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Abstract 

 

We present a software-based test methodology that 
utilizes an on-chip processor to perform test 
procedures for direct-mapped data cache. The cache 
system under test is divided into two major groups, 
namely the memory modules and the logic modules. 
For the memory modules which include the tag 
memory, the data memory, and the physical address 
tag memory, systematic procedures to transform a 
widely-used March algorithm into various executable 
instruction sequences are developed. For the logic 
modules, extensive analysis on the functions as well as 
the structures (architecture, RTL, and gate-level) of 
these modules is carried out and effective test 
instruction sequences based on the analysis are 
derived. A 100% fault coverage for six conventional 
RAM fault models and 99.13% test efficiency for single 
stuck-at fault model are obtained on a real 32-bit RISC 
processor. These results validate the viability and 
effectiveness of the proposed methodology for data-
cache testing.  
 
1. Introduction 
 

Cache memories have played an important role in 
high performance computing by bridging the speed gap 
between the processor and the main memory. With the 
increase in processor clock rate, testing issues of the 
cache memories have become quite crucial. 
Conventional design-for-testability (DFT) techniques 
such as scan-cell insertion or built-in self-test (BIST) 
[1][2] usually create adverse effects on the area, 
timing, and power consumption of the cache system 
and have gradually become the bottleneck of large 
system designs [3]. Applying a software-based test 
scheme helps remove these impediments and can 
greatly improve the cache performance. 

In this paper, we propose a high-performance 
software-based test methodology to support the testing 
of a direct-mapped data cache. The cache system is 
divided into memory modules and logic modules for 
test sequence development. For the memory modules, 

which include a tag RAM, a data RAM, and a physical 
address tag RAM, the widely used March C- algorithm 
[4] is adopted, which is transformed into various 
pseudo instruction sequences according to the distinct 
features of these memory modules. For the logic 
components, we analyze both the functionality and the 
structure of each target component and derive the 
memory data state that will demonstrate different 
behavior should the component contain faults. During 
test application time, these data states are checked by 
the developed test program right after the memory 
states are set up. Therefore, if any data inconsistency 
occurs, the corresponding component can be identified 
as faulty immediately.  

The proposed methodology is applied to a direct-
mapped data cache embedded in an Linux-verified 
ARM-compatible processor and results in 100% fault 
coverage for six conventional RAM fault models and 
98.03% fault coverage or 99.13% test efficiency for the 
collapsed single stuck-at faults of the logic modules. 

The rest of this paper is organized as follows. 
Section 2 discusses previous work related to this paper. 
Section 3 introduces the architecture of the target cache. 
Section 4 describes the pseudo instruction notation and 
the development flow of test sequences. Section 5 
details the test generation procedures and lists the 
pseudo instructions for all modules under test. Two 
sample ARM assembly code segments are also given. 
Experimental results are presented and discussed in 
Section 6. Finally, Section 7 concludes our work. 
 
2. Previous Work 
 

Utilizing a processor as an internal tester to test on-
chip caches first appeared in [5] when van de Goor et 
al. introduced functional testing for microprocessors 
and proposed the first functional test methodology for 
on-chip memories. In their work, the data cache was 
divided into three classes: the fetch/store class, the 
memory class, and the look-up class. Specific 
functional fault models are proposed according to the 
functionality of the three classes and test sequences for 
each class are developed based on the proposed fault 
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models. Sosnowski extended the functional test 
methodology to various cache memory organizations 
including separated instruction and data cache, unified 
cache, and multi-level cache [6]. To reduce test time, a 
more efficient methodology to transform the March 
algorithm into pseudo-instruction sequences for tag 
memory testing of a direct-mapped data cache was 
proposed in [7]. It can be seen that previous test 
methods for cache memory mainly focus on 
developing test sequences for functional faults and no 
fault coverage is calculated. In this paper, we present a 
component-oriented test development methodology 
that takes into account not only the functional 
information, but also the architecture, RTL, and netlist 
information of a data cache. In addition, we apply the 
methodology to a real-life direct-mapped cache system 
in an ARM-compatible processor and demonstrate the 
effectiveness of the proposed method through actual 
fault coverage and test efficiency measurement. 
 
