
1072 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Configurable VLSI Architecture for Deblocking
Filter in H.264/AVC

Chung-Ming Chen and Chung-Ho Chen, Member, IEEE

Abstract—In this paper, we study and analyze the computational
complexity of the deblocking filter in H.264/AVC baseline decoder
based on SimpleScalar/ARM simulator. The simulation result
shows that the memory reference, content activity check opera-
tions, and filter operations are known to be very time consuming in
the decoder of this new video coding standard. In order to improve
overall system performance, we propose a configurable, extensible,
and synthesizable window-based processing architecture which
simultaneously processes the horizontal filtering of vertical edge
and vertical filtering of horizontal edge. As a result, the memory
performance of the proposed architecture is improved by four
times when compared to previous designs. Moreover, the system
performance of our window-based architecture significantly out-
performs the previous designs from 7 times to 20 times.

Index Terms—Deblocking filter, H.264/AVC, video coding.

I. INTRODUCTION

V IDEO compression is the critical technology in today’s
multimedia systems. The limited transmission bandwidth

or storage capacity for applications such as HDTV, video con-
ferencing, 3G for mobile device, and Internet video streaming
emphasizes the demand for higher video compression rates. To
achieve this demand, the new video coding standard Recom-
mendation H.264 of ITU-T [1], also known as International
Standard 14496-10 or MPEG-4 Part 10 Advanced Video Coding
(AVC) of ISO/IEC, has been developed. It significantly outper-
forms the previous ones (i.e., H.261 [2], MPEG-1 Video [3],
MPEG-2 Video [4], H.263 [5], and MPEG-4 Visual or part 2
[6]) in bit-rate reduction. The functional blocks of H.264/AVC,
as well as their features, are shown in Fig. 1. Comparing the
H.264/AVC video coding tools (e.g., adaptive deblocking filter
[7], integer DCT-like transform [8] instead of the DCT [9],
multiple reference frame [10], new frame types (SP-frames and
SI-frames) [11], further predictions using B-slices [12], quarter
per motion compensation [13], or CABAC [14]) to the tools of
previous video coding standard, H.264/AVC provides the most
improved algorithm in the evolution of video coding as well
as error robustness and network friendliness [15]–[20]. At the
same time, preliminary studies [21] using software based on this

Manuscript received May 10, 2006; revised March 31, 2007 and April 2,
2007. This work was supported by the National Science Council, Taiwan, under
NSC Contract 94-2220-E-006-004.

C.-M. Chen is with the Electrical Engineering Department, National Cheng
Kung University, Tainan City 701, Taiwan, R.O.C. (e-mail: cmchen@ee.ncku.
edu.tw).

C.-H. Chen is with the Electrical Engineering Department and Institute of
Computer and Communication Engineering, National Cheng Kung University,
Tainan City 701, Taiwan, R.O.C. (e-mail: chchen@mail.ncku.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2008.2000516

Fig. 1. Block diagram of H.264/AVC.

new standard suggest that H.264 offers up to 50% better com-
pression than MPEG-2 and up to 30% better than H.263+ and
MPEG-4 advanced simple profile.

As our experimental result indicates, the operation of the
deblocking filter is the most time consuming part of H.264/AVC
video decoder. The block-based structure of the H.264/AVC
architecture produces artifacts known as blocking artifacts.
These blocking artifacts can occur from both quantization of
the transform coefficients and block-based motion compensa-
tion. In order to reduce the blocking artifacts, the overlapped
block motion compensation (OBMC) [22] is adopted into
H.263 standard. Unlike the OBMC in H.263, H.264/AVC
adopts an adaptive deblocking filter [7] that has shown to be
a more powerful tool in reducing artifacts and improving the
video quality. As a result, the filter reduces the bit rate typically
by 6%–9% while producing the same objective quality as the
nonfiltered video [23]. As shown in Fig. 2(a) a nonfiltered and
Fig. 2(b) a filtered image, we can observe the different image
quality between the nonfiltered and the filtered image at QP
equal to 36. Adaptive deblocking filter can also be used in
interpicture prediction to improve the ability to predict other
picture as well. Since it is within the motion compensation
prediction loop, the deblocking filter is often referred to as an
in-loop filter. A detailed description of the adaptive deblocking
filter can be found in [7].

