IEICE TRANS. INE. & SYST., VOL.E96-D, NO.5 MAY 2013

1095

[PAPER

A System-Level Network Virtual Platform for IPsec Processor

Development

Chen-Chieh WANG ™, Student Member and Chung-Ho CHEN'™, Nonmember

SUMMARY Developing a complex network accelerator like an IPsec
processor is a great challenge. To this end, we propose a Network Virtual
Platform (NetVP) that consists of one or more virtual host (VHOST) mod-
ules and virtual local area network (vVLAN) modules to support electronic
system level (ESL) top-down design flow as well as provide the on-line
verification throughout the entire development process. The on-line veri-
fication capability of NetVP enables the designed target to communicate
with a real network for system validation. For ESL top-down design flow,
we also propose untimed and timed interfaces to support hardware/software
co-simulation. In addition, the NetVP can be used in conjunction with any
ESL development platform through the untimed/timed interface. System
development that uses this NetVP is efficient and flexible since it allows
the designer to explore design spaces such as the network bandwidth and
system architecture easily. The NetVP can also be applied to the develop-
ment of other kinds of network accelerators.

key words: ESL, IPsec, network simulator, on-line verification, virtual
platform

1. Introduction

Internet Protocol Security (IPsec)[1] is a protocol suite us-
ing Authentication Header (AH) and Encapsulation Secu-
rity Payload (ESP) protocols to provide confidentiality, au-
thentication and an optional anti-replay service for IP packet
transmission. Unlike other security protocols such as SSH,
SSL/TLS, and WPA, IPsec resides in the network layer to
provide universal and transparent operations. This means
that the applications need not to be specifically designed for
using IPsec. IPsec can be implemented in a host or a gate-
way system and can be operated in either the transport mode
or the tunnel mode, using various encryption and authenti-
cation algorithms [2]. In IPv6, IPsec is defined as one of the
mandatory functions. It is also widely used to set up Virtual
Private Networks (VPNSs).

Which one of the three types of IPsec to use depends
on where it is deployed. The first type is the integrated-
into-the-stack (IITS) in which IPsec is integrated into the TP
protocol stack. Implementation of this type usually resorts
to a software solution and requires access to the IP source
code. The second type is the bump-in-the-stack (BITS),
where IPsec is assigned to a separate architectural layer be-
tween the native IP and the data link layer. The advantage of
the BITS architecture is that IPsec can be retrofitted to any

Manuscript received June 22, 2012.
Manuscript revised December 22, 2012.
"The authors are with the Institute of Computer and Commu-
nication Engineering, National Cheng Kung University, Taiwan.
a) E-mail: ccwang@mail.ee.ncku.edu.tw
b) E-mail: chchen @mail.ncku.edu.tw
DOI: 10.1587/transinf. E96.D.1095

IP device without modifying the IP protocol stack. The third
type of IPsec deployment is the bump-in-the-wire (BITW)
method in which IPsec can be implemented somewhere out
of the host system. That is, it may be built in a stand-alone
hardware device like a security gateway and often it is IP ad-
dressable. In addition, there are many kinds of configuration
in IPsec such as protocols, operation modes, cryptographic
algorithms, keys, etc. Consequently, developing and verify-
ing an IPsec processor brings up a great challenge.

Figure 1 (a) shows a traditional IC design flow used to
develop and verify a network-related hardware like an IPsec
processor. In this case, a high-level functional model may be
built to verify the correctness of the algorithms in the system
as well as to provide an environment for software/hardware
co-design. Thereafter, a designer can utilize a hardware de-
scription language (HDL), such as Verilog or VHDL, to de-
sign the hardware modules and to integrate these modules
into a system-on-a-chip (SoC) platform. In HDL develop-
ment, a designer can verify a particular module with an off-
line approach which requires a golden model developed in
advance to generate the correct input and output data for
comparisons during HDL simulation. Such an approach is
adopted in [3] to verify the IPsec processor. Due to the limit
of slow HDL simulation, software design and verification
may be delayed until the hardware design has been com-
pleted and loaded into an FPGA board for on-line prototyp-
ing verification. However, using this approach to develop a
complex system may suffer from the poor correctness in the
early stage and as a result, a higher cost in the development
effort.

In order to shorten the development time, the IC design
methodology has evolved over time from the early register
transfer level (RTL) design, through the system-on-a-chip
(SoC) design, to the current electronic system level (ESL)
design[4]. The ESL design methodology, as shown in
Fig. 1 (b), aims at modeling the behavior of the entire system
using abstract modeling languages such as SystemC [5],
[6], and introduces new concepts such as Transaction Level
Modeling (TLM)[7] and Event Driven Modeling to pro-
vide a fast simulation environment in which software and
hardware can be designed and verified simultaneously. In
ESL design methodology, a designer can refine his or her
design with a top-down approach [8], as shown in Table 1,
from layer-3 untimed model, through approximately timed
model, to cycle-accurate timed model. Finally, a pin accu-
rate model written in HDL or synthesized SystemC can be
obtained.

Copyright © 2013 The Institute of Electronics, Information and Communication Engineers

1096

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.5 MAY 2013

High-level Functional Model
(C/C++)

High-level Functional Model
(C/C++)

High-level Functional Model

i (C/C++)
Software/Hardware Partitioning Software/Hardware Partitioning] X
- - g Software/Hardware Partitioning
pemmemmeee e aeeeeaaaay c pommmmmmee s N c
H @ H f S T
s E : : £ e
2 s Y A2 H 2 v
] £ Hardware - Hardware
Synthesized & Approximately S Approximately
5 Hardware IPs 2 Timed Model E Timed Model
i ﬂ.l
= Design (HDL) g_ Hardware Software § Hardware Software
E H] Cycle-accurate Design g Cycle-accurate Design
@ s Timed Model (c/C++) = Timed Model (c/C++)
= SoC 2 Synthesized = Synthesized
Integration b SystemC/HDL = SystemC/HDL
Design g Design
SoC Integration SoC Integration
& IEETY
) Full System Verification
- FPGA
8 Hardware - O,
2 Porting 2 FPGA FPGA i
;E, g Hardware Software
£ Software H Porting Porting
s Design & a ¢ ¢
< P e < * = Off-line Verification
] orting & Full System Verification
(=] w
< .
I = On-line Verification
™ Full System Verification

(a) RTL design + FPGA on-line verification

(b) ESL design + FPGA on-line verification

(c) ESLdesign + NetVP on-line verification

Fig.1 Comparison of different design and verification flows for network devices.