3. The Direct-Mapped Cache Model 
 

In this section we present our experimental 
platform, a direct-mapped data cache embedded in a 
five-stage pipelined processor. The processor supports 
ARMv4 instruction set [8] and memory management 
unit (MMU) for virtual memory capability. Through 
co-processor instructions, the processor can enable or 
disable the virtually-addressed cache system and 
perform privileged operations, including clearing or 
invalidating a specific cache line. The cache supports 
programmable write-through or write-back policy for 
write hit, and write-allocate or write-around policy for 
write miss. Fig. 1 shows the block diagram of the data 
cache system. 
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Figure 1. The target direct-mapped data cache 
This data cache contains 64 lines of tag and data 

memory and each data line consists of 8 words. Note 
that there is a physical address (PA) tag associated 
with each cache line [8]. The PA tag caches the 
physical page number of each cache line so that a 
replaced dirty cache line can be written back to the 

main memory using the PA tag for physical address 
without an expensive page table look-up. As can be 
seen, this data cache platform represents the most 
comprehensive design of a state-of-the-art data cache 
system and thus the proposed method can be easily 
extended to other simpler variants. 
 
4. Software-Based Test Sequence 
Generation 
 

To apply the software-based methodology, our first 
step is to classify the cache system into structural 
components so that a divide-and-conquer test code 
development strategy can be used. After classification, 
the development flow in Fig. 2 of the proposed 
software-based test methodology is applied. For 
memory arrays, we employ the March C- algorithm 
directly [4], which is a well-known and effective 
testing technique for RAM faults. For logic 
components, we make use of both functional and 
structural information to develop the test sequences. 
Then, the generated test code is fed to two fault 
simulators to examine the test efficiency and fault 
coverage. This process will be applied to all modules 
under test. 
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Figure 2. Development flow of the proposed 
software-based cache testing methodology 

In the following, we introduce the notations of the 
pseudo instructions that are used to represent the 
developed test sequences, followed by the test 
sequence development method. 
 
4.1. Pseudo Test Instructions 
 

The pseudo instruction notation helps improve the 
portability of the developed test sequences. Since each 
pseudo instruction can be easily translated into one or 
more processor-specific instructions, migration of the 
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developed test sequences to a target processor 
instruction set architecture (ISA) can be done easily 
through simple translation. 

Fig. 3 shows the address decoding scheme of a 
typical direct-mapped cache. The entire address is 
divided into three parts, namely tag, index, and word 
(concatenated with an offset). We use T, i, x to denote 
the contents of the tag, the index, and the word fields, 
respectively, and the triple [T,i,x] to denote the address. 
The definitions of all pseudo instructions are given 
below. 

Tag Index (i) Word Offset

Tag W0 W1 W2 W3 W4 W5 W6 W7

Mux

To processor

32

To main memory

(T)
x

 
Figure 3. Address decoding of a direct-

mapped cache. 
 R ([T,i,x], D) is a load instruction. The address 

[T,i,x] is used to load data D from the cache and a 
read hit is expected.  

 R ([T,i,x], D) is similar to R([T,i,x],D) except that 
a cache miss is expected. If this instruction is 
executed as expected, the cache line indexed by i is 
replaced with tag T along with data D from the 
main memory. 

 W ([T,i,x], D) denotes a store instruction that 
expects a cache hit. The data D are written into the 
addressed cache line after the execution of this 
instruction. 

 W ([T,i,x], D) denotes a store instruction that 
expects a cache miss. If this instruction is executed 
as expected, the data D are written to the main 
memory for write-around policy or written into the 
cache line after the line is fetched from the memory 
for write-allocate policy. 

 RM ([T,i,x], D) is only applicable when the data 
cache is disabled. The data are read directly from 
the main memory of address [T,i,x].  

