
Scalable IPv6 Lookup/Update Design for High-Throughput Routers

261

Scalable IPv6 Lookup/Update Design for High-Throughput Routers

Chung-Ho Chen, Chao-Hsien Hsu, Chen-Chieh Wang

Department of Electrical Engineering and Institute of Computer and Communication Engineering

National Cheng-Kung University

Taiwan, R.O.C.

chchen@mail.ncku.edu.tw, hsien@casmail.ee.ncku.edu.tw, ccwang@mail.ee.ncku.edu.tw

Abstract

Achieving scalable performance in the IPv6 address

lookup and update poses a challenge to the design of

existing routers. To concurrently match address prefixes

with different route entries, we propose a parallel memory

lookup scheme which uses three-level tables to cover

various lengths of prefix distributions for the long IP

address. The scheme employs a parallel CRC address

compression hardware to reduce the lookup table sizes.

The multi-cycle implementation of the design has achieved

an average of 1.6 memory accesses per lookup request. The

pipeline version features a five-stage pipeline design with a

mechanism to reduce pipeline stalls due to updates.

Performance simulation reveals that the number of address

queue entries significantly influences the lookup throughput

when frequent table updates occur. The proposed single

pipeline module with an eight-entry queue stage has

achieved a maximum rate of 100 × 106 lookups per second.

With the four-pipeline configuration, the throughput is

increased by a factor of 2.5 for sparse updates and up to 2.3

when the update rate increases to 20 percents of the

lookup’s. This paper has demonstrated a viable IPv6

lookup design that is scalable for high-throughput routers.

Keywords: IPv6 lookup, longest prefix match, route

update, scalable throughput.

1 Introduction

The longer address length and larger address space in

IPv6 pose a challenge to the design of IP address lookup.

The address lookup involves the longest prefix match

(LPM) operation, i.e., finding an entry in the lookup table

with the longest prefix that matches with the incoming

packet's destination IP address. The longer IPv6 address

lengthens the latency of an LPM operation and thus slows

down the lookup rate in routers. For instance, with an

M-trie based search, the number of memory accesses

required equals to the depth of the tree. To lookup an IPv6

address, up to eight accesses are required, more than

doubling the latency of lookup in IPv4 [1].

Extending IPv4-based schemes in IPv6 may also

suffer from performance degradation due to the different

prefix length distributions in IPv6 routing tables [2]. The

global IPv6 unicast address is partitioned into several

segments as a hierarchical tree such as ISP, Site or LAN [3].

Observing the address allocation policy and the format of

the aggregatable global unicast addresses, it is known that

the prefix length mainly distributes among the TLA (Top

Level Aggregator), NLA (Next-Level Aggregation), or

SLA (Site-Level Aggregation) fields. Apparently, the prefix

length distribution for a switching router changes with the

hierarchical level at which the switching router is used.

An address lookup scheme must be scalable in terms

of memory usage and more importantly achieve scalable

lookup and update performance. Nonetheless, the lookup

throughput is hindered by the update operations due to

route changes, which reportedly changes at a rate

exceeding several hundred prefix updates per second [4].

To tackle the above problems, first performing concurrent

lookups in multi-range prefixes, we propose a parallel

memory lookup scheme with reduced table sizes to cover

various lengths of prefix distributions for the long IP

address. The multi-cycle implementation of this design has

achieved an average of 1.6 memory accesses per lookup

request.

Next, we present the pipeline design of this lookup

scheme considering the update operations which are

quantified by the rate of the occurrences and the latency.

This five-stage pipeline design includes a queue stage that

buffers the lookup requests while updates are being

performed. We evaluate the effect of the queue entry

number and the multiple-pipeline configuration on the

lookup throughput. The performance evaluation shows that

the proposed design is scalable both to the number of

lookups and update requests for the IPv6 address lookup

system.

The rest of this paper is organized as follows. Section

2 discusses the related work. Section 3 presents the

proposed address lookup scheme with examples. Section 4

describes the implementation in multi-cycle as well as in

pipeline design. Section 5 discusses the simulation results

of the proposed scheme. Finally, the conclusion is given in

Section 6.

Journal of Internet Technology Volume 8 (2007) No.3

262

2 Related Work

An extensive survey on IP address lookup algorithms

can be found in [4] with the focus on trie-based schemes

which are also used in [5-9]. In [5], the IP address lookup

problem is modeled as a searching problem on a binary-trie

which is partitioned into 4-level of subtrees for pipeline

implementation. Similarly based on the trie structure and

prefix partition, Chang et al. proposed a lookup table

design for IPv4 system [6]. The authors in [8] proposed a

modified PATRICIA trie with the help of hash tables to

speedup the search. In [10], the core method treats each

prefix as a range and encodes it using the start and end of

the range. Then the range entries are arranged in a binary

search table with a mapping established between the table

and the corresponding prefix. Differently, the approach in

[11] uses binary search over the hash tables organized by

the length of the prefix.

