
Using Condition Flag Prediction to Improve the

Performance of Out-of-Order Processors

Tzu-Hsuan Hsu, Ching-Wen Lin and Chung-Ho Chen

Dept. of Electrical Engineering and Inst. of Computer & Communication Engineering

National Cheng Kung University, Tainan, Taiwan

Abstract—If-conversion is a technique that reduces the

misprediction penalties caused by conditional branches.

However, executing If-converted code in out-of-order processors

creates a naming problem which hinders the rename throughput.

Predicting condition flag is an effective approach to resolve this

problem. In this paper, we propose a scheme to predict the

condition flag based on the ISA of ARM. By restoring two most

recent unique condition flag values for each instruction

dynamically in run time, and by using a condition flag selector

when a condition flag-updating instruction reaches the

renaming unit, we can predict the outcome of the condition flag-

updating instruction. We show that such an approach is able to

achieve the IPC performance increase of 6.62%.

I. INTRODUCTION

Branch prediction is used to remove the control
dependency and expose the ILP. However, with a deeper
pipelines, branch misprediction may result in severe
performance degradation. For reduce the miss penalty, if-
conversion [1] is used to eliminate conditional branches by
exploiting conditional execution to transform the control
dependence into data dependence. However, in Out-of-Order
processors, the use of conditional execution has a register
naming issue: there can be multiple register definitions on
single destination register at rename time. If there are multiple
updates of the same register of different conditions and if the
condition flags have not been resolved, then it is unknown
which physical register should be mapped on to the
architectural register. Figure 1 illustrates the problem.

Figure 1. Multiple register definitions

Figure 2. Insertion of select-µop

To deal with this problem, one approach could simply stall
the renaming unit until the condition flag is resolved, however
this would cause great performance degradation. Another
simple approach is to change the semantic of conditional
instruction to C-Style form such as: register mapping =
(condition) ? normal execution : previous register mapping.
This approach serializes the execution flow of conditional
instruction. It may become the limitation for out-of-order
processors to expose the ILP. Wang et.al [2] has proposed a
Register Alias Table (RAT) to help finding the multiple
register definitions at the rename time. If multiple definitions
are found in RAT, a “select-µop” is generated and inserted
into instruction stream dynamically. It is used to combine the
different execution flow of conditional execution into a single
one so that the new physical register for the select-µop
becomes a unique mapping for the register of multiple
definitions. Figure 2 shows the example of select-µop
insertion. However, the use of RAT complicates the rename
logic. In addition, this approach increases the register pressure,
because each select-µop is allocated a new physical register.
Furthermore, instructions with the false condition are not
cancelled in pipeline at the rename time. So they are still
consuming physical registers, issue window entries, and
functional units. In IA64 ISA, predicting predicate is an
effective approach [3-5] to solve multiple register definitions.
The predicate predictor uses the PC of a compare instruction
to predict the compare output. All predicates are known at the
rename stage. So when the predicate of an instruction is
predicted false, it can be removed from the pipeline before
renaming. This approach not only resolves the multiple
register definitions but also avoids the resource pressure
caused by the removed instruction.

In this paper, we propose a condition flag prediction
scheme based on the ISA of the popular ARM processors. The
similarity between predicate prediction and condition flag
prediction is that we predict the condition flag-updating
instruction output. Once the conditional instruction reaches the
rename stage, it always can be checked to determine if the
condition is true or false.

The rest of the paper is organized as follows. Section II
describes our proposed approach. Section III presents the
experimental results. Finally, we conclude the paper in Section
IV.

II. CONDITION FLAG PREDICTION

For the consideration of hardware resource saving,
predicting the predicates is a good solution for multiple
register definitions based on IA64. In this section, we will
describe how to predict the condition flag based on ARM ISA
where each instruction can be conditional executed if intended.

A. Flag value locality

In ISA of ARM [9], the N, Z, C, and V bits are combined
as the condition flag. The condition flag can be tested by
conditional instructions to determine whether the instruction
is to be executed or not. In our approach, the condition flag is
considered as a 4-bit value. That is, the result of prediction is
one of the 2

4
 values. To capture the behavior of condition

flag-updating instruction, we want to know that the amount of
past history needs to be considered in making condition flag
predictions. We recorded the condition flag value of each
condition flag-updating instruction, and measured how many
unique condition flag values are produced by each static
condition flag-updating instruction in average. Table I shows
the result. These values are for the MiBench [10] benchmark
suite. From the table we can see that the number of unique
flag values is lower than two in average. That is, for a large
number of condition flag-updating instructions, the unique
flag value updated by these instructions is two or fewer
values. It would be worthwhile to exploit this behavior. If we
store a maximum of two most recent unique flag value for
each condition flag-updating instruction, and do a binary
encoding of these two outcomes, we can use a condition flag
selector to making a prediction.