The filtering operations of H.264/AVC standard require more
instructions to process deblocking. Due to intensive computa-
tions, in [24]–[33] and [34] dedicated hardware was developed
for acceleration. However, the deblocking filter described in
the H.264/AVC standard is highly adaptive. Several parameters
and thresholds, as well as the content of the picture itself, con-
trol the boundary strength of the filtering process. These issues
are also equally challenging during parallel processing under

1063-8210/$25.00 © 2008 IEEE

CHEN AND CHEN: CONFIGURABLE VLSI ARCHITECTURE FOR DEBLOCKING FILTER IN H.264/AVC 1073

Fig. 2. Quality between nonfiltered and filtered images. (a) Unfiltered (QP =
36). (b) Filtered (QP = 36).

DSP or SIMD computational architecture. In order to reduce the
conditional branch operations, we include the content activity
check operations, table-derived operations, filtering operations,
and computation of boundary strength operations into the edge
filtering operation (EFO) unit to accelerate the deblocking fil-
tering of H.264/AVC video coding. In addition, we propose an
efficient VLSI architecture to improve memory performance by
four times when compared to previous designs. The proposed
architecture is called configurable window-based architecture
(WIN). It uses a novel processing order within a frame to si-
multaneously process the horizontal filtering of vertical edge
and vertical filtering of horizontal edge. Hence, our architecture
is able to significantly improve the system performance and re-
duce the power consumption in the embedded system.

The organization of this paper is as follows. In Section II, the
algorithm of the deblocking filter is given. Section III analyzes
the computational complexity of H.264/AVC baseline decoder.
Section IV illustrates the various configuration of our proposed
architecture. Section V shows the simulation results. Finally, the
conclusion is presented in Section VI.

II. ALGORITHM OF DEBLOCKING FILTER

In this section, we briefly describe the algorithm of de-
blocking filter in H.264/AVC from processing order to sample
processing level. A detailed description of the adaptive de-
blocking filter can be found in [7].

A. Processing Order

As the H.264/AVC standard suggests [1], for each luminance
macroblock, the left-most edge of the macroblock is filtered
first, followed by the other three internal vertical edges from left
to right. Similarly, the top edge of the macroblock is filtered first,
followed by the other three internal horizontal edges from top
to bottom. Chrominance filtering follows a similar order in each
direction for each 8 8 chrominance macroblock, as shown in
Fig. 3.

According to this rule, there are four types of processing or-
ders, which are proposed by [24], [26], and [28], as shown in
Figs. 4–7. It is obvious that adaptive deblocking filter shall be
applied to all 4 4 block edges of a picture, except for the edges
at the boundary of the picture. Therefore, most of the 4 4
blocks need to be filtered four times with the adjacent blocks
(left, right, top, and bottom). In order to improve the memory
performance, we propose a configurable and extensible VLSI

Fig. 3. Processing order depicted in standard.

Fig. 4. Basic processing order of [24].

Fig. 5. Advanced processing order of [24].

architecture with novel processing order to reduce memory ref-
erence of each 4 4-block to one as will be presented in Sec-
tion IV.

B. Sample Processing Level

On the sample processing level, the quantization parameter,
threshold value of Alpha and Beta, and content of the picture
itself can turn on or turn off the filtering for each individual
set of sample. For example, Fig. 8 illustrates the principle of
the deblocking filter using a one-dimensional visualization of

1074 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Fig. 6. Processing order of [26].

Fig. 7. Novel processing order of [28].

a block edge in a typical situation where the filter would be
turned on. Whether the samples and as well as and

are filtered is determined by using Boundary Strength (Bs),
dependent threshold Alpha(QP) and Beta(QP), and content of
the picture itself. Thus the filtering of and only takes place
if the following content activity check operations are satisfied:

Bs (1)

Alpha QP (2)

Beta QP and Beta QP (3)

Correspondingly, the filtering of or takes place if the
condition below is satisfied:

Beta QP and Beta QP (4)

The dependency of Alpha and Beta on the quantizer links the
strength of filtering to general quality of the reconstructed pic-
ture prior to filtering. For small quantizer values, the thresholds

Fig. 8. Principle of deblocking filter.

