
Full System Simulation with QEMU:

an Approach to Multi-view 3D GPU Design

Shye-Tzeng Shen, Shin-Ying Lee, and Chung-Ho Chen

Dept. of Electrical Engineering and Inst. of Computer & Communication Engineering

National Cheng Kung University

Tainan, Taiwan

{shen, sing}@casmail.ee.ncku.edu.tw, chchen@mail.ncku.edu.tw

Abstract—Hardware-and-software full system co-verification

and co-simulation in the early stage of SoC development, i.e.,

before HDL code synthesis, is usually a big challenge for design

engineers. In this paper, we propose a QEMU-based full system

simulation framework to tackle the problem faced with the

design of an embedded multi-view 3D GPU (graphic processing

unit). Through the framework, we are able to extensively

explore the multi-view GPU architecture, and at the same time

software designers can develop and debug the associated device

drivers and graphics applications by simulating the GPU design

in full system operation. This approach greatly improves the

ESL design process and shortens the development time for the

complex multi-view GPU system.

I. INTRODUCTION

When developing a complex SoC system such as a multi-
view GPU, the verification task of the hardware architecture
and software algorithm often takes most of the development
time. It’s a big challenge for engineers to develop the system
without adequately efficient simulation and verification
methodologies. Recently, using an electronic system level
(ESL) design flow and transaction-level modeling (TLM)
models has become a popular approach to perform hardware-
and-software co-verification in the early development stage
[1]. Nevertheless, it’s still very slow and time-consuming to
simulate the whole system, including device drivers, operating
system (OS), and software applications (APs) by using current
commercial ESL tools.

Specifically, the SystemC instruction set simulator (ISS)
module usually expands an enormous amount of time in
booting up the OS. A designer may take more than half an
hour just waiting for the OS to come up before he or she can
actually start the debugging task for the RTL modules.

An embedded multi-view GPU design is such a system

which requires full system simulations of the GPU’s SystemC

and/or RTL codes with the application graphics benchmarks

running on the operating system (Linux in this case). In this

paper, we propose an efficient hybrid full system simulation

platform to meet the ESL simulation need of the multi-view

GPU system. The rest of this paper includes the following

sections. Section II highlights the hybrid full system

simulation framework. Section III gives the overview of the

multi-view GPU simulation platform and Section IV presents

the multi-view GPU architecture. Some evaluation results

using the hybrid simulation system are presented in Section V.

Finally, a brief conclusion is given in Section VI.

II. HYBRID FULL SYSTEM SIMULATION FRAMEWORK

Fig. 1 shows the hybrid full system simulation framework

which consists of the QEMU virtual machine [2], the QEMU-

SystemC patch [3], and a commercial ESL tool. The QEMU

virtual machine is a high-speed functional simulator that

executes the software programs such as the OS, device driver,

and graphics APs for the target multi-view GPU design which

resides in the commercial ESL tool environment. The

QEMU-SystemC is a patch to QEMU to provide a SystemC

wrapper for hardware simulation. The ESL tools we use

include CoWare PA [4] and ModelSim [5], one for high-level

SystemC simulation and the other for HDL simulation.

For the original QEMU-SystemC wrapper, it only provides

a single slot for system-C hardware module, so that it is not

suitable for simulating a complex SoC system and cannot

involve to HDL code simulation. Since we look forward to

simulating the full system with the elaborate GPU module not

only for SystemC but also RTL models, a more flexible,

compatible, and efficient bridge interface is needed. In our

scenario, to form an ARM AMBA-based system [6], we have

developed and improved the QEMU-SystemC bridge

interface which connects the local bus in the QEMU side to

the AHB bus of the ESL tool side both for SystemC and HDL

simulator. Because the TCP/IP stack is a highly flexible and

universal communication protocol, it’s chosen to achieve the

new bridge interface. By implementing the new bridge

interface through TCP/IP sockets, the QEMU virtual machine

and the commercial ESL simulator can run in different host

machines. Consequently, the simulating tasks can be

accelerated by distributing the computation more efficiently.

In this way, we have logically created a full system which

This work was sponsored and supported in part by the Himax Technologies
Inc. and partly by the National Science Council of Taiwan under grand NSC

96-2221-E-006-192-MY3.

