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Abstract—If-conversion is a technique that reduces the 

misprediction penalties caused by conditional branches. 

However, executing If-converted code in out-of-order processors 

creates a naming problem which hinders the rename throughput. 

Predicting condition flag is an effective approach to resolve this 

problem. In this paper, we propose a scheme to predict the 

condition flag based on the ISA of ARM. By restoring two most 

recent unique condition flag values for each instruction 

dynamically in run time, and by using a condition flag selector 

when a condition flag-updating instruction reaches the 

renaming unit, we can predict the outcome of the condition flag-

updating instruction. We show that such an approach is able to 

achieve the IPC performance increase of 6.62%. 

I. INTRODUCTION 

Branch prediction is used to remove the control 
dependency and expose the ILP. However, with a deeper 
pipelines, branch misprediction may result in severe 
performance degradation. For reduce the miss penalty, if-
conversion [1] is used to eliminate conditional branches by 
exploiting conditional execution to transform the control 
dependence into data dependence. However, in Out-of-Order 
processors, the use of conditional execution has a register 
naming issue: there can be multiple register definitions on 
single destination register at rename time. If there are multiple 
updates of the same register of different conditions and if the 
condition flags have not been resolved, then it is unknown 
which physical register should be mapped on to the 
architectural register. Figure 1 illustrates the problem.  

 

Figure 1.   Multiple register definitions 

 

Figure 2.   Insertion of select-µop 

To deal with this problem, one approach could simply stall 
the renaming unit until the condition flag is resolved, however 
this would cause great performance degradation. Another 
simple approach is to change the semantic of conditional 
instruction to C-Style form such as:  register mapping = 
(condition) ?  normal execution : previous register mapping.  
This approach serializes the execution flow of conditional 
instruction. It may become the limitation for out-of-order 
processors to expose the ILP. Wang et.al [2] has proposed a 
Register Alias Table (RAT) to help finding the multiple 
register definitions at the rename time. If multiple definitions 
are found in RAT, a “select-µop” is generated and inserted 
into instruction stream dynamically. It is used to combine the 
different execution flow of conditional execution into a single 
one so that the new physical register for the select-µop  
becomes a unique mapping for the register of multiple 
definitions. Figure 2 shows the example of select-µop 
insertion. However, the use of RAT complicates the rename 
logic. In addition, this approach increases the register pressure, 
because each select-µop is allocated a new physical register. 
Furthermore, instructions with the false condition are not 
cancelled in pipeline at the rename time. So they are still 
consuming physical registers, issue window entries, and 
functional units. In IA64 ISA, predicting predicate is an 
effective approach [3-5] to solve multiple register definitions. 
The predicate predictor uses the PC of a compare instruction 
to predict the compare output. All predicates are known at the 
rename stage. So when the predicate of an instruction is 
predicted false, it can be removed from the pipeline before 
renaming. This approach not only resolves the multiple 
register definitions but also avoids the resource pressure 
caused by the removed instruction.  

In this paper, we propose a condition flag prediction 
scheme based on the ISA of the popular ARM processors. The 
similarity between predicate prediction and condition flag 
prediction is that we predict the condition flag-updating 
instruction output. Once the conditional instruction reaches the 
rename stage, it always can be checked to determine if the 
condition is true or false.  

The rest of the paper is organized as follows. Section II 
describes our proposed approach. Section III presents the 
experimental results. Finally, we conclude the paper in Section 
IV. 



II. CONDITION FLAG PREDICTION 

For the consideration of hardware resource saving, 
predicting the predicates is a good solution for multiple 
register definitions based on IA64. In this section, we will 
describe how to predict the condition flag based on ARM ISA 
where each instruction can be conditional executed if intended. 