TABLE I
SIMULATOR PARAMETER

both become zero, and filtering is effectively turned off alto-
gether.

The basic idea is that if a relatively large absolute difference
between samples near a block edge is measured, it is quite likely
to be a blocking artifact and should therefore be reduced. How-
ever, if the magnitude of that difference is so large that it can no
longer be explained by the coarseness of the quantization used
in the encoding, the edge is more likely to reflect the actual be-
havior of the source picture and should not be smoothed over.

III. COMPUTATIONAL COMPLEXITY

The simulator used in this study is derived from the Sim-
pleScalar/ARM tool set [35], a suite of functional and timing
simulation tools for ARM ISA. Our baseline simulation config-
uration models the Intel’s StrongARM SA-110 processor. The
hardware parameter is listed in Table I.

The H.264/AVC JM9.2 code [36] is used for reporting the
complexity assessment experiments. The test sequences used
in the computational complexity assessment are Forman 30 Hz
QCIF and CIF, Mother and Daughter 30 Hz QCIF, and Mobile
and Akiyo 30 Hz CIF. A fixed quantization parameter setting
with a QP of 28 has been assumed.

One of the most important issues in the computational com-
plexity of the H.264/AVC decoder is the distribution of time
complexity among its major subfunction. In our simulation re-
sult shown in Table II, deblocking filtering (36%) is the largest
component, followed by interpolation (22%), bitstream parsing

CHEN AND CHEN: CONFIGURABLE VLSI ARCHITECTURE FOR DEBLOCKING FILTER IN H.264/AVC 1075

TABLE II
COMPUTATIONAL COMPLEXITY OF DECODER

and entropy decoding (13%), and inverse transfers and recon-
struction (13%).

IV. PROPOSED ARCHITECTURE

In this paper, our proposed architecture can be configured as
five types of processing engine. Configuration 1 is the edge fil-
tering unit, which includes content activity check operations,
table-derived operations, and the edge filter unit. Configuration
2 is the SPA, a simultaneous process engine that employs a novel
processing order to simultaneously process the horizontal fil-
tering of vertical edge and vertical filtering of horizontal edge.
Configuration 3 is the vertical processing approach, which uses
buffering scheme to reuse previous loaded block and the reduce
the number of memory references. Configuration 4, is the SPA
with a parallel processing engine to improve the overall perfor-
mance. Finally, Configuration 5 is the configurable and exten-
sible window-based architecture with parallel processing engine
that uses memory FIFO instead of register file to reduce system
cost.

A. Configuration 1: Edge Filtering Operation Unit

The complexity of the H.264/AVC Deblocking Filter mainly
comes from two places. The first is the high adaptive filtering,
which requires several conditional processing on each block
edge and sample level. As described in the previous section, the
computation of boundary strength, the threshold value of Alpha
and Beta, the table-derived operations, and EFO are known to be
very time consuming. Therefore, we propose an efficient VLSI
architecture that includes these content activity check operations
into the EFO unit to accelerate the horizontal and vertical fil-
tering on the boundary of two adjacent basic 4 4 blocks, as
shown in Fig. 9. A detailed description of the edge filtering unit
can be found in [27]. There are five subfunctions in our EFO
unit, as described below.

1) Computation of Boundary Strength: The purpose of com-
puting boundary strength is to determine whether a block arti-
fact may have been produced across the boundary, and thus de-
termine the appropriate strength (Bs) of the filter to be used on
the edge. A Boundary Strength (Bs) is assigned an integer value
from 0 to 4. The strongest filter Bs is used if one or both
sides of edges are intra coded and the boundary is a macroblock
boundary, whereas a value of 0 means no filtering is applied on
this specific edge. In the standard mode of filtering which is ap-
plied for edges with Bs from 1 to 3, the value of Bs affects the
maximum modification of the sample values that can be caused
by filtering. Fig. 10 shows how the value of Bs is determined.

2) Filtering Operation: The most important function of the
deblocking filter is the filtering operation, which is divided into
two modes. A special mode of filtering that allows for stronger

Fig. 9. EFO unit.

filtering is applied when Bs is equal to 4. The others are standard
mode of filtering with a Bs parameter of 1 to 3, as shown in the
following.