Table 1

Abstraction layers in ESL top-down design flow.

Abstraction layers

Abstraction removes

Protocol timing Interface

Layer-3: Message layer
Layer-2: Transaction layer
Layer-1: Transfer layer
Layer-0: RTL layer

Clock, protocols
Wires, registers

Resource sharing, time

Gates, gate/wire delays

None Function call
Approximate Function call
Cycle accurate Function call
Cycle accurate Signals

For hardware/software co-development, most commer-
cial ESL development tools, such as Platform Architect [9]
and SoC Designer [10], provide rich system modules such
as CPU, on-chip bus, and memory models that can help
users to build their SoC platform quickly and conveniently.
However, these development tools have no on-line verifica-
tion capability for network-related hardware design before
the design loaded into an FPGA board. In contrast, most
current network simulators, such as ns-3[11], NetSim [12],
OMNeT++ [13], and OPNET [14], provide a virtual net-
work environment in which users can model various kinds of
network topology and framework to evaluate their network
protocols and algorithms; to the best of our knowledge,
these network simulators do not provide the ESL develop-
ment environment for network-related hardware design. In
this paper, we propose a Network Virtual Platform (NetVP)
which is able not only to support ESL top-down design flow
for network-related hardware development but also to pro-
vide the on-line live system verification capability through-
out the entire development process, as shown in Fig. 1 (c).
The NetVP can connect the system under development to

an outside system via a physical network line and form
a network golden test bench to improve the efficiency of
verification.

This paper is organized as follows. Section 2 presents
the system architecture of the Network Virtual Platform
(NetVP) and illustrates its design and implementation is-
sues. Section 3 describes how to develop a complex IPsec
processor with the NetVP. Section 4 discusses the perfor-
mance evaluation of the NetVP. Finally, Sect. 5 concludes
this paper.

2. Network Virtual Platform (NetVP)

Figure 2 shows the system architecture of the Network
Virtual Platform (NetVP) that consists of two virtual host
(vHOST) modules and one virtual local area network
(VLAN) module. In addition, the NetVP can communi-
cate with the testbench module, i.e., the NetVP_Costar in-
stalled on another computer and form an on-line real sys-
tem verification framework. The vHOST provides a hard-
ware/software co-development environment for the system

WANG and CHEN: A SYSTEM-LEVEL NETWORK VIRTUAL PLATFORM FOR IPSEC PROCESSOR DEVELOPMENT

Computer 1

--- NetVP: Network Virtual Platform ----------ccocoeey,

VHOST : Virtual HOST System
Application Layer
(Network benchmark)
Network Processing Layer
(TCP/IP protocol stack)

vMAC

SystemC
Timed Model

VvMAC
vHOST
f i T
VLAN : Virtual Local Area Network
(raw socket connection, packet switch, and traffic analyzer)

4

{ Raw Socket APl i Socket API

Linux Kernel S Linux Kernel

Computer 2

NetVP_Costar
(Network benchmark

and setup script)

v
[TCP/IP Protocol Stack :] Protocol Stack

NIC NIC

=
v
'
4 Ethernet

Fig.2 System framework of the Network Virtual Platform (NetVP).

design of network-related hardware devices and employs an
Application (APP) layer and a Network Processing (NP)
layer to provide the function of network benchmark and
TCP/IP protocol stack, respectively. Using a semi-hosting
approach to design a vHOST system by ourselves instead of
employing a complex virtual machine, such as QEMU [15]
or Simics [16], can increase the simulation performance of
the entire system. In addition, to build a Linux user mode
TCP/IP protocol stack in the vHOST instead of using the
one in the Linux kernel is more convenient since it allows
us to modify the design or insert a new design into the sys-
tem easily and efficiently.

In order to support on-line full system verification, we
need a mechanism that allows a VHOST to communicate
with another end-system, either a vHOST or a physical com-
puter. Thus, we design a virtual LAN (vLAN) environment
in the NetVP to switch packets between different vHOSTS
as well as to connect its internal virtual network with an
outside real-world network through the Raw Socket API
of Linux kernel when needed. In addition, we develop a
NetVP_Costar module, as shown in the right hand side of
Fig. 2, which can establish network socket connections with
a vHOST by using the standard TCP/IP protocol stack in the
Linux kernel and build a golden network testbench for on-
line real system verification. Furthermore, we design both
the untimed model and timed model of the virtual MAC
(vMAC), which can help users to connect their vHOST with
the vLAN. In the rest of this section, the design issues of
each module are introduced in detail.

2.1 Virtual Network Environment (vLAN and vMAC)

The virtual LAN (VLAN) module provides two operation
modes: local mode and global mode. The local mode
directly switches the packets between vVHOSTSs while the
global mode allows a VHOST to communicate with another
physical computer. During the phase of IPsec develop-
ment and verification, the vVHOST module which provides
a hardware/software co-development environment may be
recompiled and restarted frequently. This means that the
connection between the VMAC and vLAN also needs to be

1097
VMAC YMAC “VMAC “VMAC
E (Timed Model) (Timed Model) (Un-timed Model) (Un-timed Model)
_g TxPHYif RxPHYif TxPHYif RxPHYif TxPHYif RxPHYif TxPHYif RxPHYif
(@])
4
i]
>
by
]
GE, @ IEo . Packet Buffer
S
kS Communication
S
© Channel
<
(%]
()
Local Layer
Q Forwarding
- Forwarding Table
[
E Local Switch Threads
)]
(70
% Global Switch Thread Global Layer
> Global | 1 :
Flag :l
Connection I
Control
(Inbound Interface) (-: Outbound Interface ‘g S::I‘(':t
L J

Fig.3 Block diagram of the virtual LAN (VLAN) module.

re-established frequently. In order to keep the designer from
restarting the vLLAN manually, the vLAN uses the client-
server architecture, as shown in Fig. 3, to support the hot-
plug feature. The vLAN module applies the shared memory
mechanism to create a communication channel that allows
a VLAN client, such as a vMAC, to communicate with the
vLAN server.