To use the IP address as a memory pointer for table

lookup, a hashing function that takes the longer address is

often used to produce a shorter index so that the required

memory size can be reduced [12-13]. In [13], the lookup

architecture uses parallel EXOR hashing logic for each

single prefix address table and provides mechanisms for

collided mapping. For IPv4, the scheme requires one to

five memory accesses with a small memory requirement.

In contrast, content addressable memories (CAMs) match

the incoming IP addresses directly with the contents

[14-17]. In [14], the routing lookup method based on

bi-search on prefix length is proposed. It is implemented in

a pipeline structure taking the advantages of the traditional

ternary content addressable memories (TCAMs). However,

for a larger forwarding table, using TCAM-based lookup

can be very expensive in terms of memory bits used and

power dissipation. TCAMs are expensive because every

route bit needs two SRAM cells. As a result, TCAMs are

the choice for applications that require the ability to mask

certain bits in each entry to enforce policy lookups or access

control rules [16]. For cost effectiveness, policy lookups

and forwarding lookups are often separately implemented

with different hardware systems [1].

In [18], a hardware scheme that improves lookup

memory access in IP lookup is proposed for IPv4. This

lookup architecture uses a table storing all route prefixes

that are up to 24-bits long and a second table for prefixes

that are longer than 24-bits. Our scheme differs from theirs

in many aspects. First, to be used in IPv6, we propose the

use of a parallel CRC technique to reduce table sizes.

Second, the arrangement of the parallel tables in the

hierarchy reduces the number of memory accesses, which

in turn makes fast lookup possible for the long prefixes in

IPv6. More importantly, we present the scalable pipeline

design which is not previously unveiled.

3 Longest Prefix Matching with Paral-

lel Memory Lookup

To design a lookup scheme tailoring directly for

pipeline operation, we propose to do longest prefix

matching with a parallel memory lookup (PML) scheme

that consists of a three-level memory hierarchy. The

organization of the scheme is shown in Figure 1 where the

NLA ID and SLA ID are partitioned into several 8-bits

long segments.

The scheme organizes the lookup tables in a hierarchical

layout. First, the first-level table is the TLA-table (TLAT)

which has 213 entries storing all the possible route prefixes

that belong to the TLA field. Then, three second-level

tables are used for the different ranges of prefix length. The

SLT40 table stores the prefixes of length that is greater

than 24 bits and up to 40 bits. The other two tables, SLT48,

and SLT56 store all the route prefixes that are equal to 48

bits and 56 bits respectively. The rest of the route prefixes

Figure 1 The proposed parallel memory lookup (PML) scheme (:: denotes concatenation)

Scalable IPv6 Lookup/Update Design for High-Throughput Routers

263

If the longest prefix match is in the TLA fieldIf the longest prefix match is beyond the TLA field

1 bit 1 bit 16 bits16 bits

TLAT entry format

If the longest prefix match is grater than 40 bits

2 bits 2 bits 16 bits

SLT40 entry format

16 bits

If the longest prefix match is less than or equal to 40 bits

2 bits 16 bits

CRC collision happens

If the longest prefix match is grater than 48 bits

2 bits 2 bits 16 bits

SLT48 entry format

16 bits

If the longest prefix match is equal to 48 bits

2 bits 16 bits

CRC collision happens

If the longest prefix match is grater than 56 bits

2 bits 2 bits 16 bits

SLT56 entry format

16 bits 2 bits 16 bits

If the longest prefix match is equal to 56 bits CRC collision happens

1 bit 1 bit 16 bits

TLT entry format

16 bits

0 Base address for second-level-table

01 Base address for third-level-table

1 Next output port

11 Next output port

01 Base address for third-level-table

10 Index for CRC collision correction

11 Next output port

0 Clear entry 1 Next output port

10 Index for CRC collision correction

01 Base address for third-level-table 11 Next output port 10 Index for CRC collision correction

(prefix length greater than 40 bits and less than 48 bits,

greater than 48 bits and less than 56 bits, and greater than

56 bits and up to 64 bits) are stored in the third-level table

(TLT). The reason to layout lookup tables in this way is to

put the most likely prefix distributions in the second-level

tables for parallel accesses. The specifications of the table

entries are shown in Figure 2.

