

Re-visit Blocking Texture Cache Design for Modern GPU

Jhe-Yu Liou Chung-Ho Chen

Department of Electrical Engineering, National Cheng Kung University

No.1, University Road

 Tainan, Taiwan

elvis@casmail.ee.ncku.edu.tw

chchen@mail.ncku.edu.tw

Abstract

Texture cache plays a significant position in GPU design

especially in a limited memory bandwidth environment such as

mobile SoC system. In this paper, we evaluate the 6D blocking

texture cache design through a sophisticated GPU simulator

using DRAM memory model. Our experiment reveals that

using a larger block can take advantage of the spatial locality of

texel accesses, however, fetching a larger block which requires

several burst runs in DRAM access, results in poor memory

access efficiency. As a result, the block size used has to match

with the DRAM burst length for the best memory access

efficiency.

Keywords-component; DRAM model, Texture cache, GPU

architecture.

I. Introduction

Mobile graphic processor unit (GPU) is the most bandwidth

demander in a hand-held device, especially for those using

shared memory approach. The major memory access demand

in GPU comes from the texture operations, and as a result, all

GPU architectures have used some form of texture caches.

 Due to the texture image characteristics, Igehy has proposed

to use 6D blocking texture data to dramatically increase cache

efficiency[1]. The main idea, shown in Fig.1, is to re-address

the texture data, which in the past is linearly placed in the

memory like Fig.2(b), into a 3-level and 2-dimension

organization and convert the texture coordinate to perfectly fit

the general cache hierarchy as tag, entry (index), and block.

This method not only exploits texture spatial locality, but also

takes the advantage of DRAM burst access because of the

ordered sequence of texels in the blocks as depicted in Fig.2(c).

In this paper, we evaluate a 6D blocking texture cache design

for modern shader based GPU with detailed DRAM model.

II. Simulation environment

In Hakura’s research[2], Igehy chose 16 texels (4x4 texels)

per block which worked quite well and used lesser bandwidth

than the other configurations. However, the result in Igehy’s

work has not been based on contemporary DRAM models.

Also they use the fixed-function OpenGL test cases unlike

modern graphic programming model that bases on the OpenGL

Shading language. To render the issues we address above, we

develop our own simulation environment which includes a full

OpenGL ES 2.0 API implementation and a soft-pipe GPU

simulator. To cope with the concept of 6D blocking data

organization, we leverage the triangle traversal strategy in Intel

larrabee[3] that will test a triangle in 16x16-pixel supertiles.

Once a supertile is covered by the triangle, the traversal scheme

will subdivide the supertile into four quarter tiles recursively

until the 2x2 tile size is reached, and then put these four pixels

on the GPU’s shader. The GPU simulator has a unified shader

which allows 4 threads to be synchronously executed under

single instruction multiple thread (SIMT) scenario. The unified

shader is also accompanied by a texture unit with the 6D texture

cache which can be flexibly configured.

A.Memory model

To precisely model DRAM timing, we create a DDR DRAM

simulator based on the following core DRAM parameters,

dram clock(CLK), column latency (CL), row to column delay

(tRCD), and row precharge time (tRP). The timing scheme is

described as below:
1. Initial access: time = tRP + tRCD + CL

2. All following accesses:

if this access’s desired row differs from previous.

 time += tRP + tRCD + CL

else

if this access is a continuous burst access

time += CLK/2 (Because of double data rate, DDR)

else

time += CL

To model a GPU in a mobile SoC chip in which the GPU has

no dedicated local memory, we pick low power DDR(LPDDR2)

DRAM from Micron instead of graphic DDR(GDDR) DRAM

as our target simulated DRAM even though GDDR has larger

C D

3

1

4

2
B

1 2 B 3 4

II

III IV

B CII II II II D

1 2

C IID

3 4 B C

II

II

II II II II

A

I

level 1

level 2

level 3

C D

II II

II II

II II II II

(a) (b) (c)

Fig. 2 (a) texture data sequence (b) traditional linear fashion and (c)

6D blocked fashion in memory.

Texture

ssuper

Cache-Sized

Superblock Block

tsuper

tblock

sblock soffset

toffset

tsuper tblock toffsetssuper sblock soffset

Texel coordinate (s,t)

tsuper tblock toffsetssuper sblock soffset

Texture base address

tag entry block

+

Fig.1 Texture data in 6D blocking organization and how texel address

is represented in general cache from the texel coordinate (s,t).

memory width and longer burst length. The Micron LPDDR2

DRAM parameters can be found in Table I.

