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Abstract—We propose an unambiguous instruction cache 

software-based self-testing methodology that can generate a 
reliable result to precisely determine the test passed or not. We 
present testing cases that cause ambiguous cache testing results 
and propose five principles of test pattern selection to prevent 
these situations from occurring. To preserve the order of March 
sequence in testing an I-cache, we leverage cache bank and cache 
disable operations. In this way, we are able to implement any 
March algorithm without violating the sequence order. Finally, we 
present a case study for ARM v5 ISA processor that has an 8KB 
instruction cache. We use the March C- algorithm and achieve 
100% of inter-word coverage and more than 97% of intra-word 
coverage evaluated by the RAMSES simulator.  
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I.  INTRODUCTION  

Software-based self-testing (SBST) for processor systems is 
an attractive testing solution due to its non-intrusiveness and 
flexibility. In SBST, the testing result is usually interpreted from 
the execution result of the testing program. March algorithms are 
widely used for memory cell built-in self-testing (BIST) and 
SBST [1]-[3]. A typical March algorithm consists of special 
sequences of March elements that are memory operations 
applied to the memory cells by specific addressing orders. 
However, an I-cache cannot be tested by SBST easily because 
the I-cache is usually regarded as a read-only device from the 
viewpoint of the program execution. The first issue to resolve is 
how to give the testing patterns which at the same time are also 
valid instructions. This is a common problem for testing I-cache 
in SBST since it is not always possible to find the instruction 
encoding that satisfies a test pattern and an instruction at the 
same time. Despite that test patterns can be made available from 
instructions, simply determining testing result bases on the 
outcome of instruction execution might not be reliable enough. 
As an example, if instruction “AND R0, R0, R0” is selected as 
a test pattern which is read into the I-cache, the program 
examines the result of R0 to see if this instruction memory has 
passed the test or not. Assume that the faulty bits have changed 
the instruction to an “OR R0, R0, R0” instruction. Examining 
R0 in this case, we cannot tell if the fault has occurred or not. 
We define the testing result of this nature as ambiguous. In this 
paper, we present a method to prevent these ambiguous 
situations and obtain reliable testing result.  

Another aspect in testing I-cache is how to minimize the 
impact of program execution on the order of the March sequence 
since the deviated March sequence in memory testing may result 
in the lower fault coverage. In testing an I-cache line by line, it 

is required to ensure that the last word of a target cache line 
should be also tested. Nevertheless, when a pipelined processor 
is executing the last instruction from a cache line, the next cache 
line will be fetched into the cache. The addressing order of the 
March sequence is broken at the same time. To prevent this from 
occurring, we leverage a common cache operation, cache disable 
that changes the next instruction is fetched from a non-cacheable 
memory reference.  In this way, we are able to maintain the order 
of the required March sequence and obtain the expected fault 
coverage.  

Testing cache using SBST has been proposed by lots of 
researches. S. D. Carlo [2]  has tried to overcome the difficulties 
of the set-associative cache testing. They deal with the problems 
for data cache memory successfully; however, there is no 
detailed discussion on testing the intra-word faults of the I-cache. 
The other work, G. Theondorou [3], has proposed the direct 
cache access instructions (DCA instruction) that can read and 
write the data array of the I-cache. Unfortunately, not every ISA 
has the DCA instructions that can fully support cache testing. In 
this paper, we present an unambiguous I-cache SBST 
methodology without DCA instructions, and we discuss three 
ambiguous testing models and propose five principles of test 
pattern selection to prevent these ambiguous situations from 
occurring.  

The rest of this paper is organized as follows. Section II 
describes the implementation of the March algorithm. Section 
III presents our proposed unambiguous principles. Section IV 
provides a case study and the experimental result. Finally, we 
make a conclusion for this paper. 

II. TRANSLATE MARCH ALGORITHM INTO SBST PROGRAM 

A March test is a sequence of March elements composed of 
pre-defined read or write accesses to the tested memory cells by 
the special addressing order. The values of March read or write 
are called data backgrounds (DBs) or their complementary data 
backgrounds (DBs ) [4]. After one March element has been 
applied to a memory cell, the element should then be applied to 
the next one according to the specified addressing order which 
can be ascending (⇑), descending (⇓), or either (⇕). Fig. 1 shows 
that the word-oriented March C- algorithm which contains six 
March elements with the write/read order specified from left to 
right. The least number of the required data backgrounds, 
including the complementary, to test the intra-word faults of an 
L-bit memory cells (word) is defined as follows: 

logଶڿ) * 2}  Eq. (1) --- {(1 +	ۀܮ
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Fig. 1. Word-oriented March C- algorithm 

A. March data backgrounds 

Our SBST concentrates on the data array of the I-cache. 
Before we introduce how to find March elements that are also 
valid instructions, we will illustrate the data array banking model 
with Fig. 2. The cache banking is a common technique to reduce 
the access time and dynamic power [5], [6]. Fig. 2(a) shows a 
single bank data array which consists of eight instructions, and 
Fig. 2(b) shows an eight-bank data array with interleaved 
instruction storage. Different banking models will impact the 
length and the content of one data background. 