 WM ([T,i,x], D) is only applicable when the data 
cache is disabled. The data D are written to the 
main memory directly. 

 INVi indicates an operation to invalidate row i of 
the data cache. With this instruction, the valid bit 
corresponding to the i-th cache line will be cleared. 

 CLEARi indicates a dump operation of the i-th 
cache line, i.e., the entire data line will be written 
back to the main memory and the dirty bit will be 
cleared. 

 EC and DC denote the operation(s) to enable and 
disable the data cache respectively. Note that the 
cache contents remain unchanged after DC 
instruction. 

 
4.2. Pseudo Test Sequences 
 

The test sequence development for each module can 
be divided into four phases: initialization, data setting, 
function execution, and result checking. These 4 
phases are described below using the valid unit as an 
example wherever appropriate:  

 Initialization phase: The program initializes the 
processor state and cache system. Using ARM 
processors as an example, the initialization program 
includes co-processor instructions that enable the 
MMU, code that fills in the appropriate page tables, 
and code that sets the proper cache policy.  

 Data setting phase: The instruction sequence 
creates data inconsistency between the test unit and 
the main memory by intentionally making the 
cached data or states different from their 
counterpart in the main memory. For example, if 
the valid bit of the i-th cache line is tested against 
the stuck-at-1 fault, we can use R ([T,i,x], D) to 
load the data D into the cache. Then the INVi 
instruction is used to clear the valid bit.  Next we 
issue DC to disable the cache. Finally, the WM 
([T,i,x], !D)  instruction  writes a complement 
data !D to the  address [T,i,x] in the main memory. 
In this case, the cache should has data D while !D 
are in the main memory of the same address.  

 Function execution phase: The instruction 
sequence triggers the target component. Continuing 
our example, the cache is activated again with the 
EC instruction and then an R ([T,i,x], !D) 
instruction is used to trigger the updating of the i-th 
valid bit with different loaded data !D from 
memory. 

 Result checking phase: The instruction sequence 
checks the result(s) of the previous phase against 
the expected one(s). In our example, if the loaded 
data are D instead of !D, then we can tell that the 
data are loaded from the cache instead of the main 
memory because the execution of R ([T,i,x], !D) 
results in a cache hit, i.e., becomes an R ([T,i,x], D) 
operation. Therefore, the INVi instruction did not 
take effect and we can conclude that there might be 
a stuck-at-1 fault on that valid bit.  
Many components of a direct-mapped data cache 

have similar features as the valid bit and therefore our 
methodology is quite realistic and effective for these 
components. For other components such as 
multiplexers or comparators that are not easy to detect 
using only functional patterns but have explicit input 
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controllability, a structural analysis is performed to 
collect specific input vectors for good structural fault 
coverage. These vectors are then transformed into 
pseudo instruction sequences and integrated into the 
final test software. In the next section we detail the test 
procedures for each component in the designated cache 
system. 
 
5. Testing a Direct-Mapped Data Cache 
 

The target data cache is classified into memory 
modules which include data RAM, tag RAM and PA 
tag RAM, along with logic modules including 
multiplexer, dirty unit, valid unit, tag address 
comparator, and cache controller. Since a detailed 
explanation of the test development flow has been 
depicted in Section 4.2 using a valid bit as an example, 
in the following we focus on highlighting the key 
features of each module and developing test sequences 
targeting these features.  
 
5.1. March Test Sequence development for 
memory modules 
 

The memory modules are all word-oriented and 
implemented with SRAM. To detect the various word-
oriented RAM faults including stuck-at-fault (SAF), 
transition fault (TF), address decoder fault (AF), state 
coupling fault (CFst), inversion coupling fault (CFin), 
and idempotent coupling fault (CFid), we use the data 
background described in [6] for the designated March 
C- algorithm. The data background sets for different 
word widths are generated for the data memory, tag 
memory, and PA tag memory respectively during the 
data setting phase as detailed below. 

