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Abstract—Hardware-and-software full system co-verification 

and co-simulation in the early stage of SoC development, i.e., 

before HDL code synthesis, is usually a big challenge for design 

engineers. In this paper, we propose a QEMU-based full system 

simulation framework to tackle the problem faced with the 

design of an embedded multi-view 3D GPU (graphic processing 

unit). Through the framework, we are able to extensively 

explore the multi-view GPU architecture, and at the same time 

software designers can develop and debug the associated device 

drivers and graphics applications by simulating the GPU design 

in full system operation. This approach greatly improves the 

ESL design process and shortens the development time for the 

complex multi-view GPU system. 

I. INTRODUCTION 

When developing a complex SoC system such as a multi-
view GPU, the verification task of the hardware architecture 
and software algorithm often takes most of the development 
time. It’s a big challenge for engineers to develop the system 
without adequately efficient simulation and verification 
methodologies. Recently, using an electronic system level 
(ESL) design flow and transaction-level modeling (TLM) 
models has become a popular approach to perform hardware-
and-software co-verification in the early development stage 
[1]. Nevertheless, it’s still very slow and time-consuming to 
simulate the whole system, including device drivers, operating 
system (OS), and software applications (APs) by using current 
commercial ESL tools.  

Specifically, the SystemC instruction set simulator (ISS) 
module usually expands an enormous amount of time in 
booting up the OS. A designer may take more than half an 
hour just waiting for the OS to come up before he or she can 
actually start the debugging task for the RTL modules. 

An embedded multi-view GPU design is such a system 

which requires full system simulations of the GPU’s SystemC 

and/or RTL codes with the application graphics benchmarks 

running on the operating system (Linux in this case). In this 

paper, we propose an efficient hybrid full system simulation 

platform to meet the ESL simulation need of the multi-view 

GPU system. The rest of this paper includes the following 

sections. Section II highlights the hybrid full system 

simulation framework. Section III gives the overview of the 

multi-view GPU simulation platform and Section IV presents 

the multi-view GPU architecture. Some evaluation results 

using the hybrid simulation system are presented in Section V. 

Finally, a brief conclusion is given in Section VI.  

II. HYBRID FULL SYSTEM SIMULATION FRAMEWORK 

Fig. 1 shows the hybrid full system simulation framework 

which consists of the QEMU virtual machine [2], the QEMU-

SystemC patch [3], and a commercial ESL tool. The QEMU 

virtual machine is a high-speed functional simulator that 

executes the software programs such as the OS, device driver, 

and graphics APs for the target multi-view GPU design which 

resides in the commercial ESL tool environment. The 

QEMU-SystemC is a patch to QEMU to provide a SystemC 

wrapper for hardware simulation. The ESL tools we use 

include CoWare PA [4] and ModelSim [5], one for high-level 

SystemC simulation and the other for HDL simulation. 

For the original QEMU-SystemC wrapper, it only provides 

a single slot for system-C hardware module, so that it is not 

suitable for simulating a complex SoC system and cannot 

involve to HDL code simulation. Since we look forward to 

simulating the full system with the elaborate GPU module not 

only for SystemC but also RTL models, a more flexible, 

compatible, and efficient bridge interface is needed. In our 

scenario, to form an ARM AMBA-based system [6], we have 

developed and improved the QEMU-SystemC bridge 

interface which connects the local bus in the QEMU side to 

the AHB bus of the ESL tool side both for SystemC and HDL 

simulator. Because the TCP/IP stack is a highly flexible and 

universal communication protocol, it’s chosen to achieve the 

new bridge interface. By implementing the new bridge 

interface through TCP/IP sockets, the QEMU virtual machine 

and the commercial ESL simulator can run in different host 

machines. Consequently, the simulating tasks can be 

accelerated by distributing the computation more efficiently. 