Single Bank
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Data arrayTag array

Tag

 
(a) Single bank cache model 
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(b) Eight banks cache model 

Fig. 2. Cache banking models 

For the single bank model, the length of the March data 
background is the line size, i.e., 256 bits, and at least nine pairs 
of March data backgrounds is required to test the intra-line faults 
according to Eq. (1). This implies that there are eight instructions 
per March data background. For March data backgrounds and 
the complementary, we need to find more than 144 valid 
instructions. This number makes the translation difficult if not 
impossible. To resolve this difficulty, we choose the 
implementation of the eight-bank data array. For this cache 
banking model, the data background is 32 bits, the same length 
of an instruction. According to Eq. (1), if all the data 
backgrounds can be regarded as valid instructions, we only need 
to find twelve valid instructions. 

B. SBST program establishment 

We have introduced a feasible method to reduce the number 
of March data backgrounds. In this section, we present the 
translation between the March algorithm and the SBST program. 
The crucial requirements for our SBST program development 
are: (1) having a non-cacheable memory region, and (2) having 
a privilege instruction which can disable cache access even the 
memory region is cacheable. These two features can be found in 
modern microprocessors. 

We divide the testing program into four segments: an initial 
segment, a sequence control segment, a test pattern segment, and 
a result verification segment. As illustrated in Fig. 3, these four 
segments have different memory attributes: cacheable or non-
cacheable, which is defined by the program allocation model of 
our SBST.  The memory management unit decides which region 
can be cached or not by these attributes. Fig. 3 also shows our 

SBST program execution flow. The sequence control segment 
determines which line of the test patterns to be fetched into the 
I-cache. The sequence of fetching the test patterns must conform 
to the addressing order of the specified March operations. The 
sequence control segment for a direct-mapped cache is 
straightforward by using the linear index when addressing a 
cache line. For an N-way set-associated cache, it is required to 
have additional operations to modify the replacement policy 
state in order to obtain the specified addressing order [2]. 
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Fig. 3. Program segments for I-Cache SBST 

The key segment transition is how to jump to the result 
verification segment from the test pattern segment without 
bringing in unnecessary instructions into the I-cache. We notice 
that the pipeline architecture will fetch instructions until the 
jump instruction is actually executed. This may violate the order 
of the March sequence since the instructions following the jump 
are written into another cache line. 

For example, a classical five-stage pipeline processor 
finishes the jump operation at the decode stage, and there is a 
redundant instruction fetched in the fetch stage. This redundant 
instruction might violate the read/write order of the March 
sequence and degrade the fault coverage. Considering the 
characteristic of the pipeline and the cache banking model, we 
employ the disable cache instruction to accomplish the segment 
jump operation without violating the specified March sequence. 

Due to the pipeline architecture, there are several 
instructions fetched from the I-cache before the disable cache 
instruction is executed. We name these instructions as the 
“follower.” The number of follower, IF is depended on the 
processor architecture, i.e., the pipeline depth. 

As Fig. 4(a) shows, assuming we test the cache lines in the 
first bank, and the first bank is also the entry point from the 
sequence control segment. To conform to the specified March 
sequence, the first requirement is that 

IF < (IL – IBR -1) --- Eq. (2) 

where IL is the number of instructions per line, IBR is the number 
of instructions per row in a bank. In this example, testing the 
second bank uses the similar test pattern layout as in Fig. 4(a). 

Fig. 4(b) shows the test pattern layout in a cache line when 
testing the last bank. For this situation, we must use the follower 
instructions to serve as the data background. Notice that the 
disable cache instruction is allocated at the left neighboring bank 
of the target bank. After the follower instructions are executed 
by the processor, the jump instruction to be executed is fetched 
from the main memory since the cache is disabled. Nevertheless, 

 ⇕(wDB); ⇑(rDB, wDB); ⇑(rDB, wDB); ⇓(rDB, wDB); ⇓(rDB, wDB); ⇕ (rDB) 
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at the time of cache line filling, the jump instruction for testing 
last row is also brought into the cache along with the rest of the 
cache line.  To test the last bank, the requirement is given as 
follows: 

IBR <= IF --- Eq. (3) 

To test the entire cache line, the above two requirements must 
be met at the same time: 

IBR <= IF < (IL – IBR -1) --- Eq. (4) 

Testing bank 3 and bank 4 in this example uses the similar test 
pattern layout. 
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Fig. 4. The test pattern layout 

III. UNAMBIGUOUS INSTRUCTION CACHE TESTING 

We have described how to generate a March sequence 
conformed SBST program. As mentioned previously, an SBST 
testing result may be ambiguous if only interpreting the register 
value and memory content for test verification. In this section, 
we elaborate the causes of the ambiguity and propose the 
principles of test pattern selection to eliminate them. 