Luma4 for Q sample:

(5)

(6)

(7)

Luma4 for P sample:

(8)

(9)

(10)

Chroma4 for P and Q sample:

(11)

(12)

Luma and Chrom: (, 2, and 1)

Dif Clip

(13)

Clip Dif (14)

Clip Dif (15)

Luma only: (, 2, and 1)

Dif Clip

(16)

Dif (17)

Dif Clip

(18)

Dif (19)

1076 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Fig. 10. Flowchart for determining boundary strength.

3) Clipping Operation: The filtering operation may result in
too much low-pass filtering (blurring). A significant part of the
adaptive filter is obtained by limiting these values. This process
is called clipping. There are five clipping operations in our pro-
posed architecture, as shown in the filtering operation. A de-
tailed description of the clipping operation can be found in [7].

4) Content Activity Check Operation: Conditional branches
which are described below almost inevitably appear in the inner
most loops of the algorithm. The major content activity checks
(conditional branches) are listed in (1)to (4) and described in
Section II.

5) Table-Derived Operations: In order to simultaneously
access Alpha, Beta, and Clip tables, we used combinational
logic to implement Alpha, Beta, and Clip tables instead of using
memory buffer, since most values of these tables are zero. It
can save most of the space of memory buffer, improve overall
system performance, and reduce power consumption.

B. Configuration 2: Simultaneous Processing Architecture

Another reason for the high complexity is the small block size
employed for residual coding in the H.264/AVC video coding
algorithm. With the 4 4 blocks and a typical filter length of
two samples in each direction, each sample in a picture must be
loaded/stored from/to memory four times either to be modified
or to determine if the neighboring samples will be modified. In
order to reduce the number of memory references and improve
the overall system performance, we propose the second config-
uration architecture, which can simultaneously process the hor-
izontal filtering of vertical edge and vertical filtering of hori-
zontal edge, as shown in Fig. 11. The proposed architecture is
called simultaneous processing architecture (SPA).

There are three major subfunctions in our SPA architecture.
The first component is the Shift Operation Array (SOA). There
are six forwarding shift register arrays in our proposed archi-
tecture (for example, A1, W1, W2, W3, W4, and W5). Each
array contains four entries which contains four processed sam-
ples. The shift direction is shown in Fig. 11. The second func-
tion in our proposed architecture is the transposing operation
(i.e., T1 and T2), as shown in Fig. 11. T1 and T2 latch the 4

4 block sample values that are transposed from A1 and W5, re-
spectively. The final important functions are the horizontal and
vertical filter units, which are described in the previous subsec-
tion.

The basic macroblock processing sequence using raster scan
order and the number of block cycles for processing each mac-
roblock of a QCIF frame are shown in Fig. 12. Table III and
Fig. 7 presents the data flow of processing a macroblock. For
a basic 4 4-block, it takes 13 block cycles (52 clock cycles)
to process the first block B1 and the number of total processing
time for each 16 16 macroblock is 32 block cycles (128 clock
cycles). In the first 5 block cycles (the first 20 clock cycles),
the blocks E1, E2, E3, E4, and E5 are loaded from the internal
memory to SPAs W3, W2, W1, T1, and A1, respectively, and
no filtering operations are performed. In the next two block cy-
cles (state 6 and state 7 in Table III), the horizontal filtering
of vertical edge V6 and V7 are performed sequentially. At the
eighth block cycle, the proposed architecture SPA can simulta-
neously process the horizontal filtering of vertical edge V8 (the
boundary of block B2 and B3) and the vertical filtering of hor-
izontal edge H8 (the boundary of block E1 and B1), and write
block E1 to the internal memory at the next block cycle (the
ninth block cycle). At the thirteenth block cycle, the vertical fil-
tering of horizontal edge H13 (the boundary of block B1 and B5)
is performed. At this time, block B1 has finished 4 times of fil-
tering with the adjacent blocks (left block E5, right block B2, top
block E1, and bottom block B5). Finally, SPA writes block B1
to the internal memory at the fourteenth block cycle. Therefore,
the number of total processing time for a QCIF frame is 5537
block cycles (Luma is 2863, two Chroma are).

