
CASL Hypervisor and its Virtualization Platform

Chien-Te Liu, Kuan-Chung Chen and Chung-Ho Chen
Dept. of Electrical Engineering and Inst. of Computer & Communication Engineering

National Cheng Kung University
Tainan, Taiwan

{ufoderek,edi}@casmail.ee.ncku.edu.tw, chchen@mail.ncku.edu.tw

Abstract—In this paper, we present an ARM-based hardware-
assisted hypervisor, named CASL-Hypervisor, and a full system
virtualization platform developed in SystemC which enables
software/hardware co-simulation of virtual machine systems.
CASL-Hypervisor takes advantage of an additional processor
mode, extended memory management unit, configurable
hardware traps and specialized hardware devices to virtualize
unmodified Linux-based guest operating systems. By utilizing
hardware extensions, development effort of CASL-Hypervisor
can be greatly reduced and the hypervisor has achieved relatively
low virtualization overhead. Evaluation is demonstrated on an
approximately-timed manner so it is able to do fast
software/hardware co-simulation and evaluations. We use
the ARM-v7A instruction set simulator as the host processor.
The hypervisor overhead can be quantified through
instruction count ratio of guest operating system to the
hypervisor. The results show that CASL-Hypervisor
successfully virtualizes four guest operating systems with
about 9.78% overhead.

Keywords—instruction set simulator; full system simulation;
full virtualization; hypervisor;

I. INTRODUCTION

System virtualization has become an important technology
in various applications. Most of the state-of-the-art processor
architectures have been extended to support virtualization [1].
However, not all processor architectures are designed to be
virtualizable and thus several special techniques such as binary
translation and paravirtualization are used to implement virtual
machine monitor on these processors [2][3][4].

Figure 1. Full system virtualization platform architecture

In binary translation, sequences of source instructions are
translated into the target instruction set and the source
instruction set does not need to be the same as the target
instruction set. The translation process can be achieved
statically, dynamically, or in a combined fashion [2].
Paravirtualization is a virtualization technique [5] that the
hypervisor presents a set of predefined virtual machine
interfaces to the guest operating systems. The guest operating
system has to use these interfaces to co-work with the
hypervisor to perform the privileged work. Paravirtualization
usually needs source-level modifications to the guest operating
system, i.e., patching the existing operating systems. While the
operating system must be ported to run in a virtual machine,
most normal applications can run unmodified.

In this paper, we implement an instruction set simulator
based on ARM-v7A [7], supporting hardware virtualization
extension, and the full system simulation platform as shown in
Fig. 1. We also propose our hypervisor, CASL-Hypervisor,
running on the simulation platform and use it to manager four
unmodified guest Linux operating systems in a round-robin
scheme. The most challenging part of the hypervisor design is
to virtualize interrupts and I/O operations. With the help of
extended interrupt controller, CASL-Hypervisor can maintain
physical and virtual interrupts at the same time with succinct
implementation. Moreover, the two-stage memory
management unit greatly reduces the I/O virtualization
overhead of guest operating systems. Besides, the round-robin
scheduler of CASL-Hypervisor is idle-thread-sensitive which
means that it can detect the state of guest kernel’s scheduler to
do appropriate scheduling.

The rest of this paper is organized as follows: In Section II,
we introduce our full system simulation platform and the
hardware extension for virtualization. Section III discusses our
hypervisor architecture. Section IV presents the evaluation
results and we have brief conclusions in Section V.

II. FULL SYSTEM VIRTUALIZATION PLATFORM

ARCHITECTURE

To develop and verify CASL-Hypervisor, we implemented
a full system virtualization platform using SystemC library. As
shown in Fig. 1, the full system virtualization platform consists
of an instruction set simulator, a system controller, several
timers and UARTs, all of which are necessary to successfully
boot operating system and all modules are connected via a
transaction level modeling bus.

978-1-4673-5762-3/13/$31.00 ©2013 IEEE 1224

A. ARMv7A Instruction Set Simulator

An instruction set simulator (ISS) is a computer program
which mimics the behavior of a target processor. The
instruction set simulator implemented in this paper is based on
ARMv7A architecture with virtualization extensions and its
correctness has been verified by successfully booting a Linux
kernel with an initial ram disk. Following are the ARMv7A
virtualization extension functions implemented in our
instruction set simulator.

