516 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011

[2] N. Brisebarre, D. Defour, P. Kornerup, J. M. Muller, and N. Revol, “A
new range-reduction algorithm,” IEEE Trans. Comput., vol. 54, no. 3,
pp. 331-339, Mar. 2005.

[3] J. Villalba, T. Lang, and M. A. Gonzélez, “Double-residue modular
range reduction for floating-point hardware implementations,” IEEE
Trans. Comput., vol. 55, no. 3, pp. 254-267, Mar. 2006.

[4] Koc and Hung, “Fast algorithm for modular reduction,” /IEEPCDT:
IEE Proc. Comput. Digit. Tech., vol. 145, no. 4, pp. 265-271, 1998.

[5] F.J.Jaime, J. Hormigo, J. Villalba, and E. L. Zapata, “Pipelined archi-
tecture for accurate floating point range reduction,” in Proc. 7th Conf.
Real Numbers Comput., 2006, pp. 59-68.

[6] F.J.Jaime, J. Villalba, J. Hormigo, and E. L. Zapata, “Pipelined archi-
tecture for additive range reduction,” J. Signal Process. Syst., vol. 53,
pp. 103-112, Nov. 2008.

[7] J. A. Pifieiro, M. D. Ercegovac, and J. D. Bruguera, “High-radix log-
arithm with selection by rounding: Algorithm and implementation,” J.
VLSI Signal Process., vol. 40, no. 1, pp. 109-123, May 2005.

Effective Hybrid Test Program Development for
Software-Based Self-Testing of Pipeline Processor Cores

Tai-Hua Lu, Chung-Ho Chen, and Kuen-Jong Lee

Abstract— This paper presents an effective hybrid test program for
the software-based self-testing (SBST) of pipeline processor cores. The
test program combines a deterministically developed program which
explores different levels of processor core information and a block-based
random program which consists of a combination of in-order instructions,
random-order instructions, return instructions, as well as instruction
sequences used to trigger exception/interrupt requests. Due to the comple-
mentary nature of this hybrid test program, it can achieve processor fault
coverage that is comparable to the performance of the conventional scan
chain method. The test response observation methods and their impacts
on fault coverage are also investigated. We present the concept of micro
observation versus macro observation and show that the most effective
method of using SBST is through a multiple input signature register
connected to the processor local bus, while conventional methods that
observe only the program results in the memory lead to significantly less
processor fault coverage.

Index Terms—Fault coverage measure, fault observation method, hybrid
SBST, processor testing, software-based self-testing (SBST).

I. INTRODUCTION

With the rapid advances in semiconductor manufacturing tech-
nology, more and more processors are now being integrated into a
system-on-a-chip (SoC) design. However, the poor controllability and
observability of these embedded processor cores produces testability
problems. Traditional test methods that rely on built-in scan chains
usually require large chip area overhead and may induce significant
performance degradation. This problem is especially serious for
high-speed pipeline processors where all flip-flops in pipelined regis-
ters and register files may have to be scanned if full scan is required.

Manuscript received April 03, 2009; revised August 14, 2009. First published
December 18, 2009; current version published February 24, 2011. This work
was supported in part by the National Science Council, Taiwan under Grant
NSC 96-2220-E-006-011 and Grant NSC 97-2221-E-006-250-MY 3, and by the
Program for Promoting Academic Excellence of Universities in Taiwan.

The authors are with the Department of Electrical Engineering and Insti-
tute of Computer and Communication Engineering, National Cheng-Kung
University, Tainan 701, Taiwan (e-mail: aaron@casmail.ee.ncku.edu.tw;
chchen @mail.ncku.edu.tw; kjlee @mail.ncku.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2009.2036184

As a result, software-based self-testing (SBST) methodologies that
require no scan chains have received much attention recently [1], [2].