A. Flag value locality 

In ISA of ARM [9], the N, Z, C, and V bits are combined 
as the condition flag. The condition flag can be tested by 
conditional instructions to determine whether the instruction 
is to be executed or not. In our approach, the condition flag is 
considered as a 4-bit value. That is, the result of prediction is 
one of the 2

4
 values. To capture the behavior of condition 

flag-updating instruction, we want to know that the amount of 
past history needs to be considered in making condition flag 
predictions. We recorded the condition flag value of each 
condition flag-updating instruction, and measured how many 
unique condition flag values are produced by each static 
condition flag-updating instruction in average. Table I shows 
the result. These values are for the MiBench [10] benchmark 
suite. From the table we can see that the number of unique 
flag values is lower than two in average. That is, for a large 
number of condition flag-updating instructions, the unique 
flag value updated by these instructions is two or fewer 
values. It would be worthwhile to exploit this behavior. If we 
store a maximum of two most recent unique flag value for 
each condition flag-updating instruction, and do a binary 
encoding of these two outcomes, we can use a condition flag 
selector to making a prediction. 

TABLE I.  AVERAGE NUMBER OF UNIQUE CONDITION FLAG 

 

 

B. Condition Flag Selector 

 The control flow of a program is predicted by branch 

prediction before if-conversion is performed while the 

condition execution instruction is transformed from if-

conversion and the value of a condition flag also determines 

the control flow. Therefore, we incorporate the branch 

prediction concept [11] into the condition flag selector.  

C. Condition Flag Predictor 

The condition flag predictor is mainly divided into two 

parts: Condition Flag Value Table (CFVT) and condition flag 

selector. Figure 3 shows the block diagram of a condition flag 

predictor.  The CFVT has three fields : Tag, Flag Values, and 

Last used. The Flag Value field stores up to two most recent 

unique values of the condition code. These two values are 

associated with the binary encoding {0, 1}. When the 

condition flag-updating instructions keep producing one of 

these two values dynamically in run time, the flag value can 

be predicted by selecting one of the two outcomes from {0, 

1}, and determine whether the following instruction is to be 

executed or not. When a third unique flag value is produced, 

it replaces the least recently used flag value from the flag 

values field. The Last Used field keeps recording which flag 

value was used.  

 

 
Figure 3.   Block diagram of a condition flag predictor 

For the condition flag selector, the mapping from branch 
prediction is as follows. Given the PC of a condition flag-
updating instruction, the prediction is produced. The taken 
and not taken predicted by the branch predictor is mapped to 
the binary encoding {0, 1} of Flag Value field from CFVT. 

 The condition flag predictor works as follows. When 
making the prediction for an instruction, the corresponding 
CFVT entry is accessed, and its Tag field is tested to 
determine if the CFVT entry is a hit. If so, the condition flag 
selector generates either true or false result, then the flag 
value corresponding to that binary encoding is selected as the 
next prediction. If a miss occurs in the CFVT, then no 
prediction is made. In this case, when a following conditional 
instruction reaches the rename stage, it is stalled until the 
condition flag is resolved.  

To reduce the penalty of miss prediction, we integrate a 

confidence threshold with the condition flag predictor to 

select which prediction is worthy to be used.  Each entry of 

the CFVT is extended with a Confidence Counter field. It is a 

saturated counter that increases when a correct prediction 

occurs and zeroes when a misprediction occurs. A prediction 

is made if the counter value equals the confidence threshold. 

III. PERFORMANCE EVALUATION 

This section evaluates the performance of our condition 
flag prediction approach with various architectural design 
options.  

A. Experimental Setup 

All the experiments presented in this paper used a cycle-

accurate SystemC simulation model [12] that runs ARMv6 

ISA binaries. The main architectural parameters are shown in 



Table II. The baseline architecture is identical to this, except 

that when the condition flag-updating instruction has not yet 

committed and the following conditional instruction has 

reached the rename unit, the execution is stalled until the 

condition flag is resolved. To implement the condition flag 

predictor we incorporate the gshare/local combined predictor 

into condition flag selector. 