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 3877

Authorized licensed use limited to: National Cheng Kung University. Downloaded on August 05,2010 at 11:51:59 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Structure of the QEMU-SystemC hybrid full system simulation
platform

is able to simulate the processor, OS, device drivers, as well

as graphics benchmarks (functionally simulated by the

QEMU virtual machine) and at the same time simulate the

multi-view GPU either in highly abstract SystemC modules

or in synthesizable RTL modules. In this system, through the

bridge interface, the QEMU virtual machine simply treats the

design in the ESL tool as a general hardware device on its

local bus system. Therefore, the programs executed on the

QEMU virtual machine are allowed to access and control the

hardware module via the load/store instructions of the

processor directly.

With this hybrid simulation methodology, developers can

emulate the processor and the software run upon it in a much

higher speed and verify the interactions between the software

programs and the hardware modules before a synthesizable

HDL code is ready. The designer in this case only needs to

wait less than one minute for the OS to boot up for full

system simulations compared to half an hour. In addition,

because the QEMU virtual machine has already provided a

channel to connect with GNU GDB debugger, software

engineers can start to design and debug system programs and

APs in the early stage of system development projects. Since

all of this happens as early as the project begins, this hybrid

full system simulation platform can also help in smoothing

the task of building an actual hardware prototype, such as an

FPGA verification system, prior to chip fabrication.

III. MULTI-VIEW GPU SIMULATION PLATFORM OVERVIEW

In this section, by using the previous hybrid full system

simulation framework, we present the methodology of

developing a multi-view 3D GPU built out of a tile-based

rendering architecture [7]-[14]. Fig. 2 shows the data

processing flow of a multi-view graphics system intended for

use in auto-stereoscopic displays. In order to be used in cross

platforms and different OSs, the multi-view GPU design

follows the standard application programming interface (API)

of the OpenGL ES (open graphics library for embedded

system) [15].

The multi-view GPU processor consists of three pipelined

processing units, that is, the geometry engine (GE), the

Figure 2. Data flow of the multi-view GPU

Figure 3. Full system simulation for the multi-view GPU scenario

rasterizing engine (RE), and the Depth Image-Based-

Rendering (DIBR) unit which generates the multi-view

graphics for a 3D auto-stereoscopic display [16]-[17]. Fig. 3

shows the system architecture of the design in the hybrid full

system simulator. As it can be seen, the graphics applications

and the simulated OS both run on the ARM-based virtual

machine within the QEMU simulator. This part of the

simulation is performed in terms of functional accuracy as

our primary interest here is the functional verification of the

system software, the implemented graphics APIs, and the

GPU drivers.

Through the AHB interface virtual hardware, the drawing

commands, for instance, from the graphics application can be

issued to the GE, RE, and DIBR hardware modules in the

CoWare ESL simulator. Note that with this environment, we

can explore both the functional models of the multi-view

GPU in the early stage of the development as well as the

synthesizable RTL models when they are ready, all in the

capacity of efficient full system simulations.

IV. MULTI-VIEW GPU ARCHITECTURE

Fig. 4 presents the overall hardware architecture of the

multi-view 3D GPU design. The DIBR module takes the

QemuQemuQemuQemu----SystemC WrapperSystemC WrapperSystemC WrapperSystemC Wrapper

AHBAHBAHBAHB

AHB AHB AHB AHB
MasterMasterMasterMaster

SDRAMSDRAMSDRAMSDRAM
ModuleModuleModuleModule

MMMM

SSSS

Interrupt Interrupt Interrupt Interrupt
ControllerControllerControllerController

Socket Interface Socket Interface Socket Interface Socket Interface ((((ServerServerServerServer))))

Socket Interface Socket Interface Socket Interface Socket Interface ((((ClientClientClientClient))))

QemuQemuQemuQemu----SystemC WrapperSystemC WrapperSystemC WrapperSystemC Wrapper

ARM System Emulator ARM System Emulator ARM System Emulator ARM System Emulator ((((ARM Versatile baseboard ARM Versatile baseboard ARM Versatile baseboard ARM Versatile baseboard))))
AHB Interface Virtual HardwareAHB Interface Virtual HardwareAHB Interface Virtual HardwareAHB Interface Virtual Hardware

QemuQemuQemuQemu
((((CCCC, , , , CCCC++)++)++)++)

CoWareCoWareCoWareCoWare
((((SystemCSystemCSystemCSystemC, , , , HDLHDLHDLHDL))))

Geometry Geometry Geometry Geometry
EngineEngineEngineEngine

MMMM

PPPPPPPP

SSSS

Rasterizer Rasterizer Rasterizer Rasterizer
EngineEngineEngineEngine

MMMM

PPPP

SSSS

DIBR DIBR DIBR DIBR
EngineEngineEngineEngine

MMMM

PPPP

SSSS

OpenGL ES Application

Debian GNU/Linux OS

Device driver

3878

Authorized licensed use limited to: National Cheng Kung University. Downloaded on August 05,2010 at 11:51:59 UTC from IEEE Xplore. Restrictions apply.

