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Abstract 

Texture cache plays a significant position in GPU design 

especially in a limited memory bandwidth environment such as 

mobile SoC system. In this paper, we evaluate the 6D blocking 

texture cache design through a sophisticated GPU simulator 

using DRAM memory model. Our experiment reveals that 

using a larger block can take advantage of the spatial locality of 

texel accesses, however, fetching a larger block which requires 

several burst runs in DRAM access, results in poor memory 

access efficiency. As a result, the block size used has to match 

with the DRAM burst length for the best memory access 

efficiency. 

 
Keywords-component; DRAM model, Texture cache, GPU 

architecture. 

I. Introduction 

Mobile graphic processor unit (GPU) is the most bandwidth 

demander in a hand-held device, especially for those using 

shared memory approach. The major memory access demand 

in GPU comes from the texture operations, and as a result, all 

GPU architectures have used some form of texture caches.  

    Due to the texture image characteristics, Igehy has proposed 

to use 6D blocking texture data to dramatically increase cache 

efficiency[1]. The main idea, shown in Fig.1, is to re-address 

the texture data, which in the past is linearly placed in the 

memory like Fig.2(b), into a 3-level and 2-dimension 

organization and convert the texture coordinate to perfectly fit 

the general cache hierarchy as tag, entry (index), and block. 

This method not only exploits texture spatial locality, but also 

takes the advantage of DRAM burst access because of the 

ordered sequence of texels in the blocks as depicted in Fig.2(c).  

In this paper, we evaluate a 6D blocking texture cache design 

for modern shader based GPU with detailed DRAM model. 

II. Simulation environment 

In Hakura’s research[2], Igehy chose 16 texels (4x4 texels) 

per block which worked quite well and used lesser bandwidth 

than the other configurations. However, the result in Igehy’s 

work has not been based on contemporary DRAM models. 

Also they use the fixed-function OpenGL test cases unlike 

modern graphic programming model that bases on the OpenGL 

Shading language.  To render the issues we address above, we 

develop our own simulation environment which includes a full 

OpenGL ES 2.0 API implementation and a soft-pipe GPU 

simulator. To cope with the concept of 6D blocking data 

organization, we leverage the triangle traversal strategy in Intel 

larrabee[3] that will test a triangle in 16x16-pixel supertiles. 

Once a supertile is covered by the triangle, the traversal scheme 

will subdivide the supertile into four quarter tiles recursively 

until the 2x2 tile size is reached, and then put these four pixels 

on the GPU’s shader. The GPU simulator has a unified shader 

which allows 4 threads to be synchronously executed under 

single instruction multiple thread (SIMT) scenario. The unified 

shader is also accompanied by a texture unit with the 6D texture 

cache which can be flexibly configured. 

A.Memory model 

To precisely model DRAM timing, we create a DDR DRAM 

simulator based on the following core DRAM parameters, 

dram clock(CLK), column latency (CL), row to column delay 

(tRCD), and row precharge time (tRP). The timing scheme is 

described as below: 
1. Initial access: time = tRP + tRCD + CL 

2. All following accesses: 

if this access’s desired row  differs from previous. 

    time += tRP + tRCD + CL 

else 

if this access is a continuous burst access 

time += CLK/2 (Because of double data rate, DDR)  

else 

time += CL 

To model a GPU in a  mobile SoC chip in which the GPU has 

no dedicated local memory, we pick low power DDR(LPDDR2) 

DRAM from Micron instead of graphic DDR(GDDR) DRAM 

as our target simulated DRAM even though GDDR has larger 
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Fig. 2 (a) texture data sequence (b) traditional linear fashion and (c) 

6D blocked fashion in memory. 
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Fig.1 Texture data in 6D blocking organization and how texel address 

is represented in general cache from the texel coordinate (s,t). 



memory width and longer burst length. The Micron LPDDR2 

DRAM parameters can be found in Table I. 