The vLAN server, as shown in the bottom half of Fig. 3,
consists of a Local layer and a Global layer. The Local layer
creates a virtual network environment to switch all packets
between each enabled port that is connected with a vMAC;
in the architecture view, it is similar to a network switch
device. The Local layer builds Local Switch_Threads to
forward packets based on the content of the forwarding ta-
ble which has recorded the MAC addresses associated with
each enabled port. If the vLAN global mode is enabled,
the Global layer creates a raw socket connection built in the
host Linux operating system to exchange the raw packets
with an outside real network. The broadcast packets and the
packets which do not find the destination in the Local layer
will be delivered to an outside real network through the out-
bound interface of the raw socket. In addition, the Global
layer builds a Global_Switch_Thread to forward the packets
received from the inbound interface of the raw socket.

Using the Raw Socket API of Linux kernel to connect
the vVLAN with a real network not only creates an on-line
real system verification environment but also provides a de-
bugging environment in which a user can employ a packet
analyzer, such as Wireshark [17], to trace the packet traffic
of the real network. In the vLAN local mode, however, a
third-party packet analyzer is not able to capture the pack-
ets in our vLAN directly. Thus, we also use the raw socket

1098

Tx Interrupt Rx Interrupt
< AHB

=

2
| AHB Master Iface | | AHB Slave Iface | | AHB Slave Iface | | AHB Master Iface |
vMAC A Dequeue
File File X Tas]
I ¥ Tas 4 [
Tx Buffer Control Control Rx Buffer
D ______ Unit Unit "__,D
o De:queue Enqueue £
Connection (- Engi‘ﬁé_) (Rx Engine) Tfmmg)
Control =4 w </ Configuration
L . | H
\ s, v
VLAN b ~—
Communication | @| TxPort | RxPort | h [0 Packet Buffer
Channel

Fig.4 Block diagram of the virtual MAC (VMAC) timed model.

of the Global layer to provide a debugging channel that is
represented by the dotted lines in Fig.3. This debugging
channel only uses the outbound interface of the raw socket
to deliver all of the packets in the vLAN to an outside real
network. The operation of packet switching in the vVLAN
uses a copy-by-reference technique to remove unnecessary
data copy. More specifically, it only exchanges the packet
pointers among the ports that are associated with vVMACs
and the actual data copy of entire packet will occur when a
packet arrives or leaves the VLAN.

In the VLAN server, the thread in charge of the con-
nection control continuously monitors the state of each port
in the communication channel, and it will build all the nec-
essary threads whenever any one of the ports is connected
with a vYMAC. Due to security reason, the operation of the
raw socket in the Linux system requires the privilege of the
root user. Since vVMAC and vLAN are designed to be client-
server architecture that exchanges data using shared mem-
ory mechanism, it is still possible for a non-root user to
employ the vVMAC to communicate with the vLAN server
which is turned on by the root user.

In order to support the top-down design concept of
ESL, we not only build an untimed model of vMAC but also
design a SystemC cycle accurate timed model of the vVMAC
including full simulation of queue, buffer, DMA, MMIO,
bus interface, and interrupt. Like a real-world network in-
terface card (NIC), the vMAC module can help users to con-
nect their vVHOST with the vLAN server through the vLAN
communication channel. Figure 4 shows the architecture of
the VMAC timed model. It is designed to be a full-duplex
communication system; the receiving and transmitting sub-
systems have their dedicated bus interface, packet buffer,
and processing units. The Ethernet PHY chip and the Media
Independent Interface (MII), which connect a MAC-block to
a PHY chip, are not modeled in our virtual platform in or-
der to speed up simulation; they are directly replaced by the
interface designed for the VLAN communication channel.

In the vVMAC timed model, the Connection_Control
thread employs a handshaking protocol to build the
vLAN communication channel in which the Tx_Engine

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.5 MAY 2013

and Rx_Engine threads can exchange packets between
vMAC and vLAN server. In the receiving subsystem, the
Rx_Engine moves the receiving packets into the Rx_Buffer
as well as generates the packet descriptors associated with
these packets and puts them into the Rx_Task_Queue. The
packets which are ready in the Rx_Buffer will be moved
to outside global buffer by the Rx_DMA_Engine through
the bus master interface. In addition, the VMAC provides
memory-mapping I/O (MMIO) and interrupt interfaces to
support both of the polling and interrupt communication
mechanisms for its software driver.

The transmitting subsystem is similar to the receiving
subsystem; the only difference is that the data moving is
in the opposite direction. Moreover, the designer can also
define the timing configuration of the vVMAC timed model
to support different bandwidth options, for example, 1 Gbps
or 10 Gbps; the Tx_Engine and Rx_Engine threads in vMAC
will use this timing configuration to generate the time delay
for the SystemC simulation kernel.

2.2 Virtual Host Environment (vHOST)

For on-line full system verification, we design a virtual
host environment (VHOST), as shown in the right hand side
of Fig.5. In order to allow the vHOST to communicate
with other end-systems, the VHOST employs an Applica-
tion (APP) layer and a Network Processing (NP) layer to
provide the function of network benchmark and TCP/IP pro-
tocol stack, respectively. Moreover, we design an untimed
and a timed (UT-T) interface that can connect the untimed
vHOST with other SystemC timed models, as shown in the
left hand side of Fig.5, to form a hardware/software co-
development environment where users can apply the ESL
top-down design flow to develop their target system.

In the NP layer of vHOST, we design a simple TCP/IP
protocol stack in Linux user mode, including TCP, UDP, IP,
ARP, and ICMP protocols, and also provide an NP Socket
API similar to the Socket API in Linux. The APP layer can
build socket connections with another end-system, either
a VHOST or a physical computer, through this NP Socket
API. The TCP/IP protocol stack in the vHOST is designed
with zero-copy architecture to remove unnecessary packet
data copy. In addition, many vMAC untimed modules can
be integrated in the NP layer to simulate the environment
containing multiple network interface cards (NICs). Also,
the IP aliasing function is provided to allow each NIC to be
mapped onto at most 255 virtual interfaces.

