

A Software-Based Test Methodology for Direct-Mapped Data Cache

Yi-Cheng Lin, Yi-Ying Tsai, Kuen-Jong Lee, Cheng-Wei Yen, and Chung-Ho Chen
Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.

yorkroy@casmail.ee.ncku.edu.tw, kjlee@mail.ncku.edu.tw, chchen@mail.ncku.edu.tw

Abstract

We present a software-based test methodology that
utilizes an on-chip processor to perform test
procedures for direct-mapped data cache. The cache
system under test is divided into two major groups,
namely the memory modules and the logic modules.
For the memory modules which include the tag
memory, the data memory, and the physical address
tag memory, systematic procedures to transform a
widely-used March algorithm into various executable
instruction sequences are developed. For the logic
modules, extensive analysis on the functions as well as
the structures (architecture, RTL, and gate-level) of
these modules is carried out and effective test
instruction sequences based on the analysis are
derived. A 100% fault coverage for six conventional
RAM fault models and 99.13% test efficiency for single
stuck-at fault model are obtained on a real 32-bit RISC
processor. These results validate the viability and
effectiveness of the proposed methodology for data-
cache testing.

1. Introduction

Cache memories have played an important role in
high performance computing by bridging the speed gap
between the processor and the main memory. With the
increase in processor clock rate, testing issues of the
cache memories have become quite crucial.
Conventional design-for-testability (DFT) techniques
such as scan-cell insertion or built-in self-test (BIST)
[1][2] usually create adverse effects on the area,
timing, and power consumption of the cache system
and have gradually become the bottleneck of large
system designs [3]. Applying a software-based test
scheme helps remove these impediments and can
greatly improve the cache performance.

In this paper, we propose a high-performance
software-based test methodology to support the testing
of a direct-mapped data cache. The cache system is
divided into memory modules and logic modules for
test sequence development. For the memory modules,

which include a tag RAM, a data RAM, and a physical
address tag RAM, the widely used March C- algorithm
[4] is adopted, which is transformed into various
pseudo instruction sequences according to the distinct
features of these memory modules. For the logic
components, we analyze both the functionality and the
structure of each target component and derive the
memory data state that will demonstrate different
behavior should the component contain faults. During
test application time, these data states are checked by
the developed test program right after the memory
states are set up. Therefore, if any data inconsistency
occurs, the corresponding component can be identified
as faulty immediately.

The proposed methodology is applied to a direct-
mapped data cache embedded in an Linux-verified
ARM-compatible processor and results in 100% fault
coverage for six conventional RAM fault models and
98.03% fault coverage or 99.13% test efficiency for the
collapsed single stuck-at faults of the logic modules.

The rest of this paper is organized as follows.
Section 2 discusses previous work related to this paper.
Section 3 introduces the architecture of the target cache.
Section 4 describes the pseudo instruction notation and
the development flow of test sequences. Section 5
details the test generation procedures and lists the
pseudo instructions for all modules under test. Two
sample ARM assembly code segments are also given.
Experimental results are presented and discussed in
Section 6. Finally, Section 7 concludes our work.

2. Previous Work

Utilizing a processor as an internal tester to test on-
chip caches first appeared in [5] when van de Goor et
al. introduced functional testing for microprocessors
and proposed the first functional test methodology for
on-chip memories. In their work, the data cache was
divided into three classes: the fetch/store class, the
memory class, and the look-up class. Specific
functional fault models are proposed according to the
functionality of the three classes and test sequences for
each class are developed based on the proposed fault

17th Asian Test Symposium

1081-7735/08 $25.00 © 2008 IEEE

DOI 10.1109/ATS.2008.60

361

17th Asian Test Symposium

1081-7735/08 $25.00 © 2008 IEEE

DOI 10.1109/ATS.2008.60

363

models. Sosnowski extended the functional test
methodology to various cache memory organizations
including separated instruction and data cache, unified
cache, and multi-level cache [6]. To reduce test time, a
more efficient methodology to transform the March
algorithm into pseudo-instruction sequences for tag
memory testing of a direct-mapped data cache was
proposed in [7]. It can be seen that previous test
methods for cache memory mainly focus on
developing test sequences for functional faults and no
fault coverage is calculated. In this paper, we present a
component-oriented test development methodology
that takes into account not only the functional
information, but also the architecture, RTL, and netlist
information of a data cache. In addition, we apply the
methodology to a real-life direct-mapped cache system
in an ARM-compatible processor and demonstrate the
effectiveness of the proposed method through actual
fault coverage and test efficiency measurement.