1) Privilege Levels and Processor Modes:

The ARM architecture has three privilege levels (PL) from
privilege level 0 to privilege level 2. The User mode is the least
privilege mode while Supervisor mode, Abort mode, IRQ
mode, FIQ mode, and Undefined mode have higher privilege
level than the User mode. These modes exist in prior ARM
architecture. The ARM virtualization extension introduces the
HYP mode which has the highest privilege and is designed for
the use of hypervisor. Operating system usually executes under
Supervisor mode while applications run under User mode.
When ARM processor gets into the privilege operations, such
as WFI (wait for interrupt), the processor changes its mode to
the HYP mode and executes the hypervisor code.

2) Exceptions:

There are eight exceptions defined in ARMv7A
architecture as shown in Table I. The new exception type, HYP
trap, has its own interrupt vector address. The operating system
or the hypervisor must provide interrupt service routines in
advance in order to resolve processor exceptions.

TABLE I. ARMV7A EXCEPTIONS

Exception Type Mode High Vector
Address

Low Vector
Address

Undefined Undefined 0x00000004 0xFFFF0004
Software
Interrupt Supervisor 0x00000008 0xFFFF0008

Prefetch Abort Abort 0x0000000C 0xFFFF000C
HYP Trap HYP 0x00000010 0xFFFF0010
Data Abort Abort 0x00000014 0xFFFF0014

IRQ IRQ 0x00000018 0xFFFF0018
FIQ FIQ 0x0000001C 0xFFFF001C

3) Hyperviosr Traps:

For better efficiency on processor virtualization, the ARM
processor with virtualization extensions supports trapping
certain privileged operations into the HYP mode. For instance,
coprocessor access and WFI instruction can be configured to
be trapped to the HYP mode. The error code is saved to the
HYP syndrome register (HSR) so that when a hardware trap is
generated, the hypervisor can read and decode the error code
inside the HSR to perform the corresponding operations. For
the exceptions which are configured to be routed to the HYP
mode, the return address is saved to the exception return
register (ELR) and then hypervisor can use the exception return
instruction (ERET) for fast exception return.

Same as a hypervisor trap, the corresponding error code is
saved to the HSR when exceptions are routed to the HYP mode
so that the hypervisor can read and decode the HSR to do the
corresponding service. The error codes are listed in Table II.

TABLE II. ERROR CODES OF HSR

Error Code Exception Class
0x01 Trapped WFI or WFE instruction
0x03 Trapped MCR or MRC access to CP15
0x04 MCRR or MRRC access to CP15
0x05 Trapped MCR or MRC access to CP14
0x07 Trapped access to CP0-CP13
0x08 Trapped access to CP0-CP13
0x11 Supervisor call exception routed to HYP mode
0x12 Hypervisor call
0x20 Prefetch abort routed to HYP mode
0x21 Prefetch abort taken from HYP mode
0x24 Data abort routed to HYP mode
0x25 Data abort taken from HYP mode

B. Virtual Memory System Architecture

In ARMv7A architecture, the address translation, accessing
permission, attribution determination and checking are
controlled by the memory management unit. With ARM
virtualization extensions, the memory management unit (MMU)
can support two stages of virtual address translation and the
page table descriptors can be in either 32-bit short format or
64-bit long format.

1) Two stage virtual address translation
The ARMv7A architecture with virtualization extensions

provides multiples stages of memory system control. Memory
system control of each stage is provided by MMU and each
MMU has its own independent set of controls. Our ISS has
implemented the following MMUs:

 Non-secure PL2 stage 1 MMU
 Non-secure PL1&0 stage 1 MMU
 Non-secure PL1&0 stage 2 MMU

III. CASL-HYPERVISOR ARCHITECTURE

CASL-Hypervisor is a virtual machine monitor designed
for ARM architecture; it can virtualize ARM Linux without
any source-level modifications. CASL-Hypervisor exploits
virtualization extensions supported in ARMv7A architecture to
run multiple guest operating systems efficiently at the same
time.

A. CPU Virtualization

To manage processes, the operating system (PL1 super-
visor mode) has to transfer the control of the processor to a
user process (PL0 user mode) and reclaim the control later. The
CASL-Hypervisor uses a similar approach as used in a normal
operating system. To support full virtualization, CASL-
Hypervisor runs under PL2 HYP mode with the guest
operating system running under the PL1 supervisor mode.
When performing virtual machine switches, the hypervisor
transfers control to the guest operating system using ERET
instruction to change the processor mode and program counter
simultaneously. Since the CASL-Hypervisor uses full
virtualization, only hypervisor traps, physical interrupts, and
routed data aborts can reclaim the control from the guest
operuating systems.

This work was sponsored and supported in part by the National Science
Council of Taiwan under grand NSC 101-2220-E-006-002-

1225

Figure 2. Two stage page table walks

Figure 3. Interrupt in virtulized environment

B. Memory Virtualization

There are three page tables used in the translation process
under the virtualization environment as shown in Fig. 2. The
fully virtualized guest operating system retains the control of
its own stage-1 page table. This table translates a virtual
address to the intermediate physical address (IPA). The IPA is
then translated via the stage-2 page table controlled by the
hypervisor. The translation process is achieved using hardware
only so the performance overhead is minimal. It is noted that
the guest operating systems are not aware of the existence of
the stage-2 page table.

In order to allocate memory to each guest operating system,
CASL-Hypervisor divides the memory into aligned and
consecutive 4 KB pages. Since ARM Linux also uses aligned 4
KB pages as a basic block in its virtual memory system, it is
reasonable for the hypervisor to use the same page size to do
memory management and achieve better space efficiency with
low performance overhead. We also implement an on-demand
memory allocation scheme to achieve better memory space
usage. The access to the unallocated memory region by a guest
operating system is routed to the hypervisor via a data abort
exception. The hypervisor decodes the destination address and
if the address is in the range of a virtual machine’s main
memory mapping, the hypervisor allocates an unused page and
allows the virtual machine to finish the operation. In addition,
subsequent accesses to that memory region can be performed
directly without interferences from the hypervisor. With on-
demand memory allocation, CASL-Hypervisor can have fine-
grained memory management while not losing performance.
Fig. 2 illustrates the table walk of hypervisor and guest
operating system.

C. Interrupt Virtualization

In a virtualization environment, the hypervisor has to trap
the physical interrupt and then distribute the interrupt signal to
a guest operating system. With the virtualization extension
supported by the generic interrupt controller (GIC), CASL-
Hypervisor traps the physical interrupt signal sent from
peripheral devices and then passes it to the guest operating
systems through the GIC virtual interface. Fig. 3 has the
detailed interrupt processing sequence.

In Fig. 3, assuming interrupt (ID32) is forwarded to the
processor and a physical IRQ exception is routed to the
hypervisor. The hypervisor reads interrupt acknowledgement
(ACK32) from the GIC CPU interface. After getting the
interrupt information, the hypervisor transfers the interrupt to
the GIC virtual interface register (notify 32, 70). The
notification has pairing information of the physical interrupt ID
and the virtual interrupt ID. Based on the information, the GIC
virtual interface register, GIC virtual CPU Interface forwards
the interrupts to the processor. The processor generates a
virtual IRQ exception to trigger the guest operating system that
enters its interrupt service routine (ISR). After executing the
ISR, the guest operating system writes end of interrupt (EOI 70)
to the GIC virtual CPU interface. Finally, the GIC distributor
changes the state of the finished physical interrupt (EOI 32).
Through this manner, CASL-Hypervisor can also simulate
virtual devices and generate the virtual interrupts sent to the
guest operating systems.

D. Virutal Machine Scheduling

The virtual machine switching process involves of storing
and restoring virtual machine context to and from the memory.
Virtual machine context contains essential execution states
including registers values, coprocessor states, page tables,
interrupt states, virtual devices’ states and scheduling
information.

The scheduler of CASL-Hypervisor uses a round-robin
mechanism to switch between virtual machines. Each virtual
machine has the same priority and fixed execution time. When
a virtual machine is resumed from the inactive queue, the
scheduler resets the system timer and restores the virtual
machine’s context so that the guest operating system can
continue its execution. The system timer generates an interrupt
after a fixed period of time to let the hypervisor regain the
control; current configuration uses 30 ms as the default virtual
machine switch interval. In addition, Linux has a special kernel
thread called idle thread which runs only when no other
runnable processes are available. The idle thread of ARM
Linux contains the WFI instruction. If a virtual machine issues
a WFI instruction, the scheduler removes the virtual machine
from the scheduling queue. The virtual machine will be
rescheduled only when an interrupt for that virtual machine
comes.

IV. EVALUATION RESULT

This section describes the performance overhead of the
CASL-Hypervisor when booting Linux OS and running
MiBench test suite applications [8]. The processor utilization
rate of the hypervisor is calculated based on the percentage of
the total number of instructions used by the hypervisor. The

1226

target architecture for simulation is ARMv7A ISS with the
detailed parameters listed in Table III. Furthermore, we exploit
Newlib as the C standard library for developing CASL-
Hypervisor.