SBST test programs can be developed deterministically [1], [3], [4],
randomly [5], [6], or both [2]. Some of these methods also make use
of design-for-testability (DFT) hardware to assist program execution
or result observation [1], [5], [6]. Various efforts for SBST automation,
including automating module level constraint extraction based on the
register transfer level (RTL) description of the circuit [7] or test rou-
tine description [4] are also presented. In manufacturing testing, SBST
can employ a low cost automatic test equipment (ATE) to initiate the
processor through cache systems [8].

Our previous work has presented a deterministic SBST methodology
that uses multiple-level abstractions of the processor information for
test program development [1]. Although good fault coverage has been
achieved compared to other SBST methods, many faults related to pro-
cessor control or glue logic have experienced poor test quality and as
a result, the processor fault coverage is still 4%—5% less than that of a
full scan approach.

This paper presents a new hybrid SBST methodology that combines
our previous deterministic program with an effective basic-block based
random program. Many test strategies, such as mechanisms to test ex-
ceptions and interrupts, undefined instructions, and processor modes,
have been developed for the random program. Experimental results
show that this SBST method can boost the processor fault coverage
to a level that is close to the results of scan-based approaches. Specif-
ically, more than 98% single stuck-at fault coverage is obtained when
evaluated on both the miniMIPS and ARMv4 instruction set architec-
ture (ISA) processor cores. To our best knowledge, this level of perfor-
mance has not yet been seen in any previous SBST studies.

To validate the fault coverage measurement used in this study, we
also investigate the various test response observation methods and their
impacts on the fault coverage. The principal contributions of this paper
thus are the following: 1) a practical and viable SBST methodology
that is capable of achieving high processor fault coverage, comparable
to that of a full scan chain; 2) many test program development strategies
which are critical to improving fault coverage, but often neglected; and
3) three fault observation methods that can be used for SBST, and a
demonstration of their impacts on processor fault coverage.

The rest of this paper is organized as follows. Section II presents
the SBST supporting environment and fault observation methods.
Section III presents the proposed SBST methodology. Section IV
describes the experimental system and evaluation results. Finally,
Section V gives the conclusions of this paper.

II. SBST TESTING INFRASTRUCTURE

A. Simple ATE Design for SBST

We first clarify the test infrastructure of our SBST environment
which includes the use of a simple ATE system board. The ATE
board provides the necessary system support for testing the processor
core embedded in the SoC chip. Before testing, the ATE management
processor loads the test code from flash memory into the main memory
of the ATE board. The processor under testing then copies the self-test
instructions through the chip’s external memory interface to the
internal memory of the SoC chip. The execution of test instructions
is done from the main memory so as to speed up the test process and
enable the observation of the execution results directly through the
processor’s local bus. The processor’s on-chip caches are disabled
when executing SBST from the main memory. Thus some faults in
the cache unit are not tested in this work. The detection of these faults
requires further research and is considered in our other work [11]. The

1063-8210/$26.00 © 2009 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011 517

ATE system can also use a time-out mechanism should the processor
under testing fail to respond during testing.

An intuitive way for SBST to determine if the processor is success-
fully manufactured is to check the written results in the main memory.
However, since only the store instructions of the processor can write
results to the memory, a written datum in the memory is actually the
“lumped” result of many processor clock cycles before the execution
of the write. We call this fault effect observation method the “macro”
observation. Another feasible way to observe test results is to employ
a multiple-input signature register (MISR) at the output bus of the pro-
cessor. This can capture the processor outputs cycle by cycle and thus
is called the “micro” observation method since it checks every detail
for faulty output detection. Understandably, the way of how and where
to observe the effect of the test code affects the processor fault coverage
measured as will be more detailed in Section II-B.

B. Fault Observation Methods for SBST

We will compare three observation methods in this paper. The first
method is to observe the processor output bus responses on both edges
of the processor clock. Reading the test response in this “micro” way
allows the best possible processor fault coverage that a test program
can achieve.

A variant micro observation method only captures the responses on
either the positive edge or the negative edge of the processor clock.
To emulate this observation method assuming on the positive edge in
fault simulation, we use a tri-state controlled buffer to mask the test
response when the clock signal is high. As a result, the test response is
only observed on the rising edge of the clock.

