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Abstract—In this paper, we present an ARM-based hardware-
assisted hypervisor, named CASL-Hypervisor, and a full system 
virtualization platform developed in SystemC which enables 
software/hardware co-simulation of virtual machine systems. 
CASL-Hypervisor takes advantage of an additional processor 
mode, extended memory management unit, configurable 
hardware traps and specialized hardware devices to virtualize 
unmodified Linux-based guest operating systems. By utilizing 
hardware extensions, development effort of CASL-Hypervisor 
can be greatly reduced and the hypervisor has achieved relatively 
low virtualization overhead. Evaluation is demonstrated on an 
approximately-timed manner so it is able to do fast 
software/hardware co-simulation and evaluations. We use 
the ARM-v7A instruction set simulator as the host processor.  
The hypervisor overhead can be quantified through 
instruction count ratio of guest operating system to the 
hypervisor. The results show that CASL-Hypervisor 
successfully virtualizes four guest operating systems with 
about 9.78% overhead.  

Keywords—instruction set simulator; full system simulation; 
full virtualization; hypervisor; 

I.  INTRODUCTION 

System virtualization has become an important technology 
in various applications. Most of the state-of-the-art processor 
architectures have been extended to support virtualization [1]. 
However, not all processor architectures are designed to be 
virtualizable and thus several special techniques such as binary 
translation and paravirtualization are used to implement virtual 
machine monitor on these processors [2][3][4].  

 

Figure 1.  Full system virtualization platform architecture 

 

In binary translation, sequences of source instructions are 
translated into the target instruction set and the source 
instruction set does not need to be the same as the target 
instruction set. The translation process can be achieved 
statically, dynamically, or in a combined fashion [2]. 
Paravirtualization is a virtualization technique [5] that the 
hypervisor presents a set of predefined virtual machine 
interfaces to the guest operating systems. The guest operating 
system has to use these interfaces to co-work with the 
hypervisor to perform the privileged work. Paravirtualization 
usually needs source-level modifications to the guest operating 
system, i.e., patching the existing operating systems. While the 
operating system must be ported to run in a virtual machine, 
most normal applications can run unmodified.  

In this paper, we implement an instruction set simulator 
based on ARM-v7A [7], supporting hardware virtualization 
extension, and the full system simulation platform as shown in 
Fig. 1. We also propose our hypervisor, CASL-Hypervisor, 
running on the simulation platform and use it to manager four 
unmodified guest Linux operating systems in a round-robin 
scheme. The most challenging part of the hypervisor design is 
to virtualize interrupts and I/O operations. With the help of 
extended interrupt controller, CASL-Hypervisor can maintain 
physical and virtual interrupts at the same time with succinct 
implementation. Moreover, the two-stage memory 
management unit greatly reduces the I/O virtualization 
overhead of guest operating systems. Besides, the round-robin 
scheduler of CASL-Hypervisor is idle-thread-sensitive which 
means that it can detect the state of guest kernel’s scheduler to 
do appropriate scheduling.  

The rest of this paper is organized as follows:  In Section II, 
we introduce our full system simulation platform and the 
hardware extension for virtualization. Section III discusses our 
hypervisor architecture. Section IV presents the evaluation 
results and we have brief conclusions in Section V.  

 

II. FULL SYSTEM VIRTUALIZATION PLATFORM 

ARCHITECTURE 

To develop and verify CASL-Hypervisor, we implemented 
a full system virtualization platform using SystemC library. As 
shown in Fig. 1, the full system virtualization platform consists 
of an instruction set simulator, a system controller, several 
timers and UARTs, all of which are necessary to successfully 
boot operating system and all modules are connected via a 
transaction level modeling bus.  
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A. ARMv7A Instruction Set Simulator 

An instruction set simulator (ISS) is a computer program 
which mimics the behavior of a target processor. The 
instruction set simulator implemented in this paper is based on 
ARMv7A architecture with virtualization extensions and its 
correctness has been verified by successfully booting a Linux 
kernel with an initial ram disk. Following are the ARMv7A 
virtualization extension functions implemented in our 
instruction set simulator.  