 Data RAM: The ‘w0’ operation of the March C- 
algorithm can be transformed into an R([T,i,x], D) 
instruction with D being zero. The access of a 
subsequent R([T,i,x], D) instruction after the 
previous read miss will hit the cache and complete 
the ‘r0’ operation. The interleaved write-and-check 
process of the March algorithm can be carried out 
by issuing consecutive R and R instruction pairs 
with ascending or descending i. For the n-th pattern 
DBn in the data background set, the test sequence 
shown in Table 1 is applied for the traversal of the 
data RAM. 

Table 1. The March sequence for data RAM. 
Operation Instruction sequence 

wDB DC; WM([T,i,x],DBn) 
EC; R([T,i,x],DBn) 

rDB R([T,i,x],data) 
 Tag RAM: The transformed March algorithm is 

similar to the one used in data RAM except that the 

pre-generated data background pattern DBn is 
applied to tag (T) instead of a data line. To check if 
the tag DBn is correctly written into the tag array, 
complement data !D are written to address [DBn,i,x] 
in the main memory to set up the inconsistency. If 
the tag RAM at the i-th line is faulty, then the 
R([DBn,i,x],D) instruction will fail, i.e., miss in 
cache, and return !D instead of D. Table 2 shows 
the March test sequence for the tag array. 

Table 2. The March sequence for tag RAM. 
Operation Instruction sequence 

wDB DC; WM([DBn,i,x],D) 
EC; R([DBn,i,x],D) 

rDB DC; WM([DBn,i,x],!D) 
EC; R([DBn,i,x],D) 

 PA tag RAM: The test patterns of the PA tag 
RAM are the physical page numbers. Therefore, 
extra steps must be taken in the initialization phase 
to properly set up the contents of the page table. 
For each virtual address tag Tn, a corresponding 
physical page number DBn is allocated in the page 
table. Table 3 shows the test sequence for the PA 
tag RAM. First, W([Tn,i,x]) writes data D into 
cache entry (write-allocate) and DBn into PA tag. 
Then the complement data !D are written to the 
main memory location [Tn,i,x] by WM([Tn,i,x],!D). 
After  CLEARi writes back data D from cache to 
memory location [Tn,i,x], the R([Tn,i,x],D) 
instruction will return !D if the PA tag memory is 
faulty. 

Table 3. The March sequence for PA tag RAM. 
Operation Instruction sequence 

wDB EC; W ([Tn,i,x],D) 
DC; WM([Tn,i,x],!D) 

rDB EC; CLEARi 
DC; RM([Tn,i,x],D) 

 
5.2. Test Sequence development for logic 
modules 
 

The logic modules of the target data cache include 
several multiplexers, a dirty unit, a valid unit, a tag 
address comparator, and a cache controller. Next we 
describe the test procedures for each logic module. 

 Multiplexer: The test vectors for an N-to-1 
multiplexer can be efficiently derived using the 
scheme in [9]. Referring to Fig. 3, we can see that 
the inputs to the output multiplexer of the data 
RAM come from the entire data contents (W0 to 
W7) of the i-th data line and the word address x. 
The input vectors W0 to W7 can be loaded into 
data RAM using R([T,i,xn], Wn), where xn 
denotes the offset of the n-th vector word Wn. 
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Then R([T,i,xn], Wn) can be issued to  observe the 
test outputs. 

 Dirty unit: For the x-th word in the i-th data line, 
the corresponding dirty bit can be tested by 
checking if the data D are correctly written to the 
main memory after a replacement occurs. The 
instruction sequence “R([T,i,x], D), W([T,i,x], D)” 
loads data D into the cache line and asserts the dirty 
bit. After the sequence “DC, WM([T,i,x], !D), EC” 
creates the inconsistency between the cache and 
memory, a CLEARi or R([T’,i,x], !D) can be used 
to trigger the replacement for observation. 

 Tag address comparator: To obtain efficient 
vectors for the comparator, the netlist of the module 
is fed to the ATPG tool to generate the input pairs 
(A,B). The input An of the n-th test pattern can be 
loaded into tag RAM by issuing R([An,i,x], D) and 
then the comparison can be triggered by 
R([Bn,i,x], !D) for a cache miss or R([An,i,x], D) 
for a cache hit. The result of comparison can be 
observed from the acquired data D. 