Unlike the “micro” observation method, which captures cycle-based
or edge-based hardware signals, the “macro” observation method ob-
serves the written results in memory for fault coverage evaluation. Nev-
ertheless, it is possible to evaluate macro observation-based fault cov-
erage using a micro observation method. To emulate this macro obser-
vation method, this study develops a fault simulation model that simply
extends the mask circuit concept. That is, to measure the fault coverage
based on the written results in memory, the signal mask circuit only al-
lows the hardware response signals that affect the correctness of the
store operation to pass for observation. The first type of hardware re-
sponse signals are the active signals during a write cycle, for instance,
the address bus and data bus output signals. During write cycles, these
output signals directly impact the written results of the store instruc-
tions. The second type of hardware response signals are those that in-
directly affect the correctness of the stored instructions. For example,
if the instruction address bus outputs an erroneous instruction address,
the tested processor will fetch an incorrect instruction. Consequently,
this generates an erroneous software response. As a result, the instruc-
tion read and control signals are observed during the read cycles.

III. OVERVIEW OF THE PROCESSOR TEST PROGRAM

The proposed test program consists of a deterministic test code that
uses a multiple-level abstraction-based methodology as depicted in [1]
and a random program based on a basic-block development method to
be detailed in this paper. The deterministic test program explores the
design information of processor architecture, RTL, and gate-level for
different types of processor components. The test routine development
methodology applies the most useful information of a certain level to
the different parts of the processor core. However, it is impossible to test
faults beyond the limited functional coverage of the deterministic pro-
gram itself. On the other hand, effective random instruction sequences
can greatly remedy these deficiencies.

Fig. 1 illustrates the random test routine generation methodology.
A basic block is built based on the information abstracted from the

Information

Processor
Architecture

Instruction Set
Architecture (ISA)

L

Random test program development

(" Start)
,,/Y ~._ Do not produce exception/interrupt-
_~~Random ™ generating instruction

~~._choice _~
.~ Produce exception/interrupt-
generating_instruction
Exception/Interrupt-generating
instruction generation

Produce in-order block - Randoni‘\ ., Produce return block
~._choice -~ |
[Produce out-of-order block

’ in-order block out-of-order block return block

generation generation generation
No . /‘E;oﬁgh“ ~
‘*ubl‘ocks?,« .
l'Y&s
i Random test program ‘
Fig. 1. Random test program generation.
System Bus
—Ins Add/Control® - Ins. Add/Control >
—Instruction——| <« Instruction——
—Data Add/Control» - Data Add/Control»
Data out » iDataout » Memory
«——Data In—— <« %Dataln% —
Processor Test Shell | BUS |
«—Wait———| «——Wait-——
< IRQ < IRQ;' Interrupt
<« FIQ— «——FIQ———— Controller

Fig. 2. Test shell used for sequential execution of random program.

processor’s architecture model and ISA. Interrupt and exception-gen-
erating instructions are randomly inserted between the three types of
basic blocks: in-order, out-of-order, and return blocks which will be
described later. The program generation flow ends when the target pro-
cessor fault coverage is reached or saturated.

A. Supporting Mechanism for Random Program Execution

When running a random program, the instruction fetch and data ac-
cess addresses are unpredictable, leading the processor to fetch un-
known instructions and access unknown data. Therefore, a simple hard-
ware device called a test shell is placed between the processor core and
system bus as illustrated in Fig. 2. This device enables sequential ex-
ecution of random programs. The test shell is only enabled when the
processor executes the random test program. As a random-to-sequential
address converter, the test shell generates the sequential address either
to get the instruction in the test code or the data the test code uses from
the memory regardless of what address the processor generates.