3. The Direct-Mapped Cache Model

In this section we present our experimental
platform, a direct-mapped data cache embedded in a
five-stage pipelined processor. The processor supports
ARMv4 instruction set [8] and memory management
unit (MMU) for virtual memory capability. Through
co-processor instructions, the processor can enable or
disable the virtually-addressed cache system and
perform privileged operations, including clearing or
invalidating a specific cache line. The cache supports
programmable write-through or write-back policy for
write hit, and write-allocate or write-around policy for
write miss. Fig. 1 shows the block diagram of the data
cache system.

Tag
Unit

Valid
Unit

Comparator

Cache
Controller

Line Fill
Unit

Dirty
Unit

Physical
Address

 Tag Unit

MUX

MUX

Data
Unit

Data phase
address
Line Fill
Enable

WControl

WDATAData out

Data in

Write through
Write back

TAG Index Word Offset

WB_Enable

WB_Data

WB_Address

Figure 1. The target direct-mapped data cache
This data cache contains 64 lines of tag and data

memory and each data line consists of 8 words. Note
that there is a physical address (PA) tag associated
with each cache line [8]. The PA tag caches the
physical page number of each cache line so that a
replaced dirty cache line can be written back to the

main memory using the PA tag for physical address
without an expensive page table look-up. As can be
seen, this data cache platform represents the most
comprehensive design of a state-of-the-art data cache
system and thus the proposed method can be easily
extended to other simpler variants.

4. Software-Based Test Sequence
Generation

To apply the software-based methodology, our first
step is to classify the cache system into structural
components so that a divide-and-conquer test code
development strategy can be used. After classification,
the development flow in Fig. 2 of the proposed
software-based test methodology is applied. For
memory arrays, we employ the March C- algorithm
directly [4], which is a well-known and effective
testing technique for RAM faults. For logic
components, we make use of both functional and
structural information to develop the test sequences.
Then, the generated test code is fed to two fault
simulators to examine the test efficiency and fault
coverage. This process will be applied to all modules
under test.

Choose a memory

Test development for the memory

Perform RAM fault simulation Perform logic fault simulation

Memory modules Logic modules

Synthesize Test Program

RTL description

Choose a logic module

Synthesize logic modules

Test development for the logic module

More logic moduleMore memories?

No

Yes

No

Yes

Figure 2. Development flow of the proposed
software-based cache testing methodology

In the following, we introduce the notations of the
pseudo instructions that are used to represent the
developed test sequences, followed by the test
sequence development method.

4.1. Pseudo Test Instructions

The pseudo instruction notation helps improve the
portability of the developed test sequences. Since each
pseudo instruction can be easily translated into one or
more processor-specific instructions, migration of the

362364

developed test sequences to a target processor
instruction set architecture (ISA) can be done easily
through simple translation.

Fig. 3 shows the address decoding scheme of a
typical direct-mapped cache. The entire address is
divided into three parts, namely tag, index, and word
(concatenated with an offset). We use T, i, x to denote
the contents of the tag, the index, and the word fields,
respectively, and the triple [T,i,x] to denote the address.
The definitions of all pseudo instructions are given
below.

Tag Index (i) Word Offset

Tag W0 W1 W2 W3 W4 W5 W6 W7

Mux

To processor

32

To main memory

(T)
x

Figure 3. Address decoding of a direct-

mapped cache.
 R ([T,i,x], D) is a load instruction. The address

[T,i,x] is used to load data D from the cache and a
read hit is expected.

 R ([T,i,x], D) is similar to R([T,i,x],D) except that
a cache miss is expected. If this instruction is
executed as expected, the cache line indexed by i is
replaced with tag T along with data D from the
main memory.

 W ([T,i,x], D) denotes a store instruction that
expects a cache hit. The data D are written into the
addressed cache line after the execution of this
instruction.

 W ([T,i,x], D) denotes a store instruction that
expects a cache miss. If this instruction is executed
as expected, the data D are written to the main
memory for write-around policy or written into the
cache line after the line is fetched from the memory
for write-allocate policy.

 RM ([T,i,x], D) is only applicable when the data
cache is disabled. The data are read directly from
the main memory of address [T,i,x].