In the APP layer, we build an APP_Control_Thread to
manage user applications; it provides a user interface similar
to a shell in Linux that can allow users to start, abort, and ter-
minate their applications. In fact, all of the user applications
in APP layer will be forked from the APP_Control_Thread.
In order to establish the bidirectional testing connections be-
tween the VHOST and the NetVP_Costar for on-line real
system verification, we design Tx_Test_PktGenerator and
Rx_Test_PktChecker applications in the APP layer and their
counterparts in the NetVP_Costar module. For reception

WANG and CHEN: A SYSTEM-LEVEL NETWORK VIRTUAL PLATFORM FOR IPSEC PROCESSOR DEVELOPMENT

1099
_. SystemC Timed Module Design [Un-timed Module Design]
i Inter-Process Architecture (IPA) kY N
H AN
i | Inter-Process Communication 5
& H Y Tx Test Rx Test ..
SystemC Outer 5 (SharEd Memory) cl);'ll't?l'r PktGeneratnr]-[PktChecker]—] Appllcatlon
ystem! / '\
. uT-1 H \ (APP) Layer
Timed Model i :: Sy-n.c;t:r?zer Shared Data Interface N APP Control Thread
H —(NP Socket API ————
— ;
VMAC
(Timed Model) . R Tcp uDP
¥ systemC “' J) ' R Network
Y Timed Model Intra Synchronizer Intra Packet Processing
uT-1 UT-T Buffer P Buffer (NP) Layer
VMAC Interface Shared Data v
SystemC or (Timed Model) deel | \
. Inter-Thread
Third-party ESL \ Co ication J —(VMAC (Un-timed Model) <<)7
Development Tools .
P L Inter-Thread Architecture (ITA) VvHOST \)
' VLAN v

Fig.5

verification, the NetVP_Costar can generate the test pack-
ets which then are received and examined by the APP layer
of vHOST.

However, considering the vHOST with timed models,
the simulation speed of the whole NetVP is slowed down
due to the low speed SystemC/HDL simulation. As a result,
the gap between the speed of NetVP_Costar and the speed
of vHOST will lead to an overflow of the raw socket buffer
in VLAN module during on-line verification. To prevent this
from happening, we design static and dynamic flow control
mechanisms in our system. The static flow control mecha-
nism allows users to define the throughput of the packet gen-
erating in the NetVP_Costar. In contrast, the dynamic flow
control mechanism builds an extra side-band control chan-
nel between the NP layer of vHOST and the NetVP_Costar;
the NP layer reports the number of received packets via this
control channel, and the NetVP_Costar will dynamically ad-
just the speed of packet transmission accordingly. On the
other hand, for transmission verification, the test packets are
generated in the APP layer of vHOST, and are received and
verified at the NetVP_Costar. After the initialization of the
vHOST is completed, the APP layer waits for a READY
packet sent from the NetVP_Costar before starting sending
test packets, to ensure that the NetVP_Costar is well initial-
ized and ready for packet validation.

Both of the APP layer and NP layer designed in C/C++
language are untimed models; it can allow users to in-
sert a new untimed module into the system easily as well
as to provide an on-line verification environment for this
new untimed module. In order to support ESL top-down
design flow, we design two kinds of architecture, Inter-
Thread Architecture (ITA) and Inter-Process Architecture
(IPA), to connect the untimed VHOST with other SystemC
timed models to form a hardware/software co-development
environment, as shown in Fig.5. The gray block, rounded

C

Process) (Un-timed Module) | Timed Module IJ

Block diagram of the virtual host (vHOST) with the untimed/timed (UT-T) interface.

rectangle, and three-dimensional rectangle in Fig.5 repre-
sent the process, untimed module, and timed module in our
system, respectively.

In the Inter-Thread Architecture (ITA), the untimed
model and timed model are integrated into a single process
and simulated in different threads which can be synchro-
nized with the Inter-Thread Communication (ITC) meth-
ods, such as the POSIX thread synchronization methods in
Linux. Thus, we design a pair of Intra-UT-T (UnTimed-
Timed) interfaces to build a synchronization channel be-
tween the untimed model and the timed model. A designer
can develop his or her timed modules in the SystemC en-
vironment and employ the Intra-UT-T interface to commu-
nicate with other untimed threads. In contrast, the Inter-
Process Architecture (IPA) simulates the untimed model and
timed model in different processes and synchronizes them
with the Inter-Process Communication (IPC) methods, such
as the System V IPC in Linux. Thus, we also design a pair of
Outer-UT-T interfaces and apply the shared memory mech-
anism to build a synchronization channel between the un-
timed model and the timed model.

The ITA is a simple and efficient architecture to inte-
grate the untimed model and timed model together; how-
ever, if we want to employ a third-party ESL development
tool, which have rich system modules, to build a SoC plat-
form quickly and conveniently, the IPA is used to integrate
our VHOST with other tools. In other words, our NetVP can
be used in conjunction with any ESL development platform
conveniently.

3. IPsec Processor Development

Having discussed the architecture of Network Virtual Plat-
form (NetVP), we are now ready to move on the applica-
tion of NetVP. System development that uses the NetVP is

1100

GPsec Processor Design)

—

Computer 1

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.5 MAY 2013

Computer 2

NetVP_Costar

A

" NetVP

(VLAN, VHOST)

IPsec-tools l ¢

!

NetVP_Costar

Interface Aliases
Setup Script

J(

PING Test
Script

Tx Test
PktGenerator

J(

A

Rx Test
PktChecker
L

IPsec-tools

1

(socket AP L(_ Raw Socket API)]
g

A

Y

' Socket API

pu—

NETLINK_XFRM

f

TCP/IP l'.

Protocol Stack ,:
/

l IPsec]

A
l IPsec I TCP/IP Protocol Stack

Linux OS Kernel l

Linux OS Kernel

!

Ether

net

Fig.6

efficient and flexible since it allows the designer to explore
design spaces such as the network bandwidth and system
architecture. In this section, we present how to develop a
complex IPsec processor with the NetVP and in this paper,
we will focus on the verification of IPsec processor design
in the NetVP during different phases of the ESL top-down
design flow.