III. Benchmarks

In this paper, three benchmarks are used. They are teapot,

StoneFloor, and FourShapes. Each benchmark’s characteristic

can be found in Table II. The teapot is a simple object but is

popular in 3D graphic tutorial with single texture mapping. The

StoneFloor achieves the normal mapping effect by utilizing two

texture maps as the color map and the normal vector map res-

pectively. The FourShapes demonstrates the parallax occlusion

mapping[4] effect by using only two triangles to accomplish

lots of image details just like constructed by hundreds or

thousands triangles.

To analyze the result, all textures are stored in 32 bits per

texel even though the last 8 bits are redundant in some textures.

Besides, All screen resolution in benchmarks is set in

1024x768 with 2X anisotropic filter enabled.

IV. Performance Analysis

In order to evaluate the relationship between cache

organization and memory utilization, we configure the different

combination of the cache block-size in 2x2, 4x4, and 8x8, and

cache size in 4, 16, and 64KB. Because at most two texture

images are used in our benchmarks, the cache is 4-way set

association. The maximum burst length in our DRAM model is

16 words. This is obviously harmful to fetching of an 8x8 cache

block size because once a cache miss has occurred, the cache

needs four burst read accesses to retrieve the data. In contrast,

both 2x2 and 4x4 block-size cache can mostly get data in a

single burst read access.

Fig. 3 shows the simulation result under various cache block

sizes, total cache size, and different benchmarks. Both teapot

and StoneFloor show very similar trend. This is because the

way they use texture mapping is completely the same except the

number of texture images used.

For these two benchmarks, 4x4 block size works quite well in

all cache sizes. The 8x8 block size has even better performance

in 16KB and 64KB. The range of miss penalty can be simply

calculated, which is listed in Table III. Considering the miss

penalty in Table III, an 8x8 block size needs to decrease the

cache miss by about 223% in average compared to 4x4 case to

have the same total memory latency. This is the reason why the

8x8 block size in 4KB cache size has higher total memory

access time due to the insufficient cache miss drop which,

however, can be improved by using the DRAM to have longer

burst length for the 8x8 configuration in Table III and Fig.3.

Let’s look at the FourShapes. The miss rate is about 2% for any

block-size under 4KB cache size. Having an average of 288

texel fetches per pixel means that each pixel encounters at least

one conflict miss before the next neighbored pixel goes. This

destroys the cache spatial locality and leads very poor cache

efficiency. Consequently, a large texture cache is required.

V. Conclusion

In this paper, we have developed an OpenGL ES 2.0 GPU

simulator which includes a realistic DRAM model and we

evaluated the design of 6D blocking texture cache. Our

experiment shows that using a larger block can take the

advantage of spatial locality, however, fetching a larger block

which requires several burst runs in DRAM access, results in

poor memory access efficiency. We have observed that the

block size used has to match with the DRAM burst length for

the best memory access efficiency.

Acknowledgement

This research is supported by the National Science Council

of Taiwan under grand NSC 102-3113-P-006 -018.

References
[1] H. Igehy, M. Eldridge, and K. Proudfoot. “Prefetching in a texture

cache architecture,” In Proc. ACM SIGGRAPH/

EUROGRAPHICS conference on Graphics Hardware, pp.

133-142, 1998

[2] Z. S. Hakura and A. Gupta. “The design and analysis of a cache

architecture for texture mapping,” In Proc. 24th annual inter-

national symposium on Computer architecture (ISCA '97),

pp108-120, 1997.

[3] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P.

Dubey, et al. “Larrabee: a many-core x86 architecture for visual

computing,” ACM Trans. Graphics (Proc. SIGGRAPH ‘08),

vol.27, no. 3, Aug. 2008.

[4] N. TATARCHUK. Dynamic parallax occlusion mapping with

approximate soft shadows. In: Proceedings of the 2006

symposium on Interactive 3D graphics and games. ACM, 2006. p.

63-69.

TABLE I

Parameters of Micron LPDDR2 800Mhz DRAM. This table hides

write latency because all texture operations are read only.

CLK CL(read) tRCD tRP width burst length

2.5ns 15 ns 18 ns 18 ns 32 bits 1, 2, 4, 16

Teapot StoneFloor FourShapes

Fig.3 The total memory access time and cache miss rate in different

cache parameter and benchmarks. Note: the Y-axis in both FourShape

diagrams are drawn in log scale.

TABLE II

Benchmark scenes and their characteristic
Benchmark Teapot

StoneFloor

FourShapes

Texture

image

Triangles 6400 2 2

Texels / pixel 6.48 10.72 288.15

TABLE III

Cache miss penalty. Note: 8x8i means 8x8 cache block size but with

ideal 64 burst length supported in the DRAM model.

block-size min (ns) max (ns) avg (ns)

2x2 18.75 104.5 61.625

4x4 33.75 119.5 76.625

8x8 135 207 171

8x8i 93.75

179.5

136.625