3.1 Address Lookup and Entry Insertion

When an IPv6 destination address is presented to the

address lookup scheme, the following steps are taken:

I. Use the TLA field of the destination IP address as the

index to access the TLAT table. The result is either the

base address (x) for the second-level tables or the

output port identifier. It depends on the number of TLA

ID to decide the bit length of (x). In the simulation

result, the bit length of the base address (x) is 8.

II. For the former, the base address is concatenated with

the following numbers respectively: (1) with the

number from {S1, S2}, (2) with the CRC output that

encodes {S1, S2, S3}, and (3) with the CRC output that

encodes {S1, S2, S3, S4}. The three resultant addresses

are used in parallel to access the SLT40, SLT48, and

SLT56 respectively. The outcome is either the longest

prefix match found in the second-level tables or the

base address (y) for the third-level table.

III. For the later, depending on where the base address is

obtained (from SLT40, SLT48, or SLT56), it is

concatenated with the respective segment ({S3}, {S4},

or {S5}).

IV. Last, the output port is found in the TLT table.

Suppose that a prefix P is to be inserted into the table.

If P conforms to the length of the TLA field, its output port

identifier is stored in the TLAT table. Otherwise, the

addressed entry is written with the assigned base address

that is used for accessing the second level tables for

parallel lookup. The SLT40 table contains all route prefixes

that are greater than 24 bits and up to 40 bits. Prefix length

in this range is allocated lengthprefix _40
2

− entries in the SLT40

table. This is because the number of the don’t-care bits is

40 - prefix length, considering the way SLT40 is addressed.

When the prefix length is 40 bits, only one entry (20) is

allocated for it in STL40. Consequently, an entry

corresponding to one of the lengthprefix _40
2

− entries in SLT40

shares the single 24-bit prefix in the TLAT table. For

example, the route prefix 20:01:00:13/32 is allocated 256

entries (240-32) in SLT40, ranging from 01:13:00 to

01:13:FF (concatenating the base-address 01 obtained from

TLAT with 13:00 which comes from segment {S1, S2} in

the route prefix).

If the prefix length is greater than 40 bits and less than

48 bits, it is stored in the TLT table and there are
lengthprefix _48

2
− entries associated with the route prefix in TLT.

In this case, the addressed entry in SLT40 contains the base

address for these entries in TLT. For a prefix length that is

greater than 48 bits and less than 56 bits, lengthprefix _56
2

−

entries are allocated in the TLT. The base address is

obtained from SLT48. To access the SLT48 table, the

address is obtained by concatenating the base address from

TLAT with the CRC output that encodes {S1, S2, S3}.

Similarly, if the prefix length is longer than 56 bits and up

to 64 bits, there are lengthprefix _64
2

− entries allocated in the

TLT table. In this case, the base address for the TLT table is

obtained from the SLT56 table. The parallel CRC encoder

uses X16 + X12 + X4 + X1 + 1 as the polynomial.

3.2 Lookup Table Initialization and Update

In this section, we present the process for filling up

the lookup tables based on a list of given prefixes. The

example shows how a control processor establishes the

data structure for the given prefixes, initializes the lookup

tables, and maintains the data structure for the insertion

and deletion of entries in the lookup tables.

Figure 2 Entry format of the lookup tables

Journal of Internet Technology Volume 8 (2007) No.3

264

Route prefixes

A = 20:02:00/24

B = 20:03:00:C0/29

C = 20:05:00:B4:51:25/48

D = 20:12:00:01:E4:5F:60/51

E = 20:12:00:01:E4:5F:70/52

F = 20:12:00:01:E4:5F:60:6E/63

A

B

C

D

Null

Rule for Node C:

Prefix64: 20:05:00:B4:51:25:00:00

Length: 48

Limit: 00:01

Hop: C

Rule for Node D:

Prefix64: 20:12:00:01:E4:5F:60:00

Length: 51

Limit: 256 - 51 = 00:20

Hop: D

Rule for Node B:

Prefix64: 20:03:00:C0:00:00:00:00

Length: 29

Limit: 240 - 29 = 08:00

Hop: B

Rule for Node A:

Prefix64: 20:02:00:00:00:00:00:00

Length: 24

Limit: 1

Hop: A

A B

Null

C

D

E

Rule for Node D:

Prefix64: 20:12:00:01:E4:5F:60:00

Length: 51

Limit: 00:10

Hop: D

Rule for Node E:

Prefix64: 20:12:00:01:E4:5F:70:00

Length: 52

Limit: 00:10

Hop: E

D20:12:00:01:E4:5F:70

E

20:12:00:01:E4:5F:7F

20:12:00:01:E4:5F:60

Address range due to doǹ t care bits

The preprocess function run by the control processor

constructs the linked-list data structure that is used to

initialize and update the lookup tables when a route change

occurs. To do this, the control processor issues the update

commands to the interface unit of the lookup engine. Each

node in the linked-list has four items: prefix64, length, limit,

and hop. For instance, if prefix Y is 20:12:00:01:E4:5F:70/52,

then the prefix64 field is 20:12:00:01:E4:5F:70:00, padding 0

to 64 bits. The length field is simply the prefix length. The

limit field represents the number of entries to be allocated

in the chosen table, in this case 256 - 52 entries in TLT, and

the hop field is the output port identifier.

For longest prefix matching, the preprocess function

checks if the address range of an input prefix overlaps with

the existing one in the lookup table. For a received route

prefix whose address range is not overlapped with existent

prefixes in the linked list, a new node is directly

constructed for the input prefix. Otherwise, the preprocess

function checks whether the input prefix and the

overlapped prefix belong to the same second-level table. If

Figure 3 The linked list after prefix A, B, C, and D are inserted

Figure 4 Prefix E is overlapped with the prefix D; both of which are

accessed via the same second-level table: SLT48

they are in the same second-level table, the preprocess

function splits the overlapped address space at the boundary

for longest prefix matching. If the two overlapped prefixes

are not accessed from the same second-level table, the

preprocess function relocates the overlapped blocks of the

shorter prefix in the TLT table to allow the access from the

second-level table assigned according to the longer prefix.

As an example, assume that there are six prefixes: A,

B, C, D, E, and F shown in Figure 3 to be prepared for the

lookup table. Initially, a new node for prefix A is

constructed and inserted into the linked list. Since the

address ranges of prefix A, B, C, and D are not overlapped

with each other, prefix B, C, and D are inserted into the

linked list with the same procedure used by prefix A. For

the time being, the resultant linked list is shown in Figure 3.

The process proceeds with prefix E which is overlapped

with prefix D. Since their lengths are greater than 48 bits

and less than 56 bits, they are accessed from the same

second-level table, SLT48. For longest prefix match, the

overlapped address space from 20:12:00:01:E4:5F:70: to

20:12:00:01:E4:5F:7F: is now assigned to prefix E and

consequently prefix D is revised. The number of entries

allocated to E in TLT is 16 (5256
2

−). Figure 4 illustrates the

resultant data structure.

Because of its prefix length, the last prefix F, which is

overlapped with prefix D, is accessed from SLT56 different

from the shorter prefix D. To include prefix F in the lookup

table, the 28 entries out of prefix D that covers prefix F are

made accessible from SLT56 instead of the SLT48 table.

The complete lookup table is now shown in Figure 5 in

which the dotted blocks are the moved entries for prefix D.

Content:
SLT40

SLT48

SLT56

Entry Number: Content:
...

C001:F1:00

...

...

Entry Number: Content:

0102:BE:7F

...

TLT

Entry

Number: Content:

D

...

D

D

E

D

00:00:00 + 60

...

F

F

00:00:00 + 61

00:00:00 + 7F
...

...

D
...

...

Entry

Number: Content:
...

A1

00

10

TLAT

00:02:00
...

00:03:00

00:12:00

00:05:00
...

...

...

...

...

20

02:E7:35
...

10

00:01:00 + 6E

00:01:00 + 6F

D

D

D

D

00:01:FF

00:01:70

00:01:6D

00:01:00

Routing Entries

A = 20:02:00/24

B = 20:03:00:C0/29

C = 20:05:00:B4:51:25/48

D = 20:12:00:01:E4:5F:60/51

E = 20:12:00:01:E4:5F:70/52

F = 20:12:00:01:E4:5F:60:6E/63

D00:00:00 + 6F

E

E

E

00:00:00 + 70

...

00:00:00 + 71

Entry Number:

B1

...

B1

B1

B1

B1

B1

00:C0:00

...

00:C0:00 + 1

00:C0:00 + 7:FE

00:C0:00 + 7:FF
...

...