C. Configuration 3: Vertical Processing Architecture

The basic idea of the vertical processing approach is to save
the initial phase (seven or eight block cycles) and buffer the
initial blocks B13, B14, B15, and B16 in SPAs W2, W1, T1,
and A1, respectively, as shown in Fig. 13 and Table IV. When
processing the next macroblock M2, the SPA with vertical pro-
cessing order does not need to process the initial step nor load
these initial blocks. Thus we can save seven (cluster 1) or eight

CHEN AND CHEN: CONFIGURABLE VLSI ARCHITECTURE FOR DEBLOCKING FILTER IN H.264/AVC 1077

Fig. 11. SPA architecture.

Fig. 12. Macroblock order and the number of block cycles for luma.

(cluster 2 to cluster 11) block cycles. The number of block pro-
cessing cycle is shown for each macroblock in Fig. 14. As a
result, the number of the total block cycles needed to process a
QCIF frame is one luma two chroma
(13 252 clock cycles). Table IV shows the data flow of the ver-
tical processing order.

D. Configuration 4: Parallel Processing Architecture

In order to speed up the processing time (the fourth config-
uration), the EFO unit can be extended to a parallel engine. As

TABLE III
DATA FLOW OF SPA PROCESSING ORDER

shown in Fig. 15, both the horizontal and vertical filter units can
be extended to four EFO units, and the memory bus can also
be extended to 128-bit width. Therefore, the performance can
achieve 4 times when compared to configuration 3. As a result,
the number of the total cycles needed to process a QCIF frame
is 3313 (Luma is 2031, two Chroma are).

E. Configuration 5: Configurable Window-Based Architecture

The most cost-efficient approach is to use memory FIFO
instead of register array A1, W1, W2, W3, W4, and W5, as
shown in Fig. 16 (the fifth configuration), the configurable
window-based architecture. The advantages of configurable
window-based architecture are lower hardware cost, lower
power consumption, and flexibility (configurable at any size of
window).

1078 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Fig. 13. Buffering scheme.

TABLE IV
DATA FLOW OF VERTICAL PROCESSING ORDER

For luma blocks of a QCIF frame (basic 4
4 blocks) using the advanced window processing approach, the
window size is configured to 44. As shown in Fig. 17, it requires
44 block cycles to load and process the first phase (the initial
phase). At the 47th block cycle, block B1 completes all adjacent
filtering (edge V2 and H47) and then it is written back to the
internal memory in the next block cycle (the 48th block cycle).
After that, B2 follows and so on. Table V shows the data flow
of advanced 44 windows processing. There are five states and
two filtering operations, as shown in Table V. For the first state
A1 (at the 47th block cycle), the basic 4 4 block data (B47)
is fetched from the internal memory to A1 FIFO and is filtered
with adjacent block B46 for vertical edge V47 using a horizontal
filtering unit. At second state T1 (at the 48th block cycle), block
B48 is fetched from the internal memory and filtered with block
B47, and then transposes the filtered block B47 from vertical
to horizontal and store the transposed block B47 to T1 register
array. At the window state W1 (at the 49th block cycle), block

Fig. 14. Vertical processing order and the number of block cycles for luma.

B47 is filtered with block B3 for the edge H49. Now, block B3
has completed all filtering with adjacent block B2, B4, and B47
(left, right, and button). At the same time, the horizontal filtering
unit also performs the filtering for vertical edge V49 between
block B48 and block B49. Then the system writes block B3 to
the internal memory at the 50th block cycle. Then edge V50,
H50, and the rest follow in the same way. As a result, the number
of total processing time for all luma blocks using the WIN44
architecture is block cycles (6524 cycles)

For chrominance, there are two QCIF chroma blocks (
basic 4 4 blocks) to be processed. The processing ap-

proach is the same as the luma blocks but the window size is con-
figured to 22 (WIN22). The processing order and data flow are
presented in Fig. 18 and Table VI respectively. The initial pro-
cessing time for each chroma block using the WIN22 is 25 block
cycles. At the 26th block cycle, the first block B1 has finished
two times of filtering and will be written to the internal memory
at the 27th block cycle. After that, B2 follows and so on. As
a result, the number of total processing time for two chroma
blocks using the WIN22 architecture is

block cycles (3368 cycles). Therefore, the total number of
processing time for a QCIF (one luma and two chroma) using
WIN44 and WIN22 is block cycles (9892
cycles).