A. Ambiguous factors 

In SBST, any instruction that has the same encoding as a data 
background can be chosen as a candidate test pattern. There are 
various reasons for the occurrences of ambiguity, and we 
classify them into three categories: 

Factor 1: Many instructions may produce the same result. 

For example, an ADD instruction, assuming it is a data 
background, can be changed into a SUB instruction due to the 
faulty cache. Simply interpreting the destination register value 
cannot determine whether the test is passed or not. This situation 
often occurs on data-processing type of instructions, especially 
bit-operation instructions. 

Factor 2: Many memory words may have the same values. 

For example, the contents of R1 and R3 point to an 
individual memory word respectively, but these two memory 
words have the same values. In the register-indirect addressing 
mode, “Load R0, [R1]” produces the same result as the “Load 
R0, [R3]”.  When either instruction is the data background, 
interpreting the result of R0 cannot tell which instruction is 
executed. 

Factor 3: Repeated instructions may conceal the faults 

The repeated instructions may generate ambiguous results 
even if they can produce unambiguous results individually. In 

the eight-bank model, a carefully-chosen “Load R0, [R1]” could 
test each bank row alone without producing the ambiguity. 
Nevertheless, in the four-bank model, this instruction must be 
repeated twice for each bank row. In this case, we cannot 
discover the faulty bits of the first word in the bank row since 
this error is concealed by the second run. 

B. Principles to eliminate the ambiguity 

We have introduced three reasons that cause the ambiguity 
in testing result. We propose five principles in test pattern 
selection. These principles serve as the base guidelines that are 
applicable to the ISA of modern processors. 

(1) Choose a unique value for the source register. 

A unique value of the source register can imply a non-
reproducible result, especially for data-processing type 
instructions. Before applying this instruction for testing, the test 
program should reset the rest of registers to zero so that there is 
no room for ambiguity to occur. 

(2) Prohibit the instructions that have undefined bits. 

Some instructions have the undefined bits because of the 
encoding. Those bits are usually ignored at the decoder stage, so 
the failures of these bits could not be propagated by the normal 
functions of the processor. Therefore, the instructions that have 
undefined bits should be prohibited to be the test patterns. 

(3) Clear the target memory and program status register 
before testing. 

A clean target memory and status register can reflect the test 
result of the chosen test pattern. This principle is suitable for 
every type of instructions especially for load/store instructions. 
These clean operations can be finished at the sequence control 
segment shown in Fig. 3. 

(4) Employ the encoding of an undefined instruction as the 
destination register value of a load instruction or the 
result to be stored for a store instruction. 

To prevent Factor 2 from occurring, to use uncommon 
values for load/store instructions is a good method. The 
undefined instructions cannot be generated by the tool chain, so 
they can be exclusive in the memory. 

 (5) Select either post-indexed or pre-indexed addressing 
instructions. 

To distinguish testing results of multiple instructions in a 
bank row, using an addressing instruction that has auto-
increment mode can tell the difference of each testing result in a 
bank row. 

We apply the above five principles in test pattern selection 
for testing the I-cache of the ARMv5 ISA processor. 

IV. CASE STUDY: ARM V5 PIPELINE PROCESSOR 

In this section, we demonstrate the unambiguous SBST test 
program development on the direct-mapped I-cache of an ARM 
v5 ISA pipelined processor. We concentrate on the data array 
testing of the I-cache that is physically implemented as eight 
32x256 SRAM banks, and the method for testing the tag array 
of the I-cache can refer to the work in [1]. 
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A. Experimental environment 

We have implemented an ARM-compatible processor and 
its direct-mapped I-cache by Verilog. For our experiment, we 
simulate the processor running the testing program and log the 
read/write signals of the I-cache, and then we apply these signals 
as the input patterns to the RAMSES simulator [7] to perform 
the RAM fault simulation. We implement the March C- 
algorithm that can effectively detect all SAF, TF, AF, CFst, CFin, 
and CFid faults. TABLE I shows the relationship between the 
March data backgrounds and our testing instructions selected 
based on the above five principles. 

According to Eq. (1), the minimal number of test patterns is 
12 for our design. We are only able to find one pair of the test 
patterns that directly match with two valid instructions. For the 
rest of test patterns, we select the instructions that have the best 
match, i.e., minimum Hamming distance. 