Figure 5 An example shows the insertion of routes in the lookup tables for

the given prefixes

Scalable IPv6 Lookup/Update Design for High-Throughput Routers

265

4 System Implementation

First, we present the implementation of the lookup

engine in a multi-cycle design. Figure 6 shows the multi-

cycle datapath and the finite state machine (FSM) for the

design. The lookup FSM transfers to S1 state as the

incoming packet is received. In S1 state, the TLAT table is

accessed. If no LPM is found, the control transits to S2

where all the second-level tables are accessed in the same

cycle. Similarly, if no LPM is found, the state transits to S3

for the lookup in the third-level table. During the lookup in

the second-level table, if a CRC collision is found from the

addressed entry, the state transfers to S4 to activate the

correction operation that directs the access to the small

table inside the unit. This table maintains the mapping

between the collided address and its next hop identification.

4.1 Pipeline Design

The development of the pipeline micro-architecture

for the PML scheme is based on the lookup procedure

depicted in Figure 6. The PML pipeline consists of five

stages, which are TLAT lookup, address queue, second

lookup, third lookup, and write back. Figure 7 illustrates

the pipeline architecture.

At the TLAT lookup stage, the TLA field of the

incoming destination address issued by the lookup/update

dispatch unit is used to consult the TLAT table. The output

result, which is either the next hop or the base address, of

the first stage is then written into the queue stage. The

address queue is a circular queue which buffers lookup

requests in case of stalling due to the on-going update

process. Each queue entry has three fields for the status,

incoming destination address, and the output result from

Figure 6 Multi-cycle implementation and its finite state machine

TLAT. The status field includes the following states: clear

(empty queue entry), wait (waiting for the result of address

lookup), finish (destination address lookup in the queue

entry is finished), and block (the entry is in block state

before the update of the lookup table is completed). The

allocation of the address queue is governed by the

head-index and tail-index pointers. If there is a new

destination address received from the previous stage, the

new address is stored into the corresponding entry pointed

to by the tail-index pointer and the status is set as wait. The

entry pointed to by the head-index is chosen for address

lookup. When the blocked entries are released, they have a

higher priority than the other entries to enter the next stage.

The third stage of pipeline is the Second Lookup stage

where all the second-level tables are accessed simultaneously

by using the respective concatenated addresses. If there is a

CRC collision at the third stage, the collision entry is

bypassed to the next stage.

The fourth stage is the Third Lookup stage that uses

the pointer from the previous stage to access the third-level

table or performs the CRC correction that is the same as

the operation in the S4 of multi-cycle implementation.

Finally, the write back stage writes back the lookup result

into the LPM match register and releases the entry in the

address queue.

4.2 Lookup and Update Coordination

Updating (insertion or deletion) entries for a prefix in

the lookup table takes a similar action depicted in Figure 6.

For the pipeline, the update request is also issued by the

lookup/update dispatch unit. For an update request,

depending on the prefix, the corresponding lookup tables

are updated accordingly. While the entries of the second-

level and/or the third-level tables are being updated, new

lookup requests can be queued in the queue stage. The

circular queue at the second stage of the pipeline is used to

mitigate the performance loss due to route update. The

circular storage can buffer the lookup requests blocked by

Address Queue Second Lookup Third Lookup Write Back

SLT40

SLT48

SLT56

TLT

Destination IP

Queue

Match

LPM

Match LPM

::
Lookup/Update

dispatch

TLAT Lookup

CRC

Correction

TLAT

Figure 7 The pipeline architecture supporting IP address lookup and

update

Journal of Internet Technology Volume 8 (2007) No.3

266

Test Pattern A

N
u
m
b
e
r
 o
f
c
o
ll
is
io
n
s

0

20

40

60

80

100

120

140

160

10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16

Length of the parallel CRC output

Test Pattern B Test Pattern C

SLT48 (5,000 prefixes)

SLT56 (5,000 prefixes)

SLT48 (10,000 prefixes)

SLT56 (10,000 prefixes)

SLT48 (20,000 prefixes)

SLT56 (20,000 prefixes)

SLT48 (30,000 prefixes)

SLT56 (30,000 prefixes)

SLT48 (40,000 prefixes)

SLT56 (40,000 prefixes)

SLT48 (50,000 prefixes)

SLT56 (50,000 prefixes)

SLT48 (60,000 prefixes)

SLT56 (60,000 prefixes)

Table 1 Prefix length distributions

 A (%) B (%) C (%)

24-40 5 10 34

41-48 15 30 57

49-56 20 40 6

56-64 60 20 3

total 100 100 100

the update procedure. The number of the circular queue

entries is a factor that determines the lookup performance

as will be shown later.

4.3 Multiple-Pipeline Configuration

To improve the throughput of address lookup, a

system employing multiple pipelines can be used. In this

case, the dispatch interface dispatches the incoming route

prefix to the addressed pipeline according to the most

significant bits of the TLA ID field. To configure this

system, the preprocess function assigns the incoming route

prefix to the addressed pipeline. Thus, in the linked list, a

field called pipeline is added into the node to indicate

which pipeline the incoming route prefix belongs to. The

preprocess function classifies all the route prefixes by the

TLA field of the destination address and assigns each route

prefix to the addressed pipeline module.

5 Simulation System and Results

To evaluate the performance of the proposed scheme,

we refer to the use of a synthesis IPv6 routing table [2] which

inherits the features of IPv4 tables. Three test patterns A, B

and C are generated and their prefix length distributions are

shown in Table 1. Test pattern C is similar to the prefix

length distribution from Figure 6 of [2] where /48 prefixes

dominate. Test pattern A and B are generated for the

comparisons of the performance.

Our simulation system consists of the following parts.

First, the random route prefix generator generates the route

prefixes. Second, the route prefixes are fed into the

preprocess function run by the ARM ADS tool kits. The

preprocess function constructs the linked list corresponding

to the route prefixes. Finally, the linked list is used as the

test bench to initialize the lookup tables in the lookup

engine which is implemented in Verilog and simulated in

the ModelSim environment that generates the simulation

results. Using the TSMC 0.25u technology, the achieved

clock frequency for the PML pipeline engine is 100 MHz.

The critical path of the pipeline is the queue stage

assuming the memory for the lookup tables are available.

5.1 Results and Discussions

To determine the output length of the CRC module to

be used, we evaluate the number of CRC collisions per 106

memory entries. The simulation results are shown in Figure 8.

Test pattern C has fewer collisions per 106 memory entries

than test pattern A and B. For test pattern A and B, about

one collision occurs per 106 memory entries when the

length of CRC output is set to 13 bits. As the CRC output

is increased to 16 bits, the CRC collision virtually ceases to

occur. For this reason, this design proposes the use of a

16-bit CRC output for the PML lookup scheme.

The worst case occurs when a lookup needs to access

the TLT. Thus, it always takes three memory accesses to

finish address lookup in the multi-cycle implementation.

For the pipeline implementation, the increased number of

memory accesses does not impact the throughput.

5.1.1 Number of Memory Accesses in Multi-Cycle

Architecture

For the multi-cycle architecture, the proposed scheme

takes one to three memory accesses to complete the

address lookup. The average number of memory accesses

required is shown in Figure 9. For test pattern C, with less

than two memory accesses on the average, the output port

can be identified. In addition, we also compare the PML

scheme with the previous work, DP-Trie [9], MultiWay

[10], and Binary Search [11]. Achieving an average of 1.6

memory accesses in test pattern C, the PML design has

outperformed the rest in comparison. This result comes

from the arrangement of the lookup tables that enable

simultaneous accesses for the different ranges of prefixes.

Figure 8 Collisions per 106 memory entries

Scalable IPv6 Lookup/Update Design for High-Throughput Routers

267

5.1.2 Memory Requirement

The memory requirement of the proposed scheme is

evaluated and the result is shown in Figure 10. The total

occupied entries take about 20 MB to 26 MB of the

memory for 60,000 prefixes, roughly the same size with

respect to other schemes except the DP-Trie scheme.

Noticing the way the table address is concatenated, the

most significant bits (x or y) are assigned by the preprocess

function and thus one can allocate the memory entries

linearly from the lowest address for each table. The

utilization of each lookup table depends on the distribution

of the prefix length, which changes with the hierarchical

level where the switching router is used. Also it depends on

the allocation of the prefix lengths the table covers. In

general, the SLT40 and TLT table require a larger size

because the prefix lengths they cover. To adapt to the

variation of prefix distributions, a programmable technique

can be used to configure the memory size for each lookup

table. Consequently, the required memory space of our

scheme does not increase significantly as the route prefixes

is increased due to the use of the parallel CRC compression

method.

5.1.3 Pipeline Throughput

For the lookup pipeline, we present the pipeline

throughput, which is defined as the number of address

lookups per clock cycle. The simulation results for single

pipeline and four-pipeline systems are shown in Figure 11.

An update operation clearly stalls the address lookup

process in the pipeline. The number of the queue entries at

the second stage is a significant factor that affects the

throughput of address lookup.