To support interrupt testing, this study selects specific undefined in-
structions (illegal instructions) in the processor ISA to trigger interrupt
events through the test shell. When a designated undefined instruction

518 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011

is fetched, the test shell recognizes it and triggers the predefined in-
terrupt event. The test shell can be implemented as part of a common
bus wrapper and thus introduces very little penalty for memory access
time. During processor core testing, the processor’s on-chip caches and
memory management unit (MMU) are disabled so that all accesses go
to the main memory through the test shell. SBST can also apply to the
on-chip caches and MMU. Interested readers can refer to the work in
[11].

B. Basic Block Structure

The main advantage of using basic blocks to form a test program is
a systematic approach to specifying the required constraints for a basic
block, that is, the type of instructions present in a basic block and the
instruction sequence order in a basic block. To build a basic block, the
processor instruction set is first classified based on functional opera-
tions into types of memory accesses, arithmetic logic units (ALUs),
branches, and status register accesses.

Including instructions for observation, each basic block contains
every type of the instructions, except for the exception and inter-
rupt-generating instructions. This study defines three types of basic
blocks: in-order, out-of-order, and return basic blocks. The rationale
behind the in-order basic block is to build a program module similar
to a common program basic block by including every possible instruc-
tion category. This type of basic block characterizes the instruction
sequence, which has an explicit data dependency. Specifically, the
basic block begins with two load instructions that employ random
source operands (first load) and random destination registers (second
load), respectively. Then two instructions from the ALU category are
randomly selected and a RAW hazard is enforced between them. The
results, including program status registers are subsequently written
back for observations. Lastly, a branch instruction using a randomly
selected target address is executed to complete the in-order block.
Unlike an in-order basic block in which the instruction sequence
is predefined, an out-of-order basic block generates the instruction
sequence randomly, even though it also contains instructions of each
type and the same number of instructions as an in-order block. The
basic block also includes the no-operation, which is deemed as an
instruction, for the purpose of sequence diversity. In this way, an
out-of-order basic block produces a random instruction sequence that
is almost impossible to obtain in deterministic test programs and thus
helps test the corner cases and difficult-to-test faults.

The third type of basic block is called a return block, which is mainly
used for processor mode switching. While an exception or interrupt
brings the processor to a privilege mode, the return block brings the
processor back from the privilege mode to the user mode. To test the
processor modes, which may incorporate the use of complicated reg-
ister banks, a return block triggers the testing on the access control of
the shadow registers in various processor modes, including those for
program status registers. The return block, interrupts and exception-
generating instructions all activate the circuitry for processor mode
switching, which is a critical function in modern operating systems.

C. Exception/Interrupt Testing

In general, a processor may have different kinds of external inter-
rupts and internal exceptions. Such processors may contain shadow
registers used in various privilege modes. To test these registers and
their access control logic, either the external-interrupt pins must be en-
abled or some exception-generating instructions must signal the pro-
cessor to enter a privilege mode. Testing interrupts can be a compli-
cated issue for an SBST-based methodology, especially for pipelined
processors. To assist SBST testing for processor interrupt mechanisms,
this study defines interrupt-request instructions through the undefined
instructions of the processor, that is, the reserved op-codes. The test

TABLE I
ARMV4 AND MINIMIPS PROCESSOR FAULT COVERAGE (F.C.)

Synthesis Case Gate count/ F.C% F.C% F.C% F.C%

of faults (Det.) (Random) (Hybrid) (Full Scan)
O3Susovby 1T Qw09 B (G
Orwizvby v ensmy B8 6% g
O3swsonsy waiess @ismy % B0
DI eems aeswy 0 BB @

shell snoops the fetching of an interrupt-request instruction to generate
the interrupt request. In this way, the processor ISA does not change.
This design simply takes advantage of undefined instruction bit patterns
and recognizes the chosen ones to generate various external interrupt
requests. If a processor has no undefined instructions, an alternative is
to specify a particular short sequence of instructions or memory ad-
dresses for test shell snooping.

The instruction fields of the undefined instructions or the exception
requesting instructions (SWI, for instance) may include immediate or
don’t-care values. The proposed test program also pays attention to
these fields by using random values to improve the test results.