 Cache controller: The functions and related test 
sequences of the cache controller are listed in Table 
4 without detailed explanation due to space 
limitation.  

Table 4. Software-based test sequences for 
the cache controller. 

Tested function Test sequences 
Enable/ 
disable 

DC, WM([T,i,x],D), EC, R([T,i,x],D), DC, 
WM([T,i,x], !D), EC, R([T,i,x],D)  

Invalidate DC, WM([T,i,x],D), EC,R([T,i,x],D), DC, 
WM([T,i,x], !D), EC, INVi, R([T,i,x], !D) 

Clear 
DC, WM([T,i,x],D), EC, R([T,i,x],D), DC, 
WM([T,i,x], !D), EC, CLEARi, DC, 
RM([T,i,x],D)  

Write-back 
policy 

DC, WM([T,i,x],D), EC, R([T,i,x],D), DC, 
WM([T,i,x], !D), EC, R([T’i,x],D), DC, 
RM([T,i,x],D)  

Write-through 
policy 

EC, W([T,i,x],D), W([T’i,x],!D), DC, 
RM([T,i,x],!D), EC, R([T,i,x],!D)  

Write-allocate 
 policy 

DC, WM([T,i,x], !D), EC, R([T,i,x], !D), 
DC, WM([T’i,x], !D), WM([T,i,x],D), EC, 
W([T’i,x],D), DC, RM([T’5p ,i,x], !D) , 
EC, R([T’i,x],D) 

Write-around 
policy 

DC, WM([T,i,x],D), EC, R([T,i,x],D), DC, 
WM([T,i,x],D), EC, W([T’i,x], !D), DC, 
RM([T’i,x],!D) , EC, R([T,i,x],D) 

 
5.3. Example of assembly code for direct-
mapped data cache 
 

We use two examples to illustrate the relation 
between the pseudo instructions and the actual 
processor assembly code. Fig. 4 shows the assembly 
codes for March element “↑wDB” of data RAM and 

those for the “Enable/Disable” operation of the 
controller. In the program, R0 is used for cache 
enable/disable, R1 for address [T,i,x], R2 for D, R3 
for !D, R4 for entry size (64 in our cache), R5 for line 
size (8 in our cache), and R6 for read value. EC and 
DC are cache enable and disable macros. 

For wDB,  lines 01~ 06 set the required register; 
lines 08~09 (DC, WM[T,i,x], DBn) set D in memory; 
lines 10~11 (EC, R [T,i,x], DBn) use a cache miss to 
write D into data memory; lines 12~16 check two loop 
parameters to see if all data locations are processed. 
For Enable/Disable, the test sequences are similar to 
wDB except that the results are stored to memory for 
observation in lines 14~15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Assembly code of wDB and 
Enable/Disable. 

 
6. Experimental Results 
 

To evaluate the efficiency of our methodology, we 
use ARM Development Suite (ADS) v1.2 [10] to 
assemble our test code, Cadence Verilog-XL [11] to 
run the logic simulation and capture stilumi for test 
analysis, Design Compiler [12] to synthesize our 
Linux-verified ARM-compatible processor [13] along 
with the target direct-mapped cache, RAMSES 
simulator [14] to run the RAM fault simulation, and 
Syntest Turboscan [15] to run the logic fault simulation. 
 