According to different image resolution, the configurable
window-based architecture can be configured to any size
of windows by setting the window registers, as shown in
Table VII. Moreover, the performance can achieve a 4 speed
improvement, when both the horizontal and vertical filter unit
are extended to 4 EFO units (WIN44Parallel).

V. RESULT

The simulation results are shown in Table VIII. The architec-
ture of WIN as a coprocessor can accelerate the H.264/AVC de-
coder system. Moreover, the number of total memory references
for load and store is reduced by 34% and 36%, respectively.

CHEN AND CHEN: CONFIGURABLE VLSI ARCHITECTURE FOR DEBLOCKING FILTER IN H.264/AVC 1079

Fig. 15. Parallel processing configuration.

Fig. 16. Configurable window-based architecture.

Fig. 17. Advanced window processing order for WIN44.

1080 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Fig. 18. Advanced window processing order for WIN22.

TABLE V
DATA FLOW OF ADVANCED 44 WINDOWS PROCESSING

TABLE VI
DATA FLOW OF ADVANCED 22 WINDOWS PROCESSING

TABLE VII
NUMBER OF BLOCK CYCLES FOR VARIOUS RESOLUTIONS

TABLE VIII
PERFORMANCE COMPARISON

A. Memory Performance

Using our proposed window-based architecture, the memory
performance is improved by four times when compared to the

TABLE IX
MEMORY REFERENCE OF VARIOUS ARCHITECTURES

software implementation. Table IX shows the comparison of
various architectures to process a macroblock (one 16 16
luma block and two 8 8 chroma blocks). The memory ac-
cess times of our WIN architecture using novel processing are
reduced by 600 to 64, when compared to the previous design in
[24], [28], [30], and [34]. In other words, the reduced memory
reference will result in higher performance and better power
consumption.

B. System Performance

As shown in the previous section, when using 44 and 22
window size and parallel architecture for luma and chroma re-
spectively, the filtering for a QCIF frame takes 1631 and

cycles respectively. As a result, the total filtering takes
2473 cycles for a QCIF frame. Our filtering scheme takes fewer
cycles when compared to ,

, , and cycles of
the architecture described in [24], [26], [28], and [34]. Table X
shows the performance comparison of various architectures.

C. Implementation

We implemented the configurable window-based architecture
by VHDL language and synthesized the design using TSMC
0.18 m Artisan CMOS cell library with Synopsys Design
Compiler by setting the critical path constraint to 10 ns (100
MHz). The hardware comparison of the various architectures is
shown in Table XI.

D. Verification

In order to verify our configurable window-based architec-
ture, we modified JM9.2 to fit our test platform and implemented
our proposed architecture on FPGA, as shown in Fig. 19. The
data file of the reconstructed pixel before filtering is saved in

CHEN AND CHEN: CONFIGURABLE VLSI ARCHITECTURE FOR DEBLOCKING FILTER IN H.264/AVC 1081

Fig. 19. Block diagram of verification.

TABLE X
PERFORMANCE COMPARISON OF VARIOUS ARCHITECTURES

TABLE XI
HARDWARE COMPARISON OF VARIOUS ARCHITECTURES

YUV nonfiltered data RAM, which is driven from the software
model and then sent to the deblocking filter architecture under
control. The YUV filtered results are compared with the filtered
results of software module.

VI. CONCLUSION

In this paper, we propose a configurable window-based
VLSI architecture to accelerate the operations of deblocking
filter for H.264/AVC video coding. The major idea is to reduce
the number of memory references through the simultaneous
processing architecture WIN using a novel processing order. As
a result, the processing capability of the proposed architecture
is very appropriate for real-time deblocking of high-definition
television (HDTV, 1920 1080 pixels/frame, 60 frames/s
video signals) video operating at 60 MHz, and the area is very
small (around 14.75 K logic gates + bit memory
FIFO).

REFERENCES

[1] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec-
ommendation H.264, Mar. 2003, , .

[2] ITU-T Recommendation H.261, Video Codec for Audiovisual Services
at p X 64 kbit/s Mar. 1993.