In this way, we have logically created a full system which 
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Figure 1.  Structure of the QEMU-SystemC hybrid full system simulation 
platform 

is able to simulate the processor, OS, device drivers, as well 

as graphics benchmarks (functionally simulated by the 

QEMU virtual machine) and at the same time simulate the 

multi-view GPU either in highly abstract SystemC modules 

or in synthesizable RTL modules. In this system, through the 

bridge interface, the QEMU virtual machine simply treats the 

design in the ESL tool as a general hardware device on its 

local bus system. Therefore, the programs executed on the 

QEMU virtual machine are allowed to access and control the 

hardware module via the load/store instructions of the 

processor directly. 

With this hybrid simulation methodology, developers can 

emulate the processor and the software run upon it in a much 

higher speed and verify the interactions between the software 

programs and the hardware modules before a synthesizable 

HDL code is ready. The designer in this case only needs to 

wait less than one minute for the OS to boot up for full 

system simulations compared to half an hour. In addition, 

because the QEMU virtual machine has already provided a 

channel to connect with GNU GDB debugger, software 

engineers can start to design and debug system programs and 

APs in the early stage of system development projects. Since 

all of this happens as early as the project begins, this hybrid 

full system simulation platform can also help in smoothing 

the task of building an actual hardware prototype, such as an 

FPGA verification system, prior to chip fabrication. 

III. MULTI-VIEW GPU SIMULATION PLATFORM OVERVIEW 

In this section, by using the previous hybrid full system 

simulation framework, we present the methodology of 

developing a multi-view 3D GPU built out of a tile-based 

rendering architecture [7]-[14]. Fig. 2 shows the data 

processing flow of a multi-view graphics system intended for 

use in auto-stereoscopic displays. In order to be used in cross 

platforms and different OSs, the multi-view GPU design 

follows the standard application programming interface (API) 

of the OpenGL ES (open graphics library for embedded 

system) [15]. 

The multi-view GPU processor consists of three pipelined 

processing units, that is, the geometry engine (GE), the 

 

Figure 2.  Data flow of the multi-view GPU 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Full system simulation for the multi-view GPU scenario 

rasterizing engine (RE), and the Depth Image-Based-

Rendering (DIBR) unit which generates the multi-view 

graphics for a 3D auto-stereoscopic display [16]-[17]. Fig. 3 

shows the system architecture of the design in the hybrid full 

system simulator. As it can be seen, the graphics applications 

and the simulated OS both run on the ARM-based virtual 

machine within the QEMU simulator. This part of the 

simulation is performed in terms of functional accuracy as 

our primary interest here is the functional verification of the 

system software, the implemented graphics APIs, and the 

GPU drivers. 

Through the AHB interface virtual hardware, the drawing 

commands, for instance, from the graphics application can be 

issued to the GE, RE, and DIBR hardware modules in the 

CoWare ESL simulator. Note that with this environment, we 

can explore both the functional models of the multi-view 

GPU in the early stage of the development as well as the 

synthesizable RTL models when they are ready, all in the 

capacity of efficient full system simulations. 

IV. MULTI-VIEW GPU ARCHITECTURE  

Fig. 4 presents the overall hardware architecture of the 

multi-view 3D GPU design. The DIBR module takes the 
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Figure 4.  Multi-view GPU architecture 

TABLE I.  THE VERIFICATION ENVIRONMENT 

Power MBX SDK Microsoft Visual Studio 2005 

SystemC Development 
GCC 4.1.2 

SystemC v2.0.1 

Full System Simulation 

QEMU v0.9.1 with Linux kernel 

v2.6.18-6 for ARM Versatile-PB 

CoWare PA v2007.1.2 

ModelSim 6.3 

TABLE II.  MULTI-VIEW GPU EVALUATION PARAMETERS 

Parameter Setting 

Tile Size 32x32 

Resolution 640x480 

Frequency 200MHz 

No. of Views 2 

Pixel Format RGBD 8888 

Bus Architecture ARM AHB 2.0 with 32-bit width 

Bus Arbitration Scheme Fixed priority 

Local Frame Buffer 2-cycle latency (SRAM) 

 

output of the RE unit, including the color map and the depth 

map of the frame to generate the required multi-view images. 

We have investigated the following architectural issues to 

improve the performance and reduce the memory traffic for 

this multi-view GPU design: 

� Profiling graphics benchmarks and their processing 

requirements due to various levels of details in the 

workload. 