6.1. Test Results for Memory Modules 
 

For memory module testing, the processor performs 
March operation on memories just like an internal 
memory BIST tester. We apply our transformation 
methodology to March C- algorithm which can 
effectively detect all SAF, TF, AF, CFst, CFin, and 
CFid faults. The RAM fault coverage reported from 
RAMSES shows that the proposed software-based 

; ↑wDB 
01:   MOV R1, #DataBase ;[T,i,x] 
02:   MOV R2, #0              ;DBn 
03:   MVN R3, #0              ;!DBn 
04:   MOV R4, #DCacheEntry 
05:m_wDB_entry_1 
06:   MOV R5, #LineSize 
07:m_wDB_line_1 
08:   DC   R0 
09:   STR   R2, [R1] 
10:   EC   R0 
11:   LDR   R6, [R1], #WordInc 
12:   SUBS   R5, R5, #0x1 
13:   BNE   m_wDB_line_1 
14:   MOV R5, #LineSize 
15:   SUBS   R4, R4, #0x1 
16:   BNE   m_wDB_entry_1 

(a) wDB test sequence of data RAM

; Enable/Disable 
01:   MOV R1, #DataBase ;[T,i,x] 
02:   MOV R2, #0              ;D 
03:   MVN R3, #0              ;!D 
04:   DC  R0 
05:   STR   R2, [R1] 
06:   EC   R0 
07:   LDR   R6, [R1] 
08:   DC  R0 
09:   STR   R3, [R1] 
10:   EC   R0 
11:   LDR   R6, [R1] 
12:   CMP   R2, R6 
13:   BLNE   error 
14:   DIS_DC  R0 
15:   STR       R6, [R1] 

(b) Enable/disable test sequence of 
controller
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approach has achieved the same fault coverage, i.e., 
100 %, as the original March C- algorithm. 
 
6.2. Test Results for Logic Modules 
 

For logic module testing, the processor executes the 
test program to trigger and observe faults in the logic 
circuits. To verify our test program, we synthesize the 
direct-mapped cache into gate-level netlists using the 
TSMC 0.18um technology library, and then feed the 
netlists and input stimuli trace to the fault simulation 
tool. Our test program can detect 12656 out of 12840 
uncollapsed faults (98.57% fault coverage) and 7613 
out of 7766 collapsed faults (98.03% fault coverage). 
Table 5 shows the collapsed fault coverage and test 
efficiency of each cache logic module. The test 
efficiency which is obtained by removing the 
structurally untestable faults from the total number of 
faults has achieved 99.13%. 
Table 5. Collapsed stuck-at fault test results. 
Module Det. Und. Unt. Total F.C.(%) T.E.(%)

Controller 525 18 38 581 90.36 96.69 
Comparator 142 1 2 145 97.93 99.30 
Valid unit 1269 3 2 1274 99.61 99.76 
Dirty unit 2528 2 0 2530 99.92 99.92 

Multiplexer 2758 22 41 2821 97.77 99.21 
Others 391 21 3 415 94.22 94.90 
Total 7613 67 86 7766 98.03 99.13 

Det. – # of hard detected faults; Und – # of undetected faults; Unt.– 
# of untestable faults; F.C.– Fault coverage; T.E.– Test efficiency. 
 
6.3. Statistics of Test Program 
 

Table 6 shows the test program size, storage used, 
and execution time. The total program size is less than 
30KB and has an execution time of less than one 
million cycles with about 150KB memory. This 
software-based test scheme clearly shows the 
advantage in testing time and needed program space 
for current SoC designs. 
Table 6. Test program statistic for data cache. 

Target 
component 

Program 
Size(KB) 

Memory 
Usage(KB) 

Execution 
Time(cycles)

Data memory 0.67 8.13 187,453 
Tag memory 2.59 11.3 139,219 

PA tag memory 4.64 22.4 178,769 
Logic modules 21.10 106 490,581 

Total 29 147.83 996,002 
 
7. Conclusion 
 

In this paper, we present a high-performance 
software-based testing methodology to support the 
testing of a direct-mapped data cache. Unlike 
previously proposed methods which mainly focus on 
the cache functionality, we explore additional 

information from architectural analysis, RTL 
description, and netlist analysis for effective test 
program generation. We apply the methodology to a 
real-life cache design and the results show that the 
transformed March test program can detect all 
commonly used RAM faults on all cache memory 
modules and the derived test program for logic 
modules can achieve 99.13% test efficiency for 
collapsed stuck-at faults. 
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