1) Privilege Levels and Processor Modes:  

The ARM architecture has three privilege levels (PL) from 
privilege level 0 to privilege level 2. The User mode is the least 
privilege mode while Supervisor mode, Abort mode, IRQ 
mode, FIQ mode, and Undefined mode have higher privilege 
level than the User mode. These modes exist in prior ARM 
architecture. The ARM virtualization extension introduces the 
HYP mode which has the highest privilege and is designed for 
the use of hypervisor. Operating system usually executes under 
Supervisor mode while applications run under User mode. 
When ARM processor gets into the privilege operations, such 
as WFI (wait for interrupt), the processor changes its mode to 
the HYP mode and executes the hypervisor code. 

2) Exceptions: 

There are eight exceptions defined in ARMv7A 
architecture as shown in Table I. The new exception type, HYP 
trap, has its own interrupt vector address. The operating system 
or the hypervisor must provide interrupt service routines in 
advance in order to resolve processor exceptions.  

TABLE I.  ARMV7A EXCEPTIONS 

Exception Type Mode High Vector 
Address 

Low Vector 
Address 

Undefined Undefined 0x00000004 0xFFFF0004
Software 
Interrupt Supervisor 0x00000008 0xFFFF0008

Prefetch Abort Abort 0x0000000C 0xFFFF000C
HYP Trap HYP 0x00000010 0xFFFF0010
Data Abort Abort 0x00000014 0xFFFF0014

IRQ IRQ 0x00000018 0xFFFF0018
FIQ FIQ 0x0000001C 0xFFFF001C

3) Hyperviosr Traps: 

For better efficiency on processor virtualization, the ARM 
processor with virtualization extensions supports trapping 
certain privileged operations into the HYP mode. For instance, 
coprocessor access and WFI instruction can be configured to 
be trapped to the HYP mode. The error code is saved to the 
HYP syndrome register (HSR) so that when a hardware trap is 
generated, the hypervisor can read and decode the error code 
inside the HSR to perform the corresponding operations. For 
the exceptions which are configured to be routed to the HYP 
mode, the return address is saved to the exception return 
register (ELR) and then hypervisor can use the exception return 
instruction (ERET)  for fast exception return.  

Same as a hypervisor trap, the corresponding error code is 
saved to the HSR when exceptions are routed to the HYP mode 
so that the hypervisor can read and decode the HSR to do the 
corresponding service. The error codes are listed in Table II. 

TABLE II.  ERROR CODES OF HSR 

Error Code Exception Class
0x01 Trapped WFI or WFE  instruction 
0x03 Trapped MCR or MRC access to CP15 
0x04 MCRR or MRRC access to CP15 
0x05 Trapped MCR or MRC access to CP14 
0x07 Trapped access to CP0-CP13 
0x08 Trapped access to CP0-CP13 
0x11 Supervisor call exception routed to HYP mode
0x12 Hypervisor call
0x20 Prefetch abort routed to HYP mode 
0x21 Prefetch abort taken from HYP mode 
0x24 Data abort routed to HYP mode 
0x25 Data abort taken from HYP mode 

B. Virtual Memory System Architecture 

In ARMv7A architecture, the address translation, accessing 
permission, attribution determination and checking are 
controlled by the memory management unit. With ARM 
virtualization extensions, the memory management unit (MMU) 
can support two stages of virtual address translation and the 
page table descriptors can be in either 32-bit short format or 
64-bit long format.  

1) Two stage virtual address translation 
The ARMv7A architecture with virtualization extensions 

provides multiples stages of memory system control. Memory 
system control of each stage is provided by MMU and each 
MMU has its own independent set of controls. Our ISS has 
implemented the following MMUs: 

 Non-secure PL2 stage 1 MMU 
 Non-secure PL1&0 stage 1 MMU 
 Non-secure PL1&0 stage 2 MMU 

 

III. CASL-HYPERVISOR ARCHITECTURE 

CASL-Hypervisor is a virtual machine monitor designed 
for ARM architecture; it can virtualize ARM Linux without 
any source-level modifications. CASL-Hypervisor exploits 
virtualization extensions supported in ARMv7A architecture to 
run multiple guest operating systems efficiently at the same 
time.  