 WM ([T,i,x], D) is only applicable when the data
cache is disabled. The data D are written to the
main memory directly.

 INVi indicates an operation to invalidate row i of
the data cache. With this instruction, the valid bit
corresponding to the i-th cache line will be cleared.

 CLEARi indicates a dump operation of the i-th
cache line, i.e., the entire data line will be written
back to the main memory and the dirty bit will be
cleared.

 EC and DC denote the operation(s) to enable and
disable the data cache respectively. Note that the
cache contents remain unchanged after DC
instruction.

4.2. Pseudo Test Sequences

The test sequence development for each module can
be divided into four phases: initialization, data setting,
function execution, and result checking. These 4
phases are described below using the valid unit as an
example wherever appropriate:

 Initialization phase: The program initializes the
processor state and cache system. Using ARM
processors as an example, the initialization program
includes co-processor instructions that enable the
MMU, code that fills in the appropriate page tables,
and code that sets the proper cache policy.

 Data setting phase: The instruction sequence
creates data inconsistency between the test unit and
the main memory by intentionally making the
cached data or states different from their
counterpart in the main memory. For example, if
the valid bit of the i-th cache line is tested against
the stuck-at-1 fault, we can use R ([T,i,x], D) to
load the data D into the cache. Then the INVi
instruction is used to clear the valid bit. Next we
issue DC to disable the cache. Finally, the WM
([T,i,x], !D) instruction writes a complement
data !D to the address [T,i,x] in the main memory.
In this case, the cache should has data D while !D
are in the main memory of the same address.

 Function execution phase: The instruction
sequence triggers the target component. Continuing
our example, the cache is activated again with the
EC instruction and then an R ([T,i,x], !D)
instruction is used to trigger the updating of the i-th
valid bit with different loaded data !D from
memory.

 Result checking phase: The instruction sequence
checks the result(s) of the previous phase against
the expected one(s). In our example, if the loaded
data are D instead of !D, then we can tell that the
data are loaded from the cache instead of the main
memory because the execution of R ([T,i,x], !D)
results in a cache hit, i.e., becomes an R ([T,i,x], D)
operation. Therefore, the INVi instruction did not
take effect and we can conclude that there might be
a stuck-at-1 fault on that valid bit.
Many components of a direct-mapped data cache

have similar features as the valid bit and therefore our
methodology is quite realistic and effective for these
components. For other components such as
multiplexers or comparators that are not easy to detect
using only functional patterns but have explicit input

363365

controllability, a structural analysis is performed to
collect specific input vectors for good structural fault
coverage. These vectors are then transformed into
pseudo instruction sequences and integrated into the
final test software. In the next section we detail the test
procedures for each component in the designated cache
system.

5. Testing a Direct-Mapped Data Cache

The target data cache is classified into memory
modules which include data RAM, tag RAM and PA
tag RAM, along with logic modules including
multiplexer, dirty unit, valid unit, tag address
comparator, and cache controller. Since a detailed
explanation of the test development flow has been
depicted in Section 4.2 using a valid bit as an example,
in the following we focus on highlighting the key
features of each module and developing test sequences
targeting these features.

5.1. March Test Sequence development for
memory modules

The memory modules are all word-oriented and
implemented with SRAM. To detect the various word-
oriented RAM faults including stuck-at-fault (SAF),
transition fault (TF), address decoder fault (AF), state
coupling fault (CFst), inversion coupling fault (CFin),
and idempotent coupling fault (CFid), we use the data
background described in [6] for the designated March
C- algorithm. The data background sets for different
word widths are generated for the data memory, tag
memory, and PA tag memory respectively during the
data setting phase as detailed below.

 Data RAM: The ‘w0’ operation of the March C-
algorithm can be transformed into an R([T,i,x], D)
instruction with D being zero. The access of a
subsequent R([T,i,x], D) instruction after the
previous read miss will hit the cache and complete
the ‘r0’ operation. The interleaved write-and-check
process of the March algorithm can be carried out
by issuing consecutive R and R instruction pairs
with ascending or descending i. For the n-th pattern
DBn in the data background set, the test sequence
shown in Table 1 is applied for the traversal of the
data RAM.