A data background that matches a valid instruction might not 
be used as a test pattern due to its ambiguity in test result.  For 
example, the March data background “0x00000000” can be 
mapped directly into an ARM instruction “ANDEQ R0, R0, R0.” 
In this case, the test result is ambiguous by examining R0. To 
remedy this, we modify this instruction into “ANDEQ R0, R0, 
R1.” In this way, the data background used to test is only one-
bit away from the specified one.  We explore this method to 
select the rest of the test patterns. We also use extra test patterns 
to improve the final fault coverage. As the result, we choose 
seven pairs of instructions for our data backgrounds which are 
listed in TABLE I. 

TABLE I.  MARCH DATA BACKGROUND TRANSLATION 

Minimal 

pattern set 
Chosen DB (instruction) 

Minimal pattern set 

(complementary) 
Chosen DB (instruction) 

00000000 
00000001 

ANDEQ R0,R0,R1 
FFFFFFFF 

EA7FFFFF 

B 0x1FFFFFC 

01FFFE00 
01DEEE00 

BICSEQ R14,R14,R0,LSL #28 
FE0001FF 

E71000EE 

LDR R0,[R0,-R14,ROR #1] 

03FC03FC 
03DC03FC 

BICSEQ R0,R12,#0xF0000003 
FC03FC03 

E703EC03 

STR R14,[R3,-R3,LSL #24] 

E1E1E1E1 
E1D1E1E1 

BICS R14,R1,R1,ROR #3 
1E1E1E1E 

151E1E1E 

LDRNE R1,[R14,-#0xE1E] 

66666666 
66466666 

STRBVS R6,[R6],-R6,ROR #12 
99999999 

91999989 

ORRSLS R9,R9,R9,LSL #19 

55555555 
55555555 

LDRBPL R5,[R5,-#0x555] 
AAAAAAAA 

AAAAAAAA 

BGE 0xFEAAAAA8 

 
EA7FFFFF 

B 0x1FFFFFC 
 

E7EEEFEE 

STRB R14,[R14,R14,ROR #31] 

B. Experimental results 

We compare our results with S. D. Carlo [2] for the data 
array of the I-cache.  In [2], they use a two-way set-associative 
I-cache with 32 sets and eight-word per cache line. We change 
the banking model into eight-bank model which is the same as 
our setting for the comparison. We perform the perfect March 
C- algorithm using their proposed patterns and use the RAMSES 
[7] to evaluate the fault coverage. TABLE II shows the results 
of the fault coverage. Our proposed method has performed much 
better on intra-word testing, AF, CFst, CFid. We also observe 
that using the test patterns selected for testing intra-word faults 
has performed well for the rest of the fault types. Even with the 
DB selection principles which limit the freedom in selecting a 
test pattern, we show that testing an I-cache using our proposed 
SBST is a viable approach for high quality testing. 

TABLE II.  DATA ARRAY FAULT COVERAGE LIST 

[2], 8KB Our proposed, 8KB
Fault count Coverage Coverage

SAF 131,072 100% 100%
TF 131,072 100% 100%

AF (inter-word) 534,773,760 100% 100%
AF (intra-word) 2,031,616 51.41% 100%

AF (total) 536,805,376 98.53% 100%
CFst (inter-word) 2,139,095,040 100% 100%
CFst (intra-word) 8,126,464 50% 97.83%

CFst (total) 2,147,221,504 98.48% 99.99%
CFin (inter-word) 1,069,547,520 100% 100%
CFin (intra-word) 4,063,232 100% 100%

CFin (total) 1,073,610,752 100% 100%
CFid (inter-word) 2,139,095,040 100% 100%
CFid (intra-word) 8,126,464 50% 97.05%

CFid (total) 2,147,221,504 98.48% 99.98%

TABLE III shows the breakdown of instruction distribution 
for our SBST program. We observe that around 50% of the 
instruction count is used to ensure unambiguous testing results. 

TABLE III.  SBST INSTRUCTION DISTRIBUTION 

Instruction count Percentage
Initial segment 71,532 1.51 %

sequence control segment 1,355,200 28.60 %
test pattern segment 2,288,647 48.34 %

result verification segment 1,019,552 21.53 %
Total 4,734,931 100.00 %

V. CONCLUSION 

This paper has addressed the problems of testing an 
instruction cache using SBST. We point out that a testing result 
can be ambiguous if only interpreting the resultant value of the 
test program in register or memory. We propose five principles 
of test pattern selection to prevent ambiguous results from 
occurring. To keep March sequence in the specified order, we 
leverage the common cache operations, i.e., disable cache, and 
the pipeline architecture to properly place the test patterns. 
Finally, we provide a case study using a pipeline processor and 
show that high quality I-cache SBST can be achieved for all 
kinds of memory fault types. 
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