[3] Information Technology-Coding of Moving Pictures and Associated
Audio for Digital Storage Media at Up to About 1.5 Mbit/s, ISO/IEC
11172, 1993, Geneva.

[4] Generic Coding of Moving Pictures and Associated Audio Information-
Part 2: Video Also ITU-T Recommendation H.262, ISO/IEC 13818-2,
1994.

[5] Video Coding for Low Bit Rate Communication, ITU-T Recommenda-
tion H.263, 1998.

[6] Information Technology-Coding of Audiovisual Objects-Part 2: Visual,
ISO/IEC 14496-2, 2000.

[7] P. List, A. Joch, J. Lainema, G. Bjntegaard, and M. Karczewicz, “Adap-
tive deblocking filter,” IEEE Trans. Circuits Syst. Video Technol., vol.
13, no. 7, pp. 614–619, Jul. 2003.

[8] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-com-
plexity transform and quantization in H.264/AVC,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 13, no. 7, pp. 598–603, Jul. 2003.

[9] N. Ahmed, T. Natarajan, and R. Rao, “Discrete cosine transform,”
IEEE Trans. Comput., vol. C-23, no. 1, pp. 90–93, Jan. 1974.

1082 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

[10] T. Wiegand, X. Zhang, and B. Girod, “Long-term memory motion-
compensated prediction for video coding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 9, no. 2, pp. 70–84, Feb. 1999.

[11] M. Karczewicz and R. Kurceren, “The SP and SI frames design for
H.264/AVC,” IEEE Trans. Circuits Syst., vol. 13, no. 7, pp. 637–644,
Jul. 2003.

[12] T. Wiegand, H. Schwarz, A. Joch, and F. Kossentini, “Rate-constrained
coder control and comparison of video coding standards,” IEEE Trans.
Circuits Syst. Video Technol., vol. 13, no. 7, pp. 688–703, Jul. 2003.

[13] T. Wedi and H. G. Musmann, “Motion- and aliasing-compensated
prediction for hybrid video coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 7, pp. 577–587, Jul. 2003.

[14] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive bi-
nary arithmetic coding in the H.264/AVC video compression standard,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636,
Jul. 2003.

[15] J. Ribas-Corbera, P. A. Chou, and S. Regunathan, “A generalized hypo-
thetical reference decoder for H.264/AVC,” IEEE Trans. Circuits Syst.,
vol. 13, no. 7, pp. 674–687, Jul. 2003.

[16] B. Girod, M. Kalman, Y. J. Liang, and R. Zhang, “Advances in video
channel-adaptive streaming,” presented at the ICIP 2002, Rochester,
NY.

[17] Y. J. Liang and B. Girod, “Rate-distortion optimized low-latency video
streaming using channel-adaptive bitstream assembly,” presented at the
ICME 2002, Lausanne, Switzerland.

[18] S. H. Kang and A. Zakhor, “Packet scheduling algorithm for wireless
video streaming,” presented at the Int. Packet Video Workshop, Pitts-
burgh, PA, Apr. 2002.

[19] S. Wenger, “H.264/AVC over IP,” IEEE Trans. Circuits Syst., vol. 13,
no. 7, pp. 645–656, Jul. 2003.

[20] T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in
wireless environments,” IEEE Trans. Circuits Syst., vol. 13, no. 7, pp.
657–673, Jul. 2003.

[21] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video coding with H.264/AVC: Tools,
performance, and complexity,” IEEE Circuits Syst. Mag., vol. 4, no. 1,
pp. 7–28, First Quarter, 2004.

[22] M. I. T. Orchard and G. J. Sullivan, “Overlapped bock motion com-
pensation: An estimation-theoretic approach,” IEEE Trans. Image
Process., vol. 3, no. 5, pp. 693–699, Sep. 1994.

[23] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC
baseline profile decoder complexity analysis,” IEEE Trans. Circuits
Syst. Video Technol., vol. 13, no. 7, pp. 715–727, Jul. 2003.

[24] Y. W. Huang, T. W. Chen, B. Y. Hsieh, T. C. Wang, T. H. Chang, and
L. G. Chen, “Architecture design for de-blocking filter in H.264/JVT/
AVC,” in Proc. IEEE Conf. Multimedia Expo, 2003, pp. 693–696.