Table 1. The March sequence for data RAM.
Operation Instruction sequence

wDB DC; WM([T,i,x],DBn)
EC; R([T,i,x],DBn)

rDB R([T,i,x],data)
 Tag RAM: The transformed March algorithm is

similar to the one used in data RAM except that the

pre-generated data background pattern DBn is
applied to tag (T) instead of a data line. To check if
the tag DBn is correctly written into the tag array,
complement data !D are written to address [DBn,i,x]
in the main memory to set up the inconsistency. If
the tag RAM at the i-th line is faulty, then the
R([DBn,i,x],D) instruction will fail, i.e., miss in
cache, and return !D instead of D. Table 2 shows
the March test sequence for the tag array.

Table 2. The March sequence for tag RAM.
Operation Instruction sequence

wDB DC; WM([DBn,i,x],D)
EC; R([DBn,i,x],D)

rDB DC; WM([DBn,i,x],!D)
EC; R([DBn,i,x],D)

 PA tag RAM: The test patterns of the PA tag
RAM are the physical page numbers. Therefore,
extra steps must be taken in the initialization phase
to properly set up the contents of the page table.
For each virtual address tag Tn, a corresponding
physical page number DBn is allocated in the page
table. Table 3 shows the test sequence for the PA
tag RAM. First, W([Tn,i,x]) writes data D into
cache entry (write-allocate) and DBn into PA tag.
Then the complement data !D are written to the
main memory location [Tn,i,x] by WM([Tn,i,x],!D).
After CLEARi writes back data D from cache to
memory location [Tn,i,x], the R([Tn,i,x],D)
instruction will return !D if the PA tag memory is
faulty.

Table 3. The March sequence for PA tag RAM.
Operation Instruction sequence

wDB EC; W ([Tn,i,x],D)
DC; WM([Tn,i,x],!D)

rDB EC; CLEARi
DC; RM([Tn,i,x],D)

5.2. Test Sequence development for logic
modules

The logic modules of the target data cache include
several multiplexers, a dirty unit, a valid unit, a tag
address comparator, and a cache controller. Next we
describe the test procedures for each logic module.

 Multiplexer: The test vectors for an N-to-1
multiplexer can be efficiently derived using the
scheme in [9]. Referring to Fig. 3, we can see that
the inputs to the output multiplexer of the data
RAM come from the entire data contents (W0 to
W7) of the i-th data line and the word address x.
The input vectors W0 to W7 can be loaded into
data RAM using R([T,i,xn], Wn), where xn
denotes the offset of the n-th vector word Wn.

364366

Then R([T,i,xn], Wn) can be issued to observe the
test outputs.

 Dirty unit: For the x-th word in the i-th data line,
the corresponding dirty bit can be tested by
checking if the data D are correctly written to the
main memory after a replacement occurs. The
instruction sequence “R([T,i,x], D), W([T,i,x], D)”
loads data D into the cache line and asserts the dirty
bit. After the sequence “DC, WM([T,i,x], !D), EC”
creates the inconsistency between the cache and
memory, a CLEARi or R([T’,i,x], !D) can be used
to trigger the replacement for observation.

 Tag address comparator: To obtain efficient
vectors for the comparator, the netlist of the module
is fed to the ATPG tool to generate the input pairs
(A,B). The input An of the n-th test pattern can be
loaded into tag RAM by issuing R([An,i,x], D) and
then the comparison can be triggered by
R([Bn,i,x], !D) for a cache miss or R([An,i,x], D)
for a cache hit. The result of comparison can be
observed from the acquired data D.

 Cache controller: The functions and related test
sequences of the cache controller are listed in Table
4 without detailed explanation due to space
limitation.

Table 4. Software-based test sequences for
the cache controller.

Tested function Test sequences
Enable/
disable

DC, WM([T,i,x],D), EC, R([T,i,x],D), DC,
WM([T,i,x], !D), EC, R([T,i,x],D)

Invalidate DC, WM([T,i,x],D), EC,R([T,i,x],D), DC,
WM([T,i,x], !D), EC, INVi, R([T,i,x], !D)

Clear
DC, WM([T,i,x],D), EC, R([T,i,x],D), DC,
WM([T,i,x], !D), EC, CLEARi, DC,
RM([T,i,x],D)

Write-back
policy

DC, WM([T,i,x],D), EC, R([T,i,x],D), DC,
WM([T,i,x], !D), EC, R([T’i,x],D), DC,
RM([T,i,x],D)

Write-through
policy

EC, W([T,i,x],D), W([T’i,x],!D), DC,
RM([T,i,x],!D), EC, R([T,i,x],!D)