� Quantifying the effect of various tile-sizes on the 

memory traffic. 

� Exploring various fixed point data formats for quality 

graphics  

� Automatic adjustment of the shifted pixel number for 

different displays that have various pixel pitches in 

multi-view image synthesis. 

V. EVALUATION RESULTS 

We have implemented the multi-view GPU module in both 

SystemC TLM and Verilog HDL model and evaluated in the 

hybrid full system simulation platform. The work includes 

porting the OpenGL ES library and designing the device 

drivers of the multi-view GPU module onto the ARM Linux 

system within the QEMU virtual machine. Table I shows the 

verification environment for our multi-view GPU design, 

including a reference suite of the OpenGL ES pipeline 

implementation for comparison. Table II shows the 

simulation parameters used to present the results in this paper. 

The local AHB bus uses fixed priority for bus arbitration 

although using other types of the arbitration policy is not 

excluded for evaluation. 
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To quantify the fixed-point data format on graphics quality 

and our GPU optimization strategies which include 

abandoning small area of triangles for processing and various 

anti-aliasing schemes used, we define the average pixel data 

difference between the image generated by our graphics GPU 

and the image produced by the reference implementation as 

shown in Equ.(1). Specifically, Equ.(1) represents the average 

pixel errors between the images produced by our GPU 

scheme and by the PowerVR MBX SDK [18], where Cs is the 

pixel value of image generated by our GPU model and Cr is 

the pixel value of image from PowerVR. 

Fig. 5(a) shows the average pixel errors in RGB channels 

respectively for the SystemC TLM design. Most of the errors 

are very small; only some of them have a diffence value of 

about 1.5. Note that 1.5 out of 255 in pixel value difference is 

quite small because this tiny error shift will not be recognized 

by human vision in general. Traditional PSNR metric used in 

video quality evaluation is not suitable for graphics since 

there is no compression here. Fig. 5(b) shows the average 

pixel errors of our Verilog HDL model which uses fixed-

point data format and our SystemC model which uses 

floating-point data format. The purpose of this comparison is 

to evaluate the chosen fixed-point data operation on the 

quality of the generated graphics. The result indicates that the 

images generated by the fixed-point GPU have very little 

variations compared with their floating-point counterpart. 

One of the critical factors in tile-based rendering is the 

tile size to be used since for embedded applications this first 

means the on-chip buffer cost and secondly it affects the 

external memory traffic coming from the GPU. Reducing the 

memory traffic directly reduces the power consumption. Fig. 

6 shows the data traffic reduction ratio of the RE module for 
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(a) Average delta error of SystemC TLM model to reference design 

 

(b) Average delta error of Verilog HDL model v.s SystemC TLM Model 

Figure 5.  Comparisons of average pixel values 

 

Figure 6.  Data traffic reduction compared with 16x16 tile size 

different tile size used compared with the traffic of the 

baseline tile size, 16x16. The 640x480 case is used for 

comparison; assuming perfect on-chip buffer size which 

equals the frame resolution. From the result, we note that 

when using a 64x32 tile, the reduction ratio only grows up 

around 5% than the size of 32x32 case, but using twice the 

buffer size. Hence, by trading-off the local frame buffer size 

and the amount of data traffic reduction, we select the tile 

size of 32x32 for our GPU design. 

VI. CONCLUSIONS 

We have presented a high performance full system 

simulation platform with the QEMU-SystemC virtual 

machine and used it to show the design of a multi-view 3D 

GPU. By means of this virtual platform, developers are able 

to perform hardware verification as well as software 

debugging efficiently in addition to high-level architecture 

explorations. This hybrid full system simulator allows the 

system engineers to evaluate and analyze the system for both 

the hardware architecture and software algorithm in the early 

stage of design either in SystemC TLM models or HDL 

models. Through the simulator, we have introduced the pixel 

value difference metric to quantify the graphics quality of the 

GPU design, when either referring to the reference 

implementation, or to the floating point version. The result 

shows that only small differences in pixel value are found for 

the fourteen graphics benchmarks that have various levels of 

details. 
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