3.1 IPsec Golden Testbench

First of all, we need a golden testbench that can allow us to
verify the correctness of our IPsec design during later de-
velopment process. Since [Psec support has been a part of
the Linux kernel 2.6 itself, we can take the advantage of
this and use the native software-based IPsec in Linux kernel
as an IPsec golden model. This model is used in conjunc-
tion with the NetVP and NetVP_Costar modules to form a
golden testbench for on-line verification, as shown in Fig. 6.
Before developing an IPsec processor in the NetVP, we first
employ a pair of the NetVP_Costar modules to verify that
the native IPsec in Linux kernel is working well between
the two computers which have installed the Linux operating
system and connected with each other through the Ethernet
network directly. For complex IPsec configurations, us-
ing IPsec-tools [18] can help us to conveniently setup the
Security Policy Database (SPD) and Security Association
Database (SAD) through the NETLINK_XFRM interface in
Linux. It is possible to verify all of the IPsec configura-
tions between the two computers by using the IP aliasing
function in Linux to associate more than one IP address to a
network interface. Table 2 shows the IPsec configuration of
our network testbench in the NetVP_Costar. For simplicity,
only the combinations of AES-CBC and HMAC-SHAI1 al-
gorithms have been shown in this table. Designers can study
and trace the packet format of IPsec in this golden testbench
with a packet analyzer, such as Wireshark [17].

Since we can utilize the Packet InterNet Groper (PING)
command in Linux to generate and examine bidirectional
communication and we can manually set the packet size,

System framework of the IPsec golden testbench.

Table 2 IPsec configuration for network testbench.
IP Address IPsec Encr. Auth.
Protocol-Mode Algorithm Algorithm

192.168.0.10 Bypass - -
192.168.0.11 ESP - Transport ~ AES128-CBC -
192.168.0.12 ESP - Transport ~ AES192-CBC -
192.168.0.13 ESP - Transport ~ AES256-CBC -
192.168.0.14 ESP - Transport - HMAC-SHA1
192.168.0.15 ESP - Transport ~ AES128-CBC ~HMAC-SHA1
192.168.0.16 ESP - Transport ~ AES192-CBC HMAC-SHA1
192.168.0.17 ESP - Transport ~ AES256-CBC ~ HMAC-SHA1
192.168.0.18 AH - Transport - HMAC-SHA1
192.168.0.19 ESP - Tunnel AES128-CBC -
192.168.0.20 ESP - Tunnel AES192-CBC -
192.168.0.21 ESP - Tunnel AES256-CBC -
192.168.0.22 ESP - Tunnel - HMAC-SHALI
192.168.0.23 ESP - Tunnel AES128-CBC HMAC-SHAIL
192.168.0.24 ESP - Tunnel AES192-CBC HMAC-SHALI
192.168.0.25 ESP - Tunnel AES256-CBC HMAC-SHALI
192.168.0.26 AH - Tunnel - HMAC-SHALI

packet count, and source/destination IP address, the PING
command is used to test our IPsec design at the beginning
of verification. However, due to the limited packet send-
ing rate of the PING command, it is not suitable for per-
formance evaluation of the target IPsec processor. Thus,
we develop a pair of packet generator and packet checker
in both the NetVP_Costar and the APP layer of vHOST for
bidirectional throughput measurement. The NetVP_Costar
module provides all the requirements for the verification en-
vironment mentioned above, including the packet genera-
tor/checker as well as the script files for IP aliasing function,
IPsec-tools, and PING test.

3.2 IPsec Untimed Functional Model

After the golden testbench has been built, an IPsec func-
tional model can be realized and verified in the NetVP.
Thus, we use C/C++ language to design an untimed
functional model of the IPsec protocol suite, including
inbound/outbound packet processing, SPD/SAD database
querying, and cryptographic algorithm computations. Since

WANG and CHEN: A SYSTEM-LEVEL NETWORK VIRTUAL PLATFORM FOR IPSEC PROCESSOR DEVELOPMENT

Computer 1 IPsec Protocol Suite (un-timed model)
VvHOST
[Cryptographic] [SPD/SAD
APP Tx Test Rx Test ;
o Algorithms _J|__Database
(___NPsocketApl) i i
NP Socket API / [Tx Processing] [Rx Processing ’
Tcp

» o) |/
NP

Layer 1Psec Protocol Suite
{un-timed model)

VMAC

Computer 2
NetVP_Costar

=
R puac
IPsec-tools -

Socket API

| O] oo |

Linux OS Kernel

‘l

| VLAN |

PR —

{__Raw Socket AP)

TCP/IP Protocol Stack |

Linux OS Kernel

Ethernet

Fig.7 On-line verification environment for IPsec un-timed functional
model.

the TCP/IP protocol stack of the NP layer in vHOST oper-
ates in the Linux user mode, this IPsec functional model can
be easily integrated into the NP layer and connected to the
vLAN with the untimed vMAC module, as shown in Fig. 7,
without modifying and re-compiling the Linux kernel of the
host machine.

During the IPsec development, a designer may mod-
ify and re-compile the design modules in the vVHOST fre-
quently. In other words, the communication channel be-
tween the VHOST and the vLAN must be rebuilt every time
for on-line verification. Thanks to the client-server architec-
ture between the VMAC and vL AN, a designer can just focus
on the [Psec design while the vMAC can automatically build
a communication channel with VLAN by itself. Figure 7
also shows the on-line verification environment for IPsec
untimed functional model. Unlike traditional off-line verifi-
cation, the NetVP provides on-line verification capability by
setting up socket connection with the NetVP_Costar module
installed on another physical computer. Bidirectional socket
connection can be configured with different security poli-
cies and security associations in IPsec, so we can develop
and verify the inbound and outbound packet processing of
IPsec individually. A designer can say for sure that his or
her IPsec design is correct as long as it can communicate
with another computer with the native version of IPsec in a
Linux kernel.