A. CPU Virtualization 

To manage processes, the operating system (PL1 super-
visor mode) has to transfer the control of the processor to a 
user process (PL0 user mode) and reclaim the control later. The 
CASL-Hypervisor uses a similar approach as used in a normal 
operating system. To support full virtualization, CASL-
Hypervisor runs under PL2 HYP mode with the guest 
operating system running under the PL1 supervisor mode. 
When performing virtual machine switches, the hypervisor 
transfers control to the guest operating system using ERET 
instruction to change the processor mode and program counter 
simultaneously. Since the CASL-Hypervisor uses full 
virtualization, only hypervisor traps, physical interrupts, and 
routed data aborts can reclaim the control from the guest 
operuating systems. 

This work was sponsored and supported in part by the National Science 
Council of Taiwan under grand NSC 101-2220-E-006-002- 
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Figure 2.  Two stage page table walks 

 
Figure 3.  Interrupt in virtulized environment 

B. Memory Virtualization 

There are three page tables used in the translation process 
under the virtualization environment as shown in Fig. 2. The 
fully virtualized guest operating system retains the control of 
its own stage-1 page table. This table translates a virtual 
address to the intermediate physical address (IPA). The IPA is 
then translated via the stage-2 page table controlled by the 
hypervisor. The translation process is achieved using hardware 
only so the performance overhead is minimal. It is noted that 
the guest operating systems are not aware of the existence of 
the stage-2 page table.  

In order to allocate memory to each guest operating system, 
CASL-Hypervisor divides the memory into aligned and 
consecutive 4 KB pages. Since ARM Linux also uses aligned 4 
KB pages as a basic block in its virtual memory system, it is 
reasonable for the hypervisor to use the same page size to do 
memory management and achieve better space efficiency with 
low performance overhead. We also implement an on-demand 
memory allocation scheme to achieve better memory space 
usage. The access to the unallocated memory region by a guest 
operating system is routed to the hypervisor via a data abort 
exception. The hypervisor decodes the destination address and 
if the address is in the range of a virtual machine’s main 
memory mapping, the hypervisor allocates an unused page and 
allows the virtual machine to finish the operation. In addition, 
subsequent accesses to that memory region can be performed 
directly without interferences from the hypervisor. With on-
demand memory allocation, CASL-Hypervisor can have fine-
grained memory management while not losing performance. 
Fig. 2 illustrates the table walk of hypervisor and guest 
operating system.  

C. Interrupt Virtualization 

In a virtualization environment, the hypervisor has to trap 
the physical interrupt and then distribute the interrupt signal to 
a guest operating system. With the virtualization extension 
supported by the generic interrupt controller (GIC), CASL-
Hypervisor traps the physical interrupt signal sent from 
peripheral devices and then passes it to the guest operating 
systems through the GIC virtual interface. Fig. 3 has the 
detailed interrupt processing sequence.  

In Fig. 3, assuming interrupt (ID32) is forwarded to the 
processor and a physical IRQ exception is routed to the 
hypervisor. The hypervisor reads interrupt acknowledgement 
(ACK32) from the GIC CPU interface. After getting the 
interrupt information, the hypervisor transfers the interrupt to 
the GIC virtual interface register (notify 32, 70). The 
notification has pairing information of the physical interrupt ID 
and the virtual interrupt ID. Based on the information, the GIC 
virtual interface register, GIC virtual CPU Interface forwards 
the interrupts to the processor. The processor generates a 
virtual IRQ exception to trigger the guest operating system that 
enters its interrupt service routine (ISR). After executing the 
ISR, the guest operating system writes end of interrupt (EOI 70) 
to the GIC virtual CPU interface. Finally, the GIC distributor 
changes the state of the finished physical interrupt (EOI 32). 
Through this manner, CASL-Hypervisor can also simulate 
virtual devices and generate the virtual interrupts sent to the 
guest operating systems.  

D. Virutal Machine Scheduling 

The virtual machine switching process involves of storing 
and restoring virtual machine context to and from the memory. 
Virtual machine context contains essential execution states 
including registers values, coprocessor states, page tables, 
interrupt states, virtual devices’ states and scheduling 
information.  