[25] M. Sima, Y. Zhou, and W. Zhang, “An efficient architecture for adap-
tive deblock filter of H.264/AVC video coding,” IEEE Trans. Consum.
Electron., vol. 50, no. 1, pp. 292–296, Feb. 2004.

[26] B. Sheng, W. Gao, and D. Wu, “An implemented architecture of
deblocking filter for H.264/AVC,” in Proc. IEEE Int. Conf. Image
Process. (ICIP’04), Oct. 2004, vol. 1, pp. 665–668.

[27] C. M. Chen and C. H. Chen, “An Efficient VLSI architecture of edge
filtering in H.264/AVC,” in Proc. IASTED Int. Conf. Circuits, Signals,
Syst., Oct. 2005, pp. 118–122.

[28] C. M. Chen and C. H. Chen, “An efficent architecture for deblocking
filter in H.264/AVC video coding,” in Proc. IASTED Int. Conf. Comput.
Graphics Imaging, Aug. 2005, pp. 177–181.

[29] C. M. Chen and C. H. Chen, “Parallel processing for deblocking filter
in H.264/AVC,” in Proc. IASTED Int. Conf. Commun., Internet, Inf.
Technol., Oct. 2005, pp. 188–191.

[30] C. M. Chen and C. H. Chen, “A memory efficient VLSI architecture
for deblocking filter in H.264 using vertical processing order,” in Proc.
IEEE Int. Conf. Intell. Sensors, Sensor Netw. Inf. Process., Dec. 2005,
pp. 361–366.

[31] C. M. Chen and C. H. Chen, “Window architecture for deblocking filter
in H.264/AVC,” in Proc. IEEE Int. Symp. Signal Process. Inf. Technol.,
Vancouver, BC, Canada, Aug. 2006, pp. 338–342.

[32] C. M. Chen, C. H. Chen, J. P. Zeng, W. C. Hsu, and C. T. Yu, “Win-
dows processing for deblocking filter in H.264/AVC,” in Proc. 32th
Annu. Conf. IEEE Ind. Electron. Soc., Paris, France, Nov. 2006, pp.
3428–3433.

[33] C. M. Chen and C. H. Chen, “An efficient pipeline architecture for
deblocking filter in H.264/AVC,” IEICE Trans. Inf. Syst., vol. E90-D,
no. 1, pp. 99–107, Jan. 2007.

[34] L. Li, S. Goto, and T. Ikenaga, “A highly parallel architecture for de-
blocking filter in H.264/AVC,” IEICE Trans. Inf. Syst., vol. E88-D, no.
7, pp. 1623–1629, Jul. 2005.

[35] D. C. Burger and T. M. Austin, SimpleScalar Tool Set, Version 2.0
Univ. Wisconsin, Madison, 1997, Tech. Rep..

[36] H.264/AVC Reference Software JM9.2.

Chung-Ming Chen received the M.S. degree in
electronic engineering from National Yunlin Uni-
versity of Science and Technology, Taiwan, R.O.C.,
in 1996 and the Ph.D. degree from Department
of Electrical Engineering, National Cheng Kung
University, Taiwan, in 2007.

He joined Elan Corp. (Fabless Corp.), Hsinchu,
Taiwan, in 2000, where he is currently Project
Leader for the System Chip Design Division. His
research interests include computer architecture,
VLSI architecture of video-coding, DSP architecture

design, and network processors.

Chung-Ho Chen received the M.S.E.E. degree
in electrical engineering from the University of
Missouri, Rolla, in 1989 and the Ph. D. degree
in electrical engineering from the University of
Washington, Seattle, in 1993.

He was a Faculty Member of the Department of
Electronic Engineering, National Yunlin University
of Science and Technology. In 1999, he joined the
Department of Electrical Engineering, National
Cheng Kung University, Tainan City, Taiwan,
R.O.C., where he is currently a Professor. His

research areas include advanced computer architecture, video technology, and
network storages. He coholds a U.S. patent on a multicomputer cluster-based
processing system and a R.O.C. patent on a multiple-protocol storage structure.

Dr. Chen was the Technical Program Chair of the 2002 VLSI Design/CAD
Symposium held in Taiwan.