Write-allocate
 policy

DC, WM([T,i,x], !D), EC, R([T,i,x], !D),
DC, WM([T’i,x], !D), WM([T,i,x],D), EC,
W([T’i,x],D), DC, RM([T’5p ,i,x], !D) ,
EC, R([T’i,x],D)

Write-around
policy

DC, WM([T,i,x],D), EC, R([T,i,x],D), DC,
WM([T,i,x],D), EC, W([T’i,x], !D), DC,
RM([T’i,x],!D) , EC, R([T,i,x],D)

5.3. Example of assembly code for direct-
mapped data cache

We use two examples to illustrate the relation
between the pseudo instructions and the actual
processor assembly code. Fig. 4 shows the assembly
codes for March element “↑wDB” of data RAM and

those for the “Enable/Disable” operation of the
controller. In the program, R0 is used for cache
enable/disable, R1 for address [T,i,x], R2 for D, R3
for !D, R4 for entry size (64 in our cache), R5 for line
size (8 in our cache), and R6 for read value. EC and
DC are cache enable and disable macros.

For wDB, lines 01~ 06 set the required register;
lines 08~09 (DC, WM[T,i,x], DBn) set D in memory;
lines 10~11 (EC, R [T,i,x], DBn) use a cache miss to
write D into data memory; lines 12~16 check two loop
parameters to see if all data locations are processed.
For Enable/Disable, the test sequences are similar to
wDB except that the results are stored to memory for
observation in lines 14~15.

Figure 4. Assembly code of wDB and
Enable/Disable.

6. Experimental Results

To evaluate the efficiency of our methodology, we
use ARM Development Suite (ADS) v1.2 [10] to
assemble our test code, Cadence Verilog-XL [11] to
run the logic simulation and capture stilumi for test
analysis, Design Compiler [12] to synthesize our
Linux-verified ARM-compatible processor [13] along
with the target direct-mapped cache, RAMSES
simulator [14] to run the RAM fault simulation, and
Syntest Turboscan [15] to run the logic fault simulation.

6.1. Test Results for Memory Modules

For memory module testing, the processor performs
March operation on memories just like an internal
memory BIST tester. We apply our transformation
methodology to March C- algorithm which can
effectively detect all SAF, TF, AF, CFst, CFin, and
CFid faults. The RAM fault coverage reported from
RAMSES shows that the proposed software-based

; ↑wDB
01: MOV R1, #DataBase ;[T,i,x]
02: MOV R2, #0 ;DBn
03: MVN R3, #0 ;!DBn
04: MOV R4, #DCacheEntry
05:m_wDB_entry_1
06: MOV R5, #LineSize
07:m_wDB_line_1
08: DC R0
09: STR R2, [R1]
10: EC R0
11: LDR R6, [R1], #WordInc
12: SUBS R5, R5, #0x1
13: BNE m_wDB_line_1
14: MOV R5, #LineSize
15: SUBS R4, R4, #0x1
16: BNE m_wDB_entry_1

(a) wDB test sequence of data RAM

; Enable/Disable
01: MOV R1, #DataBase ;[T,i,x]
02: MOV R2, #0 ;D
03: MVN R3, #0 ;!D
04: DC R0
05: STR R2, [R1]
06: EC R0
07: LDR R6, [R1]
08: DC R0
09: STR R3, [R1]
10: EC R0
11: LDR R6, [R1]
12: CMP R2, R6
13: BLNE error
14: DIS_DC R0
15: STR R6, [R1]

(b) Enable/disable test sequence of
controller

365367

approach has achieved the same fault coverage, i.e.,
100 %, as the original March C- algorithm.

6.2. Test Results for Logic Modules

For logic module testing, the processor executes the
test program to trigger and observe faults in the logic
circuits. To verify our test program, we synthesize the
direct-mapped cache into gate-level netlists using the
TSMC 0.18um technology library, and then feed the
netlists and input stimuli trace to the fault simulation
tool. Our test program can detect 12656 out of 12840
uncollapsed faults (98.57% fault coverage) and 7613
out of 7766 collapsed faults (98.03% fault coverage).
Table 5 shows the collapsed fault coverage and test
efficiency of each cache logic module. The test
efficiency which is obtained by removing the
structurally untestable faults from the total number of
faults has achieved 99.13%.
Table 5. Collapsed stuck-at fault test results.
Module Det. Und. Unt. Total F.C.(%) T.E.(%)

Controller 525 18 38 581 90.36 96.69
Comparator 142 1 2 145 97.93 99.30
Valid unit 1269 3 2 1274 99.61 99.76
Dirty unit 2528 2 0 2530 99.92 99.92

Multiplexer 2758 22 41 2821 97.77 99.21
Others 391 21 3 415 94.22 94.90
Total 7613 67 86 7766 98.03 99.13

Det. – # of hard detected faults; Und – # of undetected faults; Unt.–
of untestable faults; F.C.– Fault coverage; T.E.– Test efficiency.