Primitive
Assembly

Vertex Pipeline

Triangle SetupVertex
Data

Scan
Conversion

Fragment
Generation

Per-fragment
Operations

On-chip
buffer

Triangle
Processing Tile Sorting

Figure 4. Multi-view GPU architecture

TABLE I. THE VERIFICATION ENVIRONMENT

Power MBX SDK Microsoft Visual Studio 2005

SystemC Development
GCC 4.1.2

SystemC v2.0.1

Full System Simulation

QEMU v0.9.1 with Linux kernel

v2.6.18-6 for ARM Versatile-PB

CoWare PA v2007.1.2

ModelSim 6.3

TABLE II. MULTI-VIEW GPU EVALUATION PARAMETERS

Parameter Setting

Tile Size 32x32

Resolution 640x480

Frequency 200MHz

No. of Views 2

Pixel Format RGBD 8888

Bus Architecture ARM AHB 2.0 with 32-bit width

Bus Arbitration Scheme Fixed priority

Local Frame Buffer 2-cycle latency (SRAM)

output of the RE unit, including the color map and the depth

map of the frame to generate the required multi-view images.

We have investigated the following architectural issues to

improve the performance and reduce the memory traffic for

this multi-view GPU design:

� Profiling graphics benchmarks and their processing

requirements due to various levels of details in the

workload.

� Quantifying the effect of various tile-sizes on the

memory traffic.

� Exploring various fixed point data formats for quality

graphics

� Automatic adjustment of the shifted pixel number for

different displays that have various pixel pitches in

multi-view image synthesis.

V. EVALUATION RESULTS

We have implemented the multi-view GPU module in both

SystemC TLM and Verilog HDL model and evaluated in the

hybrid full system simulation platform. The work includes

porting the OpenGL ES library and designing the device

drivers of the multi-view GPU module onto the ARM Linux

system within the QEMU virtual machine. Table I shows the

verification environment for our multi-view GPU design,

including a reference suite of the OpenGL ES pipeline

implementation for comparison. Table II shows the

simulation parameters used to present the results in this paper.

The local AHB bus uses fixed priority for bus arbitration

although using other types of the arbitration policy is not

excluded for evaluation.

resolution

CC

deltaaverage

resolutionji

ji

rS ji∑
=

==

−

=

,

0,0
_ Equ.(1)

To quantify the fixed-point data format on graphics quality

and our GPU optimization strategies which include

abandoning small area of triangles for processing and various

anti-aliasing schemes used, we define the average pixel data

difference between the image generated by our graphics GPU

and the image produced by the reference implementation as

shown in Equ.(1). Specifically, Equ.(1) represents the average

pixel errors between the images produced by our GPU

scheme and by the PowerVR MBX SDK [18], where Cs is the

pixel value of image generated by our GPU model and Cr is

the pixel value of image from PowerVR.

Fig. 5(a) shows the average pixel errors in RGB channels

respectively for the SystemC TLM design. Most of the errors

are very small; only some of them have a diffence value of

about 1.5. Note that 1.5 out of 255 in pixel value difference is

quite small because this tiny error shift will not be recognized

by human vision in general. Traditional PSNR metric used in

video quality evaluation is not suitable for graphics since

there is no compression here. Fig. 5(b) shows the average

pixel errors of our Verilog HDL model which uses fixed-

point data format and our SystemC model which uses

floating-point data format. The purpose of this comparison is

to evaluate the chosen fixed-point data operation on the

quality of the generated graphics. The result indicates that the

images generated by the fixed-point GPU have very little

variations compared with their floating-point counterpart.

One of the critical factors in tile-based rendering is the

tile size to be used since for embedded applications this first

means the on-chip buffer cost and secondly it affects the

external memory traffic coming from the GPU. Reducing the

memory traffic directly reduces the power consumption. Fig.

6 shows the data traffic reduction ratio of the RE module for

3879

Authorized licensed use limited to: National Cheng Kung University. Downloaded on August 05,2010 at 11:51:59 UTC from IEEE Xplore. Restrictions apply.

(a) Average delta error of SystemC TLM model to reference design

(b) Average delta error of Verilog HDL model v.s SystemC TLM Model

Figure 5. Comparisons of average pixel values

Figure 6. Data traffic reduction compared with 16x16 tile size

different tile size used compared with the traffic of the

baseline tile size, 16x16. The 640x480 case is used for

comparison; assuming perfect on-chip buffer size which

equals the frame resolution. From the result, we note that

when using a 64x32 tile, the reduction ratio only grows up

around 5% than the size of 32x32 case, but using twice the

buffer size. Hence, by trading-off the local frame buffer size

and the amount of data traffic reduction, we select the tile

size of 32x32 for our GPU design.

