
the pipeline architecture to properly place the test patterns.
Finally, we provide a case study using a pipeline processor and
show that high quality I-cache SBST can be achieved for all
kinds of memory fault types.

REFERENCES
[1] Y.-C. Lin, Y.-Y. Tsai, K.-J. Lee, C.-W. Yen, and C.-H. Chen, “A

Software-Based Test Methodology for Direct-Mapped Data Cache,” Asia
Test Symp. ATS’08, pp. 363-368, 2008.

[2] S. D. Carlo, P. Prinetto, and A. Savino, “Software-Based Self-Test of Set-
Associative Cache Memories,” IEEE Trans. on Computer, vol. 60, no. 7,
pp. 418-423, 2011.

[3] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos, “Software-
Based Self Test Methodology for On-Line Testing of L1 Caches in
Multithreaded Multicore Architectures,” IEEE Trans. on Very Large
Scale Integration systems, vol. 21, no. 4, pp. 786-790, 2013.

[4] A.J. van de Goor, I.B.S. Tlili, and S. Hamdioui, “Converting March Tests
for Bit-Oriented Memories into Tests for Word-Oriented Memories,” in
Proc. Of Int. Workshop on Memory Technology Design and Testing, pp.
46-52, 1998.

[5] T. V. Kalyan and M. Mutyam, “Word-Interleaved Cache: An Energy
Efficient Data Cache Architecture,” in AMC/IEEE Int. Symp. on Low
Power Electronics and Design, ISLPED’08, pp. 265-270, 2008.

[6] Y. K. Cho, S. T. Jhang, and C. S. Jhon, “Selective Word Reading for High
Performance and Low Power Processor,” in Proc. Of the 2011 ACM
Symp. on Research in Applied Computation, RACS’11, pp. 25-30, 2011.

[7] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault
simulator,” in Int. Symp. On Defect and Fault Tolerance in VLSI
Systemsm pp. 165-173, 1999.

1759