3.3 IPsec Timed Model

After a working IPsec untimed functional model is obtained,
we evaluate the requirements of system performance and
make decision on software/hardware partitioning. The en-
cryption and authentication algorithms used in IPsec are
computationally intensive yet regular. Therefore, imple-
menting an ASIC-based cryptographic processing acceler-
ator like our previous work [19], as shown in Fig. 8, is an ef-
fective scheme to improve the performance of an IPsec pro-
cessor. The other part of IPsec, including protocol header
parsing as well as the SPD/SAD database querying and
management, is more appropriate to be realized in software.

1101

IPsec Processor

k2 2
External Memory
Interface (EMI)

Internal
Memory

Interrupt
Controller

Microprocessor H

i

Rx System Interconnection

b Rx Crypto. Core Rx [
(AES-CBC, HMAC-SHAL...) Back End

L | Cryptographic Processing Unit il

¥
¥

(CryptoPU)

Tx Tx Crypto. Core Tx
le>| Back End [N (AEs-CBC, HMAC-SHAL...) [§] Front End le>|

Ethernet MAC & PHY

:

| Tx Output Unit || Rx Input Unit |

Network Processor or Host (TCP/IP)

| Tx Input Unit || Rx Output Unit |

Tx System Interconnection

Internal
Memory

External Memory
Interface (EMI)

ﬁ ﬁ
Fig.8 System architecture of the IPsec processor with the cryptographic
processing unit (CryptoPU).

Interrupt
Controller

Microprocessor H

The NetVP aims at providing an SoC hardware/soft-
ware co-development environment in which a designer
can design his or her network-related device efficiently.
Through the Intra/Outer UT-T interfaces, designers can
move any cryptographic algorithms, hardware modules, as
well as whole IPsec processor from the functional model
to SystemC timed model. Following the ESL top-down
design flow, these hardware modules can be refined from
untimed model, through approximately timed model, to
cycle-accurate timed model. The communication between
these hardware modules can be designed with Transac-
tion Level Modeling (TLM) to speed up the simulation
time. According to different time accuracy requirements,
the software part of IPsec processor can be performed in an
Instruction-Set-Simulator (ISS) or cycle-accurate micropro-
cessor model. Finally, a pin accurate model written in Syn-
thesized SystemC or hardware description language (HDL)
is obtained.

SystemC is a set of C++ libraries to provide an event-
driven simulation kernel in C++ for hardware modeling.
In SystemC, designers can use event-trigger mechanism
and wait() function to arrange the timing of each hard-
ware module as well as use the sc_time data structure and
sc_time_stamp() method to manipulate the timing informa-
tion at run-time. Thus, designers can apply this approach
to evaluate the performance of each sub-module and the
performance of the whole IPsec processor in the NetVP
environment.

During the IPsec timed module development, we can
still use the NetVP in conjunction with the NetVP_Costar
to perform on-line verification. The NetVP can be con-
figured to support different types of IPsec processor, such
as bump-in-the-stack (BITS) or bump-in-the-wire (BITW).
Figure 9 (a) shows the on-line verification environment for
the BITS architecture of an IPsec processor. The IPsec
processor is simulated in timed model and through the NP
wrapper and VMAC wrapper to communicate with the NP

1102

layer in the VHOST. On the other hand, the IPsec proces-
sor can employ a VMAC timed model to communicate with
a real network through the vVLAN module. With SystemC-
HDL co-simulation, a designer can rewrite these timed mod-
ules in HDL and completely verify them with the NetVP
on-line. Figure 9 (b) shows the on-line verification environ-
ment for the BITW architecture of an [Psec processor. In the
case of BITW, two vLAN modules are deployed to switch
packets; one is configured in local mode to deliver packets
between the IPsec processor and the vHOST while the other
one is configured in global mode to deliver packets between
the IPsec processor and the real network environment.

We can use the NetVP to verify an [Psec processor de-
sign regardless of its type and timing accuracy as well as
employ the packet analyzer to trace the packet traffic for de-
bugging. Moreover, if we encounter any problems during
the timed model development, we can also deliver packets to
both the untimed model and timed model, and utilize the re-
sult of untimed model to debug the counterparts in the timed
model.

Computer 1

SystemC or Third-party vHOST

ESL Development Tools | . e e
1Psec Processor -Pkmeneramr -Pktchecker

Z Layer
{timed model)
NP Socket API
Software NP Wrapper |«

T
Input Unit

System Rx
cPU Out. Unit

CryptoPU
IntCtrl (SystemC / HDL)

SPD /SAD) 1nput Unit| Out. Unit
Database) ['/\aC (timed model)

RX T

Intra/Outer
UT-TInterface

| NP Layer

Computer 2

NetVP_Costar
l Native IPsec l

Linux Kernel
NIC NIC

Ethernet
(a) bump-in-the-stack (BITS)

| VLAN |

{(Raw Socket AP)

Linux Kernel TCP/IP Protocol Stack |

Computer 1

VHOST

Tx Test Rx Test
PktGenerator PktChecker
1Psec Processor

{timed model) NP Socket AP

Software | VMAC (timed model) ¢4 (Tcp] (UDP)

System Rx T

Out. Unit [Input Unit [IcmP
cmory

(SystemC / HDL)]
(remory) [-emc/ 2 e :
SPD /SAD) |1nput Unit| Out. Unit Layer IPsec {un-timed)
Database) ["iac (timed model) H

(. VMAC)

VLAN (local mode)

| VLAN (global mode) |

SystemC or Third-party
ESL Development Tools

Computer 2

NetVP_Costar

I Native IPsec I

Linux Kernel
NIC NIC
Ethernet

(N
{__Raw Socket API)

Linux Kernel | TCP/IP Protocol Stack |

(b) bump-in-the-wire (BITW)

Fig.9 On-line verification environment for two types of IPsec processor.
(a) bump-in-the-stack (BITS). (b) bump-in-the-wire (BITW).

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.5 MAY 2013

4. Performance Evaluation

The Network Virtual Platform (NetVP) provides an ESL
development environment for network-related hardware de-
sign; therefore, a designer can evaluate the performance of
their target design by observing the simulated time model
inside the virtual platform. In this section, we focus on
the simulation performance of the NetVP itself in different
IPsec development phases, as shown in Table 3. The simu-
lation performance of the NetVP is a combination of many
factors: the host system, the C++ compiler, the SystemC
simulator, and the model being simulated. The simulation
performance may not affect the correctness of the design
verification in the NetVP, but it determines the scale and
how many details of the target system and testbench can be
modeled in the NetVP within acceptable time.