The scheduler of CASL-Hypervisor uses a round-robin 
mechanism to switch between virtual machines. Each virtual 
machine has the same priority and fixed execution time. When 
a virtual machine is resumed from the inactive queue, the 
scheduler resets the system timer and restores the virtual 
machine’s context so that the guest operating system can 
continue its execution. The system timer generates an interrupt 
after a fixed period of time to let the hypervisor regain the 
control; current configuration uses 30 ms as the default virtual 
machine switch interval. In addition, Linux has a special kernel 
thread called idle thread which runs only when no other 
runnable processes are available. The idle thread of ARM 
Linux contains the WFI instruction. If a virtual machine issues 
a WFI instruction, the scheduler removes the virtual machine 
from the scheduling queue. The virtual machine will be 
rescheduled only when an interrupt for that virtual machine 
comes.  

IV. EVALUATION RESULT 

This section describes the performance overhead of the 
CASL-Hypervisor when booting Linux OS and running 
MiBench test suite applications [8]. The processor utilization 
rate of the hypervisor is calculated based on the percentage of 
the total number of instructions used by the hypervisor. The 
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target architecture for simulation is ARMv7A ISS with the 
detailed parameters listed in Table III. Furthermore, we exploit 
Newlib as the C standard library for developing CASL-
Hypervisor.  

TABLE III.  HYPERVISOR SYSTEM 

Platform Component Configuration 
Processor Model ARMv7-A ISS 
Processor Frequency 1000 MHz 
Device Frequency 400 MHz 
Memory 1024 GB 
Memory per Guest OS 128 MB 
Virtual Machine Switch interval 30 ms
Guest OS Context Switch Interval 2.5 ms
Guest OS version Linux 2.6.38 
Busybox Version 1.19.4
Newlib Version 1.19.0

A. Booting Linux OS 

Fig. 4 shows the processor utilization rate of hypervisor 
during four guest operating systems booting. Beginning of the 
graph, the hypervisor is preparing Linux kernels and initializes 
the ram-disks, which is built using Busybox, for booting. 
Center of the graph have different utilization rates due to 
access to the virtual devices, page allocations, and trapped 
coprocessor operations. Finally, four guest operating systems 
have successfully booted and enter the idle thread. When all 
guest operating systems are idle, the hypervisor uses 93% of 
processor time only to switch in between them. The result 
shows that CASL-Hypervisor spends about 9.78% overhead in 
exception trapping and virtual machine scheduling. Because of 
the round-robin scheduling policy, we can find out that the 
guest operating system occupied the processor regularly.  

B. Executing MiBench 

After booting Linux operating system, we execute the 
MiBench applications. In Fig. 5, we use the same emulation 
environment to run the applications on the native Linux and 
serve as the comparison basis. It is obviously to find out that 
the execution time is almost linear increasing from native 
execution to 4 guest operating systems scheduled by the 
CASL-hypervisor because each operating system runs the same 
applications on a single core platform. This also demonstrates 
that our hypervisor has little overhead when scheduling four 
guest operating systems by exploiting the virtualization 
extension supported in ARMv7A processor.  

 
Figure 4.  CPU Utilization Rate of CASL-Hypervisor 

 
Figure 5.  MiBench execution result 

CASL-Hypervisor is developed with virtualization 
extension; the guest operating systems can directly access their 
own memory pages through the MMU without hypervisor 
intervention after the hypervisor has assigned the page to them. 
In this situation, the main overhead of our hypervisor is from 
trapping the physical interrupt signal whenever the physical 
interrupt occurs 

V. CONCLUSIONS 

We have presented and demonstrated an ARM-based 
CASL-Hypervisor and its full system simulation platform. 
With the help of an additional processor mode, extended 
memory management unit, configurable hardware traps and 
specialized hardware devices, CASL-Hypervisor is able to 
virtualize multiple guest operating systems using full 
virtualization method and at the same time keep the 
virtualization overhead low.  

In addition, a hardware simulation model cannot only be 
built fast but also easily because the full system virtualization 
platform is based on SystemC.  
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