0

2

4

6

8

10

12

14

16

18

PM
L: A

PM
L: B

PM
L: C

DP-T
rie

: A

DP-T
rie

: B

DP-T
rie

: C

Bina
ry

Sea
rch

: A

Bina
ry

Sea
rch

: B

Bina
ry

Sea
rch

: C

M
ult

iW
ay

: A

M
ult

iW
ay

: B

M
ult

iW
ay

: C

N
u
m
b
e
r
 o
f
m
e
m
o
r
y
 a
c
c
e
s
s
e
s

5,000 prefixes

10,000 prefixes

20,000 prefixes

30,000 prefixes

40,000 prefixes

50,000 prefixes

60,000 prefixes

Figure 9 Comparisons in the number of memory accesses

M
em
o
ry
 s
iz
e
(
M
B
y
te
)

50
00

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

50
00

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

50
00

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

Figure 10 Comparisons of memory requirement

We examine different entry number in the circular

queue to observe the variation of the throughput. The

update operations are represented by how many address

lookups are stalled due to the update requests. For instance,

when the percentage of the update operation is 20%, this

indicates that for every five address lookups, there is one

update request. In this simulation, there are 60,000 prefixes

of test pattern C and the latency of an update is evenly

distributed between one to 216 cycles; the latter is the worst

case for updating the SLT40 table.

For a four-entry circular queue, the throughput

degrades rapidly. Examining the throughputs obtained, an

eight-entry circular queue appears to be the cost-effective

configuration. When updates are rare, the pipeline

throughput is close to one for the single pipeline system. In

the multiple-pipeline architecture where four pipeline

modules are used, the design achieves a throughput of

about 2.5 address lookups per clock cycle when updates

are rare. The loss of throughput in this multiple-pipeline

configuration comes from the fact that not every pipeline is

used at the same time for the input steam.

An interesting result comes up, which reveals that the

impact of updates on the throughput for the multiple-

pipeline configuration is decreased. This can be explained

as follows. With multiple-pipelines, if some pipeline

modules are halted by the update operations, others can

continuously perform the lookup requests. Thus, the

multiple-pipeline architecture not only extends the lookup

ranges for the routing table but also reduces the impact of

route updates.

6 Conclusion

In this paper, we propose an address lookup/update

scheme for IPv6 system. We propose the use of three-level

tables to cover various lengths of prefix distributions for

the long IP address. To achieve concurrent lookups of

different prefix lengths, we design a parallel memory lookup

scheme by incorporating a parallel CRC compression

mechanism to reduce the table sizes. The multi-cycle

implementation requires only an average of 1.6 memory

accesses for each lookup request. This lookup latency is

Figure 11 Throughput of the route lookup engine

Journal of Internet Technology Volume 8 (2007) No.3

268

achieved without increasing the memory requirement

compared with the previous works.

We further present the pipeline design for the

proposed lookup/update scheme. The five-stage pipeline

structure naturally fits with the lookup/update process with

the deployment of a queue stage which buffers lookup

requests to allow table updates. Performance simulation

shows that the number of queue entries significant affects

the lookup throughput when frequent table updates happen.

Using the TSMC 0.25u technology, the proposed PML

pipeline engine with an eight-entry queue stage has achieved a

clock frequency of 100 MHz which equivalently translates to

a maximum of 100 × 106 lookups per second. The lookup

rate can be further increased by using multiple pipelines.

The evaluated four-pipeline configuration improves the

throughput by a factor of 2.5 for sparse update arrivals.

With multiple-pipelines, the impact of updates on the

throughput is reduced because lookups and updates can

perform at the same time in different pipelines. This paper

has demonstrated a viable pipeline design that is scalable

both to the lookups and update requests for the IPv6

system.

As so far, the proposed PML supports unicast address.

However, it is easy to extend the proposed PML to

multicast address. If the multicast address is detected, the

Group ID address is used to perform the address lookup.

For the lookup of Group ID address of the IPv6 multicast

address, an additional PML set is required and the Group

ID address is segmented to perform parallel address

lookup.

Acknowledgments

This work was supported by the National Science

Council (NSC), Taiwan, under Contract NSC94-2220-E-

006-004.

References

[1] K. Etzel, “Answering IPv6 Lookup Challenges,”

Available at http://www.commsdesign.com/news

/showArticle.jhtml?articleID=51200476.

[2] M. Wang, S. Deering, T. Hain, and L. Dunn,

“Non-Random Generator of IPv6 Tables,” in the

Proceedings of the IEEE Symposium on High-

Performance Interconnects, August 25-27, 2004, pp.

35-40.

[3] P. Hinden and S. Deering, “IP Version 6 Addressing

Architecture,” RFC 2373, IETF, Available in http://

www.ieft.org, July 1998.