TABLE I. AVERAGE NUMBER OF UNIQUE CONDITION FLAG

B. Condition Flag Selector

 The control flow of a program is predicted by branch

prediction before if-conversion is performed while the

condition execution instruction is transformed from if-

conversion and the value of a condition flag also determines

the control flow. Therefore, we incorporate the branch

prediction concept [11] into the condition flag selector.

C. Condition Flag Predictor

The condition flag predictor is mainly divided into two

parts: Condition Flag Value Table (CFVT) and condition flag

selector. Figure 3 shows the block diagram of a condition flag

predictor. The CFVT has three fields : Tag, Flag Values, and

Last used. The Flag Value field stores up to two most recent

unique values of the condition code. These two values are

associated with the binary encoding {0, 1}. When the

condition flag-updating instructions keep producing one of

these two values dynamically in run time, the flag value can

be predicted by selecting one of the two outcomes from {0,

1}, and determine whether the following instruction is to be

executed or not. When a third unique flag value is produced,

it replaces the least recently used flag value from the flag

values field. The Last Used field keeps recording which flag

value was used.

Figure 3. Block diagram of a condition flag predictor

For the condition flag selector, the mapping from branch
prediction is as follows. Given the PC of a condition flag-
updating instruction, the prediction is produced. The taken
and not taken predicted by the branch predictor is mapped to
the binary encoding {0, 1} of Flag Value field from CFVT.

 The condition flag predictor works as follows. When
making the prediction for an instruction, the corresponding
CFVT entry is accessed, and its Tag field is tested to
determine if the CFVT entry is a hit. If so, the condition flag
selector generates either true or false result, then the flag
value corresponding to that binary encoding is selected as the
next prediction. If a miss occurs in the CFVT, then no
prediction is made. In this case, when a following conditional
instruction reaches the rename stage, it is stalled until the
condition flag is resolved.

To reduce the penalty of miss prediction, we integrate a

confidence threshold with the condition flag predictor to

select which prediction is worthy to be used. Each entry of

the CFVT is extended with a Confidence Counter field. It is a

saturated counter that increases when a correct prediction

occurs and zeroes when a misprediction occurs. A prediction

is made if the counter value equals the confidence threshold.

III. PERFORMANCE EVALUATION

This section evaluates the performance of our condition
flag prediction approach with various architectural design
options.

A. Experimental Setup

All the experiments presented in this paper used a cycle-

accurate SystemC simulation model [12] that runs ARMv6

ISA binaries. The main architectural parameters are shown in

Table II. The baseline architecture is identical to this, except

that when the condition flag-updating instruction has not yet

committed and the following conditional instruction has

reached the rename unit, the execution is stalled until the

condition flag is resolved. To implement the condition flag

predictor we incorporate the gshare/local combined predictor

into condition flag selector.

We have simulated ten benchmark programs from

MiBench. All benchmarks have been compiled with GNU

ARM cross-compiler.

TABLE II. PROCESSOR ARCHCHITECTURE PARAMETER VALUE USED

B. Confidence Threshold

Figure 4 shows the performance of condition flag predictor
as the IPC speedups with threshold 0, 2, and 4 respectively.
All speedup results are normalized to the baseline processor.
Note that FFT with threshold 0, the speedup turns into a
slowdown of -7.22%. Figure 5 shows the miss prediction rate
of condition flag prediction. We can see that the miss
prediction rate of FFT is up to 37%. The high miss prediction
rate causes this performance penalty. For the FFT with
threshold 2, the miss prediction rate is cut downs to 17% and
the performance improves more than 9%. However, for the
rest of benchmark programs, the decrease of miss prediction
rate does not result in performance improvement. Figure 6
shows the distribution of no prediction, incorrect prediction

and correct prediction. We can see that the increase of
confidence threshold could result in losing opportunity for
correct predictions and decrease of confidence threshold could
result in great performance penalty because of miss prediction.
Moreover, with higher threshold, the increase of no prediction
has an impact on performance. This is because the conditional
instructions are stalled at the rename unit until the
corresponding condition flag is resolved. The wasted cycles
decreases the register rename throughput. Figure 7 shows how
the threshold increases that increase the number of stalled
cycles caused by waiting condition flag to be resolved.
Therefore, the confidence threshold does not affect equally in
each benchmark program. Comparing these results of
performance evaluation with difference confidence threshold,
the condition flag predictor is able to achieve the IPC
performance increase of 6.62% with threshold 2.

Figure 4. Performance impact of difference confidence threshold values

Figure 5. Miss prediction rate of condition flag predictor with difference
confidence threshold values

Figure 6. The distribution of no prediction, incorrect prediction and correct prediction

Figure 7. Percentage of stalled cycles caused by waiting condition flag is

resolved

C. The Condition Flag Predictor For Conditional

Branch

The condition flag determines the direction of conditional

branch and flag predictor predicts the flag value. It is

interesting to know whether branch predictor is actually

needed since the condition flag predictor determines the

direction of conditional branch indirectly. To examine this,

we remove the branch predictor from the processor. Figure 8

shows the result of performance. Comparing with Figure 4,

we can see that when the confidence threshold is 0 the

average performance improvement is only slightly different.

But for a processor without a branch predictor, when the

threshold value is increased, the performance keeps

decreasing constantly. This is because the waiting cycles

caused by the conditional branch stall the instruction

execution until the condition flag is resolved. This situation

does not happen in the processor with a branch predictor. The

branch predictor always determines the direction of a

conditional branch even when the condition flag predictor

makes no prediction or the condition flag is not resolved yet.

For area consideration, we can remove the branch predictor

and predict the condition flag with a lower threshold value. In

this way, about only one percent of IPC is lost compared with

the configuration that both predictors are used.

Figure 8. Performance impact of processor remove the branch predictor

IV. CONCLUSIONS

The execution of conditional instruction in out-of-order

processors creates a multiple register definitions problem.

Predicting condition flag is an effective approach to address

this problem. In this paper, we propose a new scheme to

predict the condition flag based on the ISA of ARM

processors. To design the condition flag predictor, we use the

concept of branch prediction to implement our flag selector

and we combine a threshold value to the basic condition flag

prediction mechanism. We have simulated benchmark

programs in several threshold values. We find that the

benchmark programs have different performance sensitivity

to threshold adjustment. On average, our approach is able to

achieve an IPC performance increase of 6.62%.

REFERENCES

[1] J. R. Allen, K. Kennedy, C. Porterfield, and Joe Warren, “Conversion
of Control Dependence to Data Dependence,” Proceedings of the 10th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages Page 177 – 189, 1983.

[2] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan, and J. P. Shen,
“Register Rename and Scheduling for Dynamic Execution of
Predicated Code,” High-Performance Computer Architecture(HPCA
7th), pp.15-25, Jan. 2001.

[3] W. Chuang and B. Calder, “Predicate Prediction for Efficient Out-of-
Order Execution,” Proceedings of the 17th annual international
conference on Supercomputing, 2003.

[4] E. Quinones, J-M. Parcerisa, and A. Gonzalez, “Selective Predicate
Prediction for Out-of-Order Processors,” Proceedings of the 20th
annual international conference on Supercomputing, 2006.

[5] E. Quinones, J-M. Parcerisa, and A. Gonzalez, “Improving Branch
Prediction and Prediction and Predicated Execution in Out-of-Order
Processors,” Proceedings of the IEEE 13th International Symposium on
High Performance Computer Architecture, 2007.

[6] K. W and M. Franklin, “Highly Accurate Data Value Prediction using
Hybrid Predictors,” in MICRO 30: Proceedings of the 30th annual
IEEE/ACM International Symposium on Microarchitecture, pages 281-
290, Washington, DC, USA, 1997.

[7] B. Calder, G. Reinman, and D. M. Tullsen, “Selective Value Prediction,”
in Proc. 26th Int. Symp. Comput. Arch, pp. 64-74, May 1999.

[8] Y. Sazeides and J. E. Smith, “The Predicability of Data Values,” in
MICRO 30: Proceedings of the 30th annual IEEE/ACM International
Symposium on Microarchitecture, pages 248-258, Washington, DC,
USA, 1997.

[9] ARM Corporation, “ARM Architecture Reference Manual.”

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” in Proc. IEEE 4th Annu. Workshop
Workload Characterization, pp. 3-14, Dec. 2001.

[11] S. McFarling, “Combining Branch Predictors,” Tech. Rep. Digital
WRL, Jun. 1993.

[12] J.-W. Lin, “Design, Analysis, and Implementation of a Parameter-
Based Out-of-Order Superscalar Microprocessor Conforming to ESL
Methodology,” Master Thesis, Dept. of Electrical Engineering,
National Cheng Kung University, Tainan, Taiwan, Jul. 2008.