VI. CONCLUSIONS

We have presented a high performance full system

simulation platform with the QEMU-SystemC virtual

machine and used it to show the design of a multi-view 3D

GPU. By means of this virtual platform, developers are able

to perform hardware verification as well as software

debugging efficiently in addition to high-level architecture

explorations. This hybrid full system simulator allows the

system engineers to evaluate and analyze the system for both

the hardware architecture and software algorithm in the early

stage of design either in SystemC TLM models or HDL

models. Through the simulator, we have introduced the pixel

value difference metric to quantify the graphics quality of the

GPU design, when either referring to the reference

implementation, or to the floating point version. The result

shows that only small differences in pixel value are found for

the fourteen graphics benchmarks that have various levels of

details.

REFERENCES

[1] Brian Bailey, Grant Martin, and Andrew Piziali, “ESL design and
verification: a prescription for electronic system level methodology,”
Morgan Kaufman/Elsevier, 2007.

[2] Fabrice Bellard, “QEMU, a fast and portable dynamic translator,”
USENIX Annual Technical Conference, 2005.

[3] Monton, Marius Portero, Antoni Moreno, Marc Martinez,
Borja Carrabina, Jordi CEPHIS, “Mixed SW/SystemC SoC emulation
framework,” IEEE Symposium on Industrial Electronics (ISIE), 2007.

[4] CoWare Inc., “CoWare platform architect,” http://www.coware.com.

[5] Mentor Graphics, “ModelSim-advanced simulation and debugging,”
http://www.model.com.

[6] ARM Ltd., “AMBA specifications,” http://www.arm.com.

[7] H. Fuchs et al., “Pixel-planes 5: a heterogeneous multiprocessor
graphics system using processor-enhanced memories,” Proc. Ann. Conf.
Computer graphics and interactive techniques (SIGGRAPH’89), pp.
79-88, July 1989.

[8] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs, “A
sorting classification of parallel rendering,” IEEE Computer Graphics
and Applications, vol. 14, no. 4, pp. 23-32, July 1994.

[9] M. Cox and N. Bhandari, “Architectural implications of hardware-
accelerated bucket rendering,” Proc. on ACM SIGGMPH/
EURDGRAPHICS Workshop on Graphics Hardware, pp. 25-34, 1997.

[10] M. Chen, G. Stoll, H.Igehy, K. Proudfoot , and P. Hanmahan, “Simple
models of the impact of overlap in bucket rendering” Proc. on ACM
SIGGMPH/EURDGRAPHICS Workshop on Graphics Hardware, pp.
105-112, 1998.

[11] I. Antochi, B. Juurlink, S. Vassilidadis, and P. Liuha, “Memory
bandwith requirements of tile-based rendering, ” in Proc. of the Third
and Fourth International Workshops SAMOS 2003 and SAMOS 2004
(LNCS 3133), pp. 323-332, July 2004.

[12] J. Hasselgren and T. Akenine-Möller, “An efficient multi-view
rasterization architecture,” Proc. on Eurographics Symposium
Rendering, pp. 61-72, 2006.

[13] A. Kalaiah and T.K. Capin, “A unified graphics rendering pipeline for
autostereoscopic rendering,” IEEE 3DTV Conference, May 2007.

[14] T. Capin, K. Pulli, and T. Akenine-Möller, “The state of the art in
mobile graphics research,” IEEE Computer Graphics and Applications,
vol. 28, no. 4, pp. 63-73, July/August 2008.

[15] A. Munshi and J. Leech, “OpenGL ES common/common-lite profile
specification version 1.11.10,” Khronos Group, April 2007.

[16] C. Fehn, “A 3D-TV approach using depth-image-base rendering,” Proc.
of Visualization, Imaging, and Image Processing, pp. 482-487,
September 2003.

[17] C. Fehn, R. Barre, and S. Pastoor, “Interactive 3-DTV--concepts and
key technologies,” Proc. of the IEEE, vol. 94, No. 3, pp. 524 - 538,
March 2006.

[18] Imagination Technologies Ltd., “PowerVR technology overview,”
2004

3880

Authorized licensed use limited to: National Cheng Kung University. Downloaded on August 05,2010 at 11:51:59 UTC from IEEE Xplore. Restrictions apply.