IV. EXPERIMENTAL SYSTEM AND RESULTS

This study uses ModelSim [12] for logic simulation, Design Ana-
lyzer [13] for synthesis, and TurboScan [14] based on the stuck-at fault
model for fault simulation. Experiments are conducted on an ARMv4
ISA pipelined processor core implemented by us [1] and the miniMIPS
processor [9]. The fault coverage of the hybrid test program is reported
by executing the deterministic program and the random program sub-
sequently based on the structurally testable faults which are obtained
by removing the undetectable faults.

A. Processor Fault Coverage

The two targeted processors and the test shell shown in Fig. 2 were
synthesized using the TSMC 0.35- and 0.18-zm libraries, respectively.
The test shell has a gate count of 1938 and a critical path delay of 0.7
ns for TSMC 0.35-p¢m technology and 1766 gates and 0.3 ns delay for
0.18 pm. Clearly the test shell introduces negligible area overhead. The
critical paths of the test shell are only exercised during random program
testing. For normal operation the delay can be at most a multiplexer
delay which can be further reduced by integrating the test shell into the
AMBA wrapper of the processor. Therefore the performance impact of
the test shell should be much smaller than scan design that is required
for each stage of the pipeline.

Table I shows the fault coverage of the ARMv4 and miniMIPS pro-
cessors under the micro observation method with various test programs
and synthesis cases. The second column shows the processor gate count
and stuck-at fault numbers. Depending on the cell-based library used
and the experimental conditions, the same processor core can have
different synthesized gate-level results, and thus, a different number
of faults. The third column shows the processor fault coverage ob-
tained using our previous deterministic programs [1], which ranges
from 92.62% to 93.72%. The fourth column is the processor fault cov-
erage when running the random program only, which consists of about
1.1 x 10° instructions or 10° basic blocks. These blocks can roughly
be split into three equal parts of in-order blocks, out-of-order blocks,
and return blocks. The fifth and sixth columns show the results of the
hybrid test program and scan chain, respectively.

The proposed hybrid test program obtains a full processor fault cov-
erage that is close to the level of a full scan chain. Note that since this
is at-speed testing, the processor runs the test program in processor

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011 519

TABLE II
BREAKDOWN OF THE ARMV4 PROCESSOR FAULT COVERAGE
(125 Mhz, 0.18 pm)

TABLE III
FAULT COVERAGE OF THE TEST PROGRAMS USING DIFFERENCE OBSERVATION
METHODS (ARMV4 ISA PROCESSOR, 125 MHz)

Number Determinist. Random Hybrid Scan Instruction Doubled edge Positive edge Written data
Component of faults (2415 Inst.) (1.1million) (1.1million) chain Test program count (MISR, micro) (MISR,micro) (macro)

Register file & access 55780 93.59% 96.41% 97.49% 96.83% Deterministic 2415 92.62% 92.62% 85.34%

control Random 55,000 93.99% 93.99% 89.78%

ALU 35510 96.65% 98.58% 98.63% 98.55% Random 55,000 x 5 94.99% 94.99% 90.63%

Shifter 3974 98.92% 99.92% 99.92% 99.93% Random 55,000 % 10 95.34% 95.34% 91.05%

Memory access unit 16416 90.50% 94.47% 94.47% 98.57% Random 55,000 x 20 95.43% 95.43% 91.19%

Instruction fetch unit 2342 79.80% 84.42% 84.59% 93.08% Hybrid 55,000 96.38% 96.38% 92.09%

Decoder 3018 87.17% 91.98% 94.07% 96.36% Hybrid 55,000 x 5 96.73% 96.73% 92.62%

Status registers & 7658 78.87% 92.99% 94.40% 95.48% Hybrid 55,000 x 10 96.85% 96.85% 92.74%