6.3. Statistics of Test Program

Table 6 shows the test program size, storage used,
and execution time. The total program size is less than
30KB and has an execution time of less than one
million cycles with about 150KB memory. This
software-based test scheme clearly shows the
advantage in testing time and needed program space
for current SoC designs.
Table 6. Test program statistic for data cache.

Target
component

Program
Size(KB)

Memory
Usage(KB)

Execution
Time(cycles)

Data memory 0.67 8.13 187,453
Tag memory 2.59 11.3 139,219

PA tag memory 4.64 22.4 178,769
Logic modules 21.10 106 490,581

Total 29 147.83 996,002

7. Conclusion

In this paper, we present a high-performance
software-based testing methodology to support the
testing of a direct-mapped data cache. Unlike
previously proposed methods which mainly focus on
the cache functionality, we explore additional

information from architectural analysis, RTL
description, and netlist analysis for effective test
program generation. We apply the methodology to a
real-life cache design and the results show that the
transformed March test program can detect all
commonly used RAM faults on all cache memory
modules and the derived test program for logic
modules can achieve 99.13% test efficiency for
collapsed stuck-at faults.

8. Acknowledgement

This work was supported in part by the National
Science Council, Taiwan, R.O.C., under NSC 96-2221-
E-006-192-MY3 and NSC 95-2220-E-006-005, and by
the Program for Promoting Academic Excellence of
Universities in Taiwan.

9. References

[1] S. Kornauck, L. McNaughton, R. Gibbins, and B.
N.Dostie, “A High Speed Embedded Cache Design with
Non-intrusive BIST”, in Proc. Int’l Workshop Memory
Technology, Design, and Testing, pp. 40-45, 1994.
[2] J. Bralich and J. Fleischman, “Design of cache test
hardware on the HP PA8500”, IEEE Trans. Design & Test,
vol. 15, issue 3, pp.58-63, July 1998.
[3] D. Gizopoulos, A. Paschalis, and Y. Zorian, Embedded
Processor-Based Self-Test, Springer press, 2004.
 [4] A. J. van de Goor, Testing Semiconductor Memories:
Theory and Practice, Wiley Publisher, 1991.
[5] A. J. van de Goor and Th J. W. Verhallen, “Functional
Testing of Current Microprocessor (applied to the Intel
i860TM)”, in Proc. Int’l Test Conf., pp. 684, 1992.
[6] J. Sosnowski, “In System Testing of Cache Memories”,
in Proc. Int’l Test Conf., pp. 384-393, 1995.
[7] S. M. Al-Harbi and S. K. Gupta, “A Methodology for
Transforming Memory Tests for In-System Testing of
Direct-Mapped Cache Tags”, in Proc. 16th VLSI Test Symp.,
1998, pp. 394-400.
[8] ARM922T Technical Reference Manual, ARM Corp.,
Available: http://www.arm.com
[9] S.R. Makar and R.J. McCluskey, “On the Testing of
Multiplexer”, in Proc. Int’l Test Conf., pp. 669-679., 1988.
[10] ARM Development Suite v1.2, ARM Corp.
http://www.arm.com
[11] Verilog-XL, Cadence Corp., http://www.cadence.com
[12] Design Compiler, Synopsys Corp.,
http://www.synopsys.com
[13] C. H. Chen, C. K. Wei, T. H Lau, and H. W. Gao,
“Software-Based Self-Testing With Multiple-Level
Abstractions for Soft Processor Cores”, IEEE Trans. VLSI,
vol. 15, issue 5, pp. 505-517, May 2007.
[14] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: A
Fast Memory Fault Simulator”, in Proc. Int’l Symp. Defect
and Fault Tolerance in VLSI Systems, pp. 165-173. , 1999.
[15] TurboScan, Syntest Corp., www.syntest.com

366368