We have simulated ten benchmark programs from 

MiBench. All benchmarks have been compiled with GNU 

ARM cross-compiler.  

TABLE II.  PROCESSOR ARCHCHITECTURE PARAMETER VALUE USED 

 

B. Confidence Threshold 

Figure 4 shows the performance of condition flag predictor 
as the IPC speedups with threshold 0, 2, and 4 respectively. 
All speedup results are normalized to the baseline processor. 
Note that FFT with threshold 0, the speedup turns into a 
slowdown of -7.22%. Figure 5 shows the miss prediction rate 
of condition flag prediction. We can see that the miss 
prediction rate of FFT is up to 37%. The high miss prediction 
rate causes this performance penalty. For the FFT with 
threshold 2, the miss prediction rate is cut downs to 17% and 
the performance improves more than 9%. However, for the 
rest of benchmark programs, the decrease of miss prediction 
rate does not result in performance improvement. Figure 6 
shows the distribution of no prediction, incorrect prediction 

and correct prediction. We can see that the increase of 
confidence threshold could result in losing opportunity for 
correct predictions and decrease of confidence threshold could 
result in great performance penalty because of miss prediction. 
Moreover, with higher threshold, the increase of no prediction 
has an impact on performance. This is because the conditional 
instructions are stalled at the rename unit until the 
corresponding condition flag is resolved. The wasted cycles 
decreases the register rename throughput. Figure 7 shows how 
the threshold increases that increase the number of stalled 
cycles caused by waiting condition flag to be resolved. 
Therefore, the confidence threshold does not affect equally in 
each benchmark program. Comparing these results of 
performance evaluation with difference confidence threshold, 
the condition flag predictor is able to achieve the IPC 
performance increase of 6.62% with threshold 2. 

 

Figure 4.   Performance impact of difference confidence threshold values 

 

 

Figure 5.   Miss prediction rate of condition flag predictor with difference 
confidence threshold values

Figure 6.   The distribution of no prediction, incorrect prediction and correct prediction 



 

Figure 7.   Percentage of stalled cycles caused by waiting condition flag is 

resolved 

C. The Condition Flag Predictor For Conditional            

Branch 

The condition flag determines the direction of conditional 

branch and flag predictor predicts the flag value. It is 

interesting to know whether branch predictor is actually 

needed since the condition flag predictor determines the 

direction of conditional branch indirectly. To examine this, 

we remove the branch predictor from the processor. Figure 8 

shows the result of performance. Comparing with Figure 4, 

we can see that when the confidence threshold is 0 the 

average performance improvement is only slightly different. 

But for a processor without a branch predictor, when the 

threshold value is increased, the performance keeps 

decreasing constantly. This is because the waiting cycles 

caused by the conditional branch stall the instruction 

execution until the condition flag is resolved. This situation 

does not happen in the processor with a branch predictor. The 

branch predictor always determines the direction of a 

conditional branch even when the condition flag predictor 

makes no prediction or the condition flag is not resolved yet. 

For area consideration, we can remove the branch predictor 

and predict the condition flag with a lower threshold value. In 

this way, about only one percent of IPC is lost compared with 

the configuration that both predictors are used. 

 

Figure 8.  Performance impact of processor remove the branch predictor 

 

 

IV. CONCLUSIONS 

The execution of conditional instruction in out-of-order 

processors creates a multiple register definitions problem. 

Predicting condition flag is an effective approach to address 

this problem. In this paper, we propose a new scheme to 

predict the condition flag based on the ISA of ARM 

processors. To design the condition flag predictor, we use the 

concept of branch prediction to implement our flag selector 

and we combine a threshold value to the basic condition flag 

prediction mechanism. We have simulated benchmark 

programs in several threshold values. We find that the 

benchmark programs have different performance sensitivity 

to threshold adjustment. On average, our approach is able to 

achieve an IPC performance increase of 6.62%. 
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