[4] M.A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous,

“Survey and Taxonomy of IP Address Lookup

Algorithm,” IEEE Network, Vol. 15, No. 2, March-

April 2001, pp. 8-23.

[5] D. Pao, C. Liu, A. Wu, L. Yeung, and K.S. Chan,

“Efficient Hardware Architecture for Fast IP Address

Lookup,” IEE Proceedings on Computers and Digital

Techniques, Vol. 150, No. 1, January 2003, pp. 43-52.

[6] R. C. Chang and R.-H. Lim, “Efficient IP Routing

Table VLSI Design for Multigigabit Routers,” IEEE

Transactions on Circuits and Systems-I, Vol. 51, No. 4,

April 2004, pp. 700-708.

[7] P.A. Yilmaz, A. Belenkiy, N. Uzun, N. Gogate, and M.

Toy, “A Trie-based Algorithm for IP Lookup Problem,” in

IEEE Global Telecommunications Conference, Vol. 1,

2000, pp. 593-598.

[8] R. Sangireddy, N. Futamura, S. Aluru, and A. K.

Somani, “Scalable, Memory efficient, High-speed IP

Lookup Algorithms,” IEEE/ACM Transactions on

Networking, Vol. 13, No. 4, August 2005, pp. 802-812.

[9] W. Doeringer, G. Karjoth, and M. Nassehi, “Routing

on Longest-Matching Prefixes,” IEEE/ACM Transactions

on Networking, Vol. 4, No. 1, February 1996, pp.

86-97.

[10] B. Lampson, V. Srinivasan, and G. Varghese, “IP

Lookups Using Multiway and Multicolumn Search,”

IEEE/ACM Transactions on Networking, Vol. 7, No. 3,

June 1999, pp. 324-334.

[11] M. Waldvogel, G. Varghese, J. Turner, and B, Plattner,

“Scalable High Speed IP Routing Lookups,” in the

Proceeding of ACM SIGCOMM, September 1997, pp.

25-36.

[12] X.o Yao, L. Li, and G. Hu, “A Fast IPv6 Route Lookup

Algorithm with Hash Compression,” IEEE

Communications, Circuits and Systems Conference,

Vol. 1, 2004, pp. 674-677.

[13] H. Lim, J.-H Seo, and Y.-J. Jung, “High Speed IP

Address Lookup Architecture Using Hashing,” IEEE

Communication Letters, Vol. 7, No. 10, October 2003,

pp. 502-504.

[14] Z. Wang, H. Wang, and Y. Sun, “High-Performance

IPv4/IPv6 Dual-Stack Routing Lookup,” in IEEE

International Conference on Advanced Information

Networking and Applications, 2004, pp. 476-481.

[15] T. Hayashi and T. Miyazaki, “High-Speed Table

Lookup Engine for IPv6 Longest Prefix Match,” in

IEEE Global Telecommunications Conference, 1999,

pp. 1576-1581.

[16] N.-F. Huang, W.-E. Chen, J.-Y. Luo, and J.-M. Chen,

“Design of Multi-field IPv6 Packet Classifiers Using

Ternary CAMs,” in IEEE Global Telecommunications

Conference, Vol. 3, 2001, pp. 1877-1881.

Scalable IPv6 Lookup/Update Design for High-Throughput Routers

269

[17] K. Pagiamtzis and A. Sheikholeslami, “Content-

Addressable Memory (CAM) Circuits and

Architectures: A Tutorial and Survey,” IEEE Journal

of Solid-State Circuits, Vol.41, No.3, March 2006,

pp.712-727.

[18] P. Gupta, S. Lin, and N. Mckeown, “Routing Lookups

in Hardware at Memory Access Speeds,” in the

Proceeding of IEEE INFOCOM, April 1998, pp.

240-47.

Biographies

Chung-Ho Chen received the M. S.

degree in electrical engineering from

the University of Missouri-Rolla in

1989, and the Ph. D. degree in

electrical engineering from the

University of Washington, Seattle,

U.S.A. in 1993. He is currently a

Professor with the Department of

Electrical Engineering at National Cheng-Kung University,

Tainan, Taiwan. His research areas include advanced

computer architecture, SoC testing, video technology, and

network storages. He co-holds a U.S. patent on a

multi-computer cluster-based processing system and a

R.O.C. patent on a multiple-protocol storage structure. Dr.

Chen was the Technical Program Chair of the 2002 VLSI

Design/CAD Symposium held in Taiwan. He is a member

of the IEEE.

Chao-Hsien Hsu received the B.S.

degree in electrical engineering from