 

III. Benchmarks 

In this paper, three benchmarks are used. They are teapot,  

StoneFloor, and FourShapes. Each benchmark’s characteristic 

can be found in Table II. The teapot is a simple object but is 

popular in 3D graphic tutorial with single texture mapping. The 

StoneFloor achieves the normal mapping effect by utilizing two 

texture maps as the color map and the normal vector map res- 

pectively. The FourShapes demonstrates the parallax occlusion 

mapping[4] effect by using only two triangles to accomplish 

lots of image details just like constructed by hundreds or 

thousands triangles.  

To analyze the result, all textures are stored in 32 bits per 

texel even though the last 8 bits are redundant in some textures. 

Besides, All screen resolution in benchmarks is set in 

1024x768 with 2X anisotropic filter enabled.   

 

IV. Performance Analysis 

In order to evaluate the relationship between cache 

organization and memory utilization, we configure the different 

combination of the cache block-size in 2x2, 4x4, and 8x8, and 

cache size in 4, 16, and 64KB. Because at most two texture 

images are used in our benchmarks, the cache is 4-way set 

association. The maximum burst length in our DRAM model is 

16 words. This is obviously harmful to fetching of an 8x8 cache 

block size because once a cache miss has occurred, the cache 

needs four burst read accesses to retrieve the data. In contrast, 

both 2x2 and 4x4 block-size cache can mostly get data in a 

single burst read access.  

Fig. 3 shows the simulation result under various cache block 

sizes, total cache size, and different benchmarks. Both teapot 

and StoneFloor show very similar trend. This is because the 

way they use texture mapping is completely the same except the 

number of texture images used.  

For these two benchmarks, 4x4 block size works quite well in 

all cache sizes. The 8x8 block size has even better performance 

in 16KB and 64KB. The range of miss penalty can be simply 

calculated, which is listed in Table III. Considering the miss 

penalty in Table III, an 8x8 block size needs to decrease the 

cache miss by about 223% in average compared to 4x4 case to 

have the same total memory latency. This is the reason why the 

8x8 block size in 4KB cache size has higher total memory 

access time due to the insufficient cache miss drop which, 

however, can be improved by using the DRAM to have longer 

burst length for the 8x8 configuration in Table III and Fig.3. 

Let’s look at the FourShapes. The miss rate is about 2% for any 

block-size under 4KB cache size. Having an average of 288 

texel fetches per pixel means that each pixel encounters at least 

one conflict miss before the next neighbored pixel goes. This 

destroys the cache spatial locality and leads very poor cache 

efficiency. Consequently, a large texture cache is required. 

 

V. Conclusion 

In this paper, we have developed an OpenGL ES 2.0 GPU 

simulator which includes a realistic DRAM model and we 

evaluated the design of 6D blocking texture cache. Our 

experiment shows that using a larger block can take the 

advantage of spatial locality, however, fetching a larger block 

which requires several burst runs in DRAM access, results in 

poor memory access efficiency. We have observed that the 

block size used has to match with the DRAM burst length for 

the best memory access efficiency. 
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TABLE I 

Parameters of Micron LPDDR2 800Mhz DRAM. This table hides 

write latency because all texture operations are read only. 

CLK CL(read) tRCD tRP width burst length 

2.5ns 15 ns 18 ns 18 ns 32 bits 1, 2, 4, 16 

Teapot StoneFloor FourShapes 

   

   

 
Fig.3 The total memory access time and cache miss rate in different 

cache parameter and benchmarks. Note: the Y-axis in both FourShape 

diagrams are drawn in log scale. 

TABLE II 

Benchmark scenes and their characteristic 
Benchmark Teapot 

 

StoneFloor 

 

FourShapes 

 
Texture 

image      

Triangles  6400 2 2 

Texels / pixel 6.48 10.72 288.15 

TABLE III 

Cache miss penalty. Note: 8x8i means 8x8 cache block size but with 

ideal 64 burst length supported in the DRAM model. 

block-size min (ns) max (ns) avg (ns) 

2x2 18.75 104.5 61.625 

4x4 33.75 119.5 76.625 

8x8 135 207 171 

8x8i  93.75 

 

179.5 

 

136.625 

 