4.1 Experimental Environment

The on-line verification environments for different IPsec de-
velopment phases, which have been discussed in Sect. 3,
also can be used to estimate the simulation performance of
the NetVP itself. The simulation host has an Intel Core
i7 920 quad-core 2.6 GHz CPU with 4 GB main memory,
and runs Linux of the kernel version 2.6. Two simulation
hosts are connected through a 1 Gbps Ethernet environment
to support on-line verification and evaluation. The packet
generator in the NetVP_Costar or in the APP layer of the
vHOST generates a number of UDP packets to estimate the
simulation performance of the entire virtual platform.

In phase 2, 3, and 4, the security association of the
IPsec is configured to use following features: the ESP
protocol in the transport mode, the AES128-CBC encryp-
tion algorithm, and the HMAC-SHA1 authentication algo-
rithm. In phase 3, the SystemC cycle-accurate model of the
CryptoPU is integrated into the NetVP with the Inter-Thread
Architecture (ITA). In phase 4, the IPsec processor mod-
eled in Platform Architect [9] is integrated into the NetVP
with the Inter-Process Architecture (IPA), and the CryptoPU

Table 3 IPsec top-down development phases in the NetVP.
Phases Description
Phase 1 Only the NetVP is simulated without any IPsec module.

Phase 2 An IPsec untimed functional model has been integrated
into the NetVP, as shown in Fig. 7.

After the software/hardware partitioning, a cryptographic
processing unit (CryptoPU), as shown in Fig. 8, has been
designed in SystemC cycle-accurate model. The other part
of IPsec is the same as the one in phase 2, untimed func-
tional model.

An IPsec processor with BITS architecture, as shown in
Fig. 9 (a), has been designed as a complete SoC platform.
The software part of IPsec processor has been ported into
this SoC platform and executed by a microprocessor; the
CryptoPU module has been rewritten in Verilog HDL. The
whole IPsec processor has been modeled in the Platform
Architect [9], an ESL development tool, with SystemC-
HDL co-simulation and embedded in the NetVP.

Phase 3

Phase 4

WANG and CHEN: A SYSTEM-LEVEL NETWORK VIRTUAL PLATFORM FOR IPSEC PROCESSOR DEVELOPMENT

1.E+07

3.8 Gbps
H Global - RX

W Global -TX
H Local - RX
M Local - TX

1.E+06

78.2 Mbps

1.E+05
36.2 Mbps

1.E+04
2.6 Mbps

1.E+03

Performance (Kbps)

1.E+02

14.1 Kbps
1.E+01

1.E+00

Phase 1 Phase 2 Phase 3 Phase 4

IPsec development phases

Fig.10 Simulation performance of the NetVP in different IPsec devel-
opment phases.

module is rewritten in Verilog HDL with about 207K
gates in 0.13 um CMOS technology for SystemC-HDL co-
simulation. The operation modes of the vLAN and amount
of bidirectional communication are estimated during each
development phase. More specifically, the VLAN global
mode is used to test the communication between the NetVP
and NetVP_Costar while the vVLAN local mode is used to
test the communication between two VHOST modules in the
NetVP. In the case of vVLAN local mode for phase 3 and 4,
one VHOST module is modeled with the IPsec timed model
while the other still remains in untimed model to speed up
the simulation.

The simulation performance is measured in the equiv-
alent bandwidth (bit-per-second), indicating the packet pro-
cessing capability of the entire virtual platform. It is calcu-
lated as follows:

>(Bi+ B,)x8

Py = AT ()
where AT is a period of time under steady state after enter-
ing simulation, B; is the IP/IPsec packet size in bytes for the
packets processed by the NetVP within the period, and B, is
the Ethernet overhead in bytes. The Ethernet overhead con-
sists of the preamble (7 B), the SFD (1 B), the header (14 B),
the trailer (4 B), and the interframe gap (12 B). In our simu-
lation, the AT is set to 600 seconds, and the IP/IPsec packet
size is set to the maximum packet size under the restriction
of the 1500-byte Ethernet MTU.

4.2 Experimental Results

Figure 10 shows the simulation results in different IPsec de-
velopment phases with respect to different operation modes
of the vVLAN. Obviously, the simulation performance de-
creases drastically as the model accuracy of the IPsec pro-
cessor increases. In phase 1, the performance of the vLAN
global mode is consistent with the bandwidth of real 1 Gbps
network interface. On the other hand, the performance of
the vVLAN local mode which is not limited by the real net-
work interface is up to 3.8 Gbps.

In phase 2, the IPsec untimed functional model has
been integrated into the NetVP. The decryption of the

1103

AES-CBC algorithm for inbound packets needs more com-
putation power than the encryption for outbound packets.
Therefore, the performance of Global-TX is higher than
Global-RX. In the case of the Local-TX and Local-RX, the
simulation host has to execute both of the encryption and
decryption of the AES-CBC algorithm for the two VHOST
modules respectively; therefore, the performance of Local-
TX and Local-RX is limited by the slower vHOST perform-
ing the decryption due to local loop-back. In phase 3 and 4,
the cryptographic algorithms used in IPsec have been real-
ized to a cycle-accurate unit, i.e. the CryptoPU, to improve
the performance of the IPsec processor. In the CryptoPU,
the processing of outbound packets needs more execution
cycles than inbound packets; therefore, the simulation per-
formance of TX is slightly lower than RX.

Before the HDL simulation in phase 4, the hardware
design of IPsec processor can be designed in SystemC ap-
proximately or cycle-accurate timed models in phase 3 to get
the better simulation performance during architecture explo-
ration. The simulation performance of the entire virtual plat-
form is limited by the SystemC and/or HDL simulation. For
SystemC simulation, utilizing various parallel simulation
techniques [20], [21] on symmetric multiprocessing (SMP)
machines can further improve the SystemC simulation per-
formance. For slow HDL simulation, the NetVP can be in-
tegrated with an FPGA board to create a hardware/software
co-verification environment [22] that uses faster FPGA em-
ulation to replace the HDL simulation.