TABLE III. HYPERVISOR SYSTEM

Platform Component Configuration
Processor Model ARMv7-A ISS
Processor Frequency 1000 MHz
Device Frequency 400 MHz
Memory 1024 GB
Memory per Guest OS 128 MB
Virtual Machine Switch interval 30 ms
Guest OS Context Switch Interval 2.5 ms
Guest OS version Linux 2.6.38
Busybox Version 1.19.4
Newlib Version 1.19.0

A. Booting Linux OS

Fig. 4 shows the processor utilization rate of hypervisor
during four guest operating systems booting. Beginning of the
graph, the hypervisor is preparing Linux kernels and initializes
the ram-disks, which is built using Busybox, for booting.
Center of the graph have different utilization rates due to
access to the virtual devices, page allocations, and trapped
coprocessor operations. Finally, four guest operating systems
have successfully booted and enter the idle thread. When all
guest operating systems are idle, the hypervisor uses 93% of
processor time only to switch in between them. The result
shows that CASL-Hypervisor spends about 9.78% overhead in
exception trapping and virtual machine scheduling. Because of
the round-robin scheduling policy, we can find out that the
guest operating system occupied the processor regularly.

B. Executing MiBench

After booting Linux operating system, we execute the
MiBench applications. In Fig. 5, we use the same emulation
environment to run the applications on the native Linux and
serve as the comparison basis. It is obviously to find out that
the execution time is almost linear increasing from native
execution to 4 guest operating systems scheduled by the
CASL-hypervisor because each operating system runs the same
applications on a single core platform. This also demonstrates
that our hypervisor has little overhead when scheduling four
guest operating systems by exploiting the virtualization
extension supported in ARMv7A processor.

Figure 4. CPU Utilization Rate of CASL-Hypervisor

Figure 5. MiBench execution result

CASL-Hypervisor is developed with virtualization
extension; the guest operating systems can directly access their
own memory pages through the MMU without hypervisor
intervention after the hypervisor has assigned the page to them.
In this situation, the main overhead of our hypervisor is from
trapping the physical interrupt signal whenever the physical
interrupt occurs

V. CONCLUSIONS

We have presented and demonstrated an ARM-based
CASL-Hypervisor and its full system simulation platform.
With the help of an additional processor mode, extended
memory management unit, configurable hardware traps and
specialized hardware devices, CASL-Hypervisor is able to
virtualize multiple guest operating systems using full
virtualization method and at the same time keep the
virtualization overhead low.

In addition, a hardware simulation model cannot only be
built fast but also easily because the full system virtualization
platform is based on SystemC.

REFERENCES
[1] Neiger, G., Santoni, A., Leung, F., Rodgers, D., and Uuhlig, R. “Intel

virtualization technology: Hardware support for efficient virtualization.”
In IntelTechonolgy Journal 10, 3 August 2006, pp. 167-177.

[2] M. Reshadi, P. Mishara, and N. Dutt, “Hybrid-Compiled Simulation: An
Efficient Technique for Instruction-Set Architecture Simulation,” ACM
Transactions on Embedded Computer Systems, Vol. 8, No. 3, pp. 20-27,
April 2009.

[3] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. Robinson,
“Binary Translation,” Communications of the ACM, Vol. 36, No. 2, pp.
68-81, February 1993.

[4] M. Reshadi, P. Mishara, and N. Dutt, “Instruction Set Compiled
Simulation: A Technique for Fast and Flexible Instruction Set
Simulation,” Proceedings of the 40th ACM/IEEE Design Automation
Conference (DAC‟03), Vol. 8, No. 3, pp.758-763, Anaheim, CA, USA,
June 2003.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield. “Xen and the art of
virtualization.” In 19th ACM Symposium on Operating Systems
Principles, Oct 2003.

[6] Whitaker A, Shaw M, Gribble S D. “Denali: Lightweight Virtual
Machines for Distributed and Networked Applications.” University of
Washington Technical Report 02-02-012002.

[7] “ARMv7A Technical Reference Manual DDI-0406C,” ARM Co. Ltd.
November 2011.

[8] M. R. Guthaus, et al., “MiBench: a Free, Commercially Representative
Embedded Benchmark Suite,” Proceedings of the 2008 IEEE
International Workshop on Workload Characterization (WWC‟01),
Austin, TX, USA, December 2001.

1227