access control Hybrid 55,000 x 20 96.93% 96.93% 92.81%

Coprocessor access 1410 80.35% 81.56% 88.79% 93.98%

unit

Exception handling 292 86.64% 83.22% 89.38% 85.35%

cer ¢ ° ° ° ° TABLE IV

Other 10822 91.02% 9255% 9738% 95.79% COMPARISONS OF VARIOUS SBST METHODS

ARMO-v4 137222 92.62% 95.43% 96.93%

compatible processor

ARMO-v4 1453586 97.73% CPU Methodology G“;e “"f“f“‘/l .« F.C%

compatible processor number of fau

(full scan) 2] OpenRISC 1200 Hybrid 44476 + 2021 state 92.30

(Soft core) elements / 186209
[4] MiniMIPS Deterministic 32,817/NA. 95.08
. (Soft core)
speed. As a result, testing time is not an issue, and neither is the test 4] OpenRISC Deterministic 35,657/N.A. 90.03
program storage with the use of the ATE system board illustrated pre- (Soft core)

. ; o [5) 16-bit DLX Random + DFT 27,860/43,927 92.50
viously. The sixth column also indicates the number of test cycles for (Soft core) hardware 94.85
scan chain testing [7] EX1 module of Deterministic N.A./ 24,962 95.20

. : . 5 Xtensa processor
Using only one type of the basic blocks, the random program (10 [10] ARM920T Functional testing ~ N.A/N.A. 90.00
blocks) achieves processor fault coverage of 90.3% for in-order blocks (Hard core) * DFT hardware
) p g 90.3% ’ Our work 1 ARMv4 ISA Hybrid 45,960/137222 96.93
91.6% for out-of-order blocks, and 89.1% for return blocks. The exper- (Soft core) (0.18 u/ 125MHz)
iments in this study indicate that the random program generating flow (603325811’ // 15312\1;3) 98.04
depicted in Fig. 1 is an effective basic block deployment strategy. Ourwork2 MiniMIPS Hybrid 50,325/150474 98.13
Table II shows the breakdown of processor fault coverage using an (Soft core) ig'lfo“/ﬁlfég’f;“z) 0846

ARMV4 processor core as an example. The random test programs per-
formed well for the decoder and the access control parts of the func-
tional modules. The hybrid test program performed better than the scan
chain method in testing the exception handling unit. This may be due
to the specific design of the pipelined exception unit, which handles
the exceptions of instruction abort, undefined instruction, data memory
abort, and external interrupts. For precise interrupt design, the former
two exceptions are recognized in the fetch stage and decode stage, re-
spectively, and passed through the pipeline registers, while the latter
two are directly fed into the unit for exception processing. The scan-
based method is effective in testing the former two exceptions since the
signals are buffered through the pipeline registers. On the other hand,
the SBST method assisted by the test shell design sends test patterns
and receives responses through input and output ports directly, so some
more faults of the circuits without the buffered registers can be detected
for the latter two cases. For some of the units, the hybrid test program
has much lower coverage such as the instruction fetch unit in ARMv4
and the memory access unit in miniMIPS (not shown here). The reason
for this appears to be the abundant address space which may not be fully
explored by the test program, while the scan chain method can generate
much more effective test patterns using automatic test pattern genera-
tion (ATPG) in these cases.

B. Impact of Random Test Program Size and Observation Methods

We also study the effect of random test program size and fault ob-
servation methods on processor fault coverage. Table III lists the fault
coverage of various test programs with three observation methods,
observing doubled edges and the positive edge both with MISR, and
the data written in the memory. First, we observe that increasing
the random test program size above 55000 x 20 (about 1.1 x 10°
instructions) produces relatively small improvements in fault coverage
and thus results of program size beyond that are not reported. Both
MISR observation methods obtain the same fault coverage since the

(0.35u/ 50MHz)

clocking methodology of the target processors used triggers at the
rising edge, and thus faults can only propagate at the rising edge. The
macro observation method, which tries to emulate the observation
method based on the written results of the test program, performs
relatively poorly in fault coverage measurement. Since only those
hardware signal cycles that are related to the correctness of the written
results are observed, the fault coverage obtained using this method is
4%—8% less than that provided by the other two models. These results
indicate that observing the written results from the memory used by
an SBST test program is not sufficient for fault coverage assessment
since many faults simply “slip away” without notice. In other words, a
full-spectrum hardware response observation method is required, such
as the MISR method.