5. Conclusion

We introduce a Network Virtual Platform (NetVP) for the
development and verification of IPsec processor. In the
NetVP, users not only can develop their products using
the ESL top-down design flow, but also verify their design
easily with the on-line real system verification mechanism.
Moreover, unlike traditional FPGA verification process, the
network bandwidth and architecture can be adjusted simply
by using the timed models of VMAC and vLAN. This vir-
tual platform is suitable for developing advanced ultra high
speed network system when the developers have no means
to possess or obtain the required high speed components
which are yet not available in the market.

In addition, the NetVP can also be applied to the de-
velopment of other kinds of network accelerators, such
as TCP/IP Offload Engine (TOE), Internet Small Com-
puter System Interface (iSCSI), Network Attached Stor-
age (NAS), network router, network switch, etc. If full-
system simulation is needed, the NetVP can be integrated
with a virtual machine, as shown in our previous work [23].
Moreover, the NetVP can be used in conjunction with any
third-party ESL development tool through the Outer-UT-T
interface.

Acknowledgments

This work was supported in part by the National Science

1104

Council, Taiwan, under Grant NSC 101-2220-E-006-002.

References

(1]

[2]

[3]

[4]

[3]
[6]
(71
[8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Kent and K. Seo, “Security architecture for the internet protocol,”
IETF RFC4301, Dec. 2005.

V. Manral, “Cryptographic algorithm implementation requirements
for Encapsulating Security Payload (ESP) and Authentication
Header (AH),” IETF RFC4835, April 2007.

M.-Y. Wang and C.-W. Wu, “A mesh-structured scalable IPsec pro-
cessor,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.18,
no.5, pp.725-731, May 2010.

B. Bailey, G. Martin, and A. Piziali, ESL design and verification:
A prescription for electronic system level methodology, Morgan
Kaufmann/Elsevier, 2007.

Open SystemC Initiative, “IEEE Std 1666-2011: SystemC language
reference manual,” IEEE Computer Society, Sept. 2011.

Accellera Systems Initiative, http://www.accellera.org/

L. Cai and D. Gajski, “Transaction level modeling: An overview,”
Proc. Int. Conf. on HW/SW Codesign and Syst. Synth., pp.19-24,
Oct. 2003.

A. Haverinen, M. Leclercq, N. Weyrich, and D. Wingard, “SystemC
based SoC communication modeling for the OCP protocol,” OCP-
IP, Oct. 2002.

Platform Architect, Synopsys Inc., http://www.synopsys.com/

SoC Designer, Carbon Design Systems Inc.,
http://www.carbondesignsystems.com/

T.R. Henderson, S. Roy, S. Floyd, and G.F. Riley, “ns-3 project
goals,” Proc. 2006 Workshop on ns-2: The IP Network Simulator,
p.13, Oct. 2006.

NetSim, Tetcos Inc., http://www.tetcos.com/

A. Varga, “The OMNeT++ discrete event simulation system,” Proc.
European Simul. Multiconf. (ESM), pp.319-324, June 2001.

X. Chang, “Network simulations with OPNET,” Proc. Winter Simul.
Conf., pp.307-314, Dec. 1999.

QEMU, open source procesor emulator, http://www.qemu.org/
Simics, Wind River Systems Inc,
http://www.windriver.com/products/simics/

Wireshark, open source packet analyzer, http://www.wireshark.org/
IPsec-Tools home page, http://ipsec-tools.sourceforge.net/

C.-C. Wang and C.-H. Chen, “An optimized cryptographic process-
ing unit for IPsec processors,” Int. Tech. Conf. on Circuits/Syst.,
Comput. and Commun., pp.8§99-902, June 2011.

P. Ezudheen, P. Chandran, J. Chandra, B.P. Simon, and D. Ravi,
“Parallelizing SystemC kernel for fast hardware simulation on SMP
machines,” Principles of Advan. and Distri. Simul., pp.80-87, June
20009.

D. Yun, S. Kim, and S. Ha, “A parallel simulation technique for
multicore embedded systems and its performance analysis,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.31, no.l,
pp-121-131, Jan. 2012.

Y. Nakamura, K. Hosokawa, 1. Kuroda, K. Yoshikawa, and T.
Yoshimura, “A fast hardware/software co-verification method for
system-on-a-chip by using a C/C++ simulator and FPGA emula-
tor with shared register communication,” Proc. Design Automation
Conf., pp.299-304, June 2004.

C.-C. Wang, R.-P. Wong, J.-W. Lin, and C.-H. Chen, “System-level
development and verification framework for high-performance sys-
tem accelerator,” IEEE Int. Symp. on VLSI Design, Automation and
Test, April 2009.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.5 MAY 2013

Chen-Chieh Wang received a B.S. degree in
electrical engineering with a minor in computer
science from the Feng-Chia University, Taiwan,
and an M.S. degree in computer and commu-

-~ nication engineering from the National Cheng-
B F Kung University, Taiwan, in 2003 and 2005, re-
";] spectively. He is currently pursuing the Ph.D.

M degree in the Institute of Computer and Com-
a ‘ munication Engineering, National Cheng-Kung
A University, Taiwan. His research interests in-
clude advanced computer architecture, network
security, SoC integration, and ESL design.

Chung-Ho Chen received the M.S.E.E. de-
gree in electrical engineering from the Univer-
sity of Missouri-Rolla, Rolla, in 1989 and the
Ph.D. degree in electrical engineering from the
University of Washington, Seattle, in 1993. In
1993, he was with the Department of Electronic
Engineering, National Yunlin University of Sci-
ence and Technology. In 1999, he joined the
Department of Electrical Engineering, National
Cheng-Kung University, Tainan City, Taiwan,
where he is currently a Professor. His research
areas include advanced computer architecture, graphics processing, and
high-speed ESL simulation systems. Prof. Chen was a recipient of the
2009 Outstanding Teaching Award from the National Cheng-Kung Univer-
sity. He was the Technical Program Chair of the 2002 VLSI Design/CAD
Symposium held in Taiwan. He was the IEEE circuits and systems society
Tainan chapter chair for the years of 2011-2012.