C. Comparisons With Other Works

Table IV compares the processor fault coverage of various SBST
testing methodologies. In [4], the proposed SBST method focuses on
the pipeline logic and automation of test program generation. In [7],
the study only shows the fault coverage based on functionally testable
faults for a large logic module, called EX1, which was extracted from
the Xtensa processor. In [10], the ARM processors were tested using
functional testing approach. Table IV shows that the proposed hybrid
test program clearly presents itself as a viable approach for practical use
either as an effective alternative or enhancement for the manufacturing
test of microprocessors.

D. Application and Limitation

The automation of SBST has been one of the most important long-
term goals for processor testing. To help achieve this goal, this paper
presents a basic-block based random test program generation method

520 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011

that contributes to the automation effort. Test programs like the deter-
ministic program can be developed ahead and included in a test code
template library to help generate and evaluate a useful hybrid test pro-
gram. In contemporary SoC chips, the ARM and MIPS CPU are widely
used processor cores which are often implemented in a pipeline fashion
with in-order execution model for embedded applications. Since the
proposed test programs work well on both processors, they should be
useful in similar pipeline processor cores. For superscalar processors
with out-of-order feature, VLIW processors, or larger processors like
those used in desktop applications, this can be an interesting study for
SBST methods but it is beyond the scope of this paper.

V. CONCLUSION

This paper presents a high-performance hybrid test program for soft-
ware-based self-testing of pipeline processor cores. Experiments on
two complex real-life pipeline processors with different gate-level im-
plementations show that the random test program and the deterministic
test program can nicely compensate for each other for fault detection.
Used together, the hybrid test program achieves good processor fault
coverage of more than 98%. This study also develops a test shell to
cope with random program execution and interrupt testing. To clarify
fault coverage evaluation, this study also presents the concept of micro
observation versus macro observation for test responses, showing that
the most effective method used for SBST is through a MISR connected
to the local bus of the processor.

REFERENCES

[1] C.-H. Chen, C.-K. Wei, T.-H. Lu, and H.-W. Gao, “Software-based
self-testing with multiple-level abstractions for soft processor core,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 15, no. 5, pp. 505-517,
May 2007.

N. Kranitis, A. Merentitis, and D. Gizopoulos, “Hybrid-SBST method-
ology for efficient testing of processor cores,” IEEE Des. Test Comput.,
vol. 25, no. 1, pp. 64-75, Jan./Feb. 2008.

N. Kranitis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Effective
software self-test methodology for processor cores,” in Proc. Des.
Autom. Test Eur., 2002, pp. 592-597.

D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A.
Paschalis, A. Raghunathan, and S. Ravi, “Systematic software-based
self-test for pipelined processors,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 16, no. 11, pp. 1441-1453, Nov. 2008.

[5] K. Batcher and C. Papachristou, “Instruction randomization self test
for processor cores,” in Proc. 17th IEEE VLSI Test Symp., 1999, pp.
34-40.

P. Parvathala, K. Maneparambil, and W. Lindsay, “FRITS-A micro-
processor functional BIST method,” in Proc. Int. Test Conf., 2002, pp.
590-598.

[7] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, “A scalable software-
based self-test methodology for programmable processors,” in Proc.
40th Des. Autom. Conf., Jun. 2003, pp. 548-553.

[8] I. Bayraktaroglu, J. Hunt, and D. Watkins, “Cache resident functional
microprocessor testing: Avoiding high speed IO issues,” in Proc. Int.
Test Conf., 2006, pp. 27-34.

[9] OPENCORES.ORG, “miniMIPS CPU,” 2008. [Online]. Available:
WWWw.opencores.org/projects/minimips

[10] A. Burdass, G. Campbell, and R. Grisenthwaite, “Embedded test and
debug of full custom and synthesisable microprocessor cores,” in Proc.
IEEE Eur. Test Workshop, 2000, pp. 17-22.

[11] Y.-C. Lin, Y.-Y. Tsai, K.-J. Lee, C.-W. Yen, and C.-H. Chen, “A soft-
ware-based test methodology for direct-mapped data cache,” presented
at the IEEE 17th Asian Test Symp. (ATS), Sapporo, Japan, Nov. 2008.

[12] Mentor Graphics, USA, “ModelSim SE,” version 6.3c, 2007. [Online].
Available: http://www.model.com/

[13] Synopsys Inc., San Jose, CA, “Design Analyzer,” version X-2005.09,
2006. [Online]. Available: http://www.synopsys.com/

[14] SynTest Technologies Inc., USA, “TubroScan,” version 2.8, 2007. [On-
line]. Available: http://www.syntest.com/

[2

—

3

[t

[4

=

[6

[t

On-Chip Interconnect Analysis of Performance and Energy
Metrics Under Different Design Goals

Ling Zhang, Yulei Zhang, Hongyu Chen, Bo Yao,
Kevin Hamilton, and Chung-Kuan Cheng

Abstract—As semiconductor process technology scales down, intercon-
nect planning presents ever-greater challenges to designers. In this paper,
we analyze, evaluate, and compare various metrics with optimized wire
configurations in the contexts of different design criteria: delay minimiza-
tion, delay-power minimization, and delay®-power minimization. We show
how various design criteria influence the configuration, performance, and
power consumption of repeated wires.

Index Terms—Analysis, energy-delay optimization, high speed, intercon-
nect, low power.

I. INTRODUCTION

The importance of interconnect planning has been widely accepted,
as the significance of both the delay and power of wire is growing
[1]-[3]. A great challenge has been posed: how to design on-chip wires
to meet increasing requirements for communication speed within spe-
cific power and area constraints. Under the objective function of min-
imizing delay, the performance of repeated wire has been well studied
[4], [5], and there are many previous optimization works on wire sizing,
wire spacing. For the energy-delay optimization, much work [6]-[9]
has been done from the gate level to the architecture level optimization.

Our work focuses on repeated global wires, which has been widely
used in practice [5], [10], [11]. We revamp the repeated on-chip inter-
connect configuration for multi-objective optimization, and our goal is
to develop and present methods and guidelines to aid the designer in
choosing the best interconnect strategy. To fulfill this goal, simple yet
accurate wire models are critical. We use Elmore delay model [4], [12]
and power model considering short circuit [13] and leakage current
[14]. Hspice simulation is performed to validate the model accuracy.
Details are discussed in Sections II and III-D.

Our main contributions are as follows.

1) We formulate various metrics to measure the quality of wire
types and configurations.

2) We adopt simple and effective models to estimate the delay and
power of repeated wires. The power model takes short circuit
current and leakage current into account. We validate the model
accuracy with Hspice simulations.

3) We conduct numerical experiments to demonstrate the optimal
value of wire configurations, performance metrics, and their re-
lations under different design goals. We demonstrate that for
design sensitive to power consumption, the objective of mini-
mizing delay® X power can acquire much more power efficient
interconnects with relative lower performance cost.

Manuscript received February 06, 2009; revised June 20, 2009. First pub-
lished November 17, 2009; current version published February 24, 2011.

L. Zhang and C.-K. Cheng are with the Department of Computer Science
and Engineering, University of California, San Diego, La Jolla, CA 92037 USA
(e-mail: lizhang @cs.ucsd.edu; ckcheng @ucsd.edu).

K. Hamilton and Y. Zhang are with the Department of Electrical and Com-
puter Engineering, University of California at San Diego, La Jolla, CA 92037
USA (e-mail: khamilton@alumni.ucsd.edu; ylzhang @ucsd.edu).

B. Yao is with the Mentor Graphics Corporation, Wilsonville, OR 97070 USA
(e-mail: bo_yao@mentor.com).

Digital Object Identifier 10.1109/TVLSI.2009.2035322

1063-8210/$26.00 © 2009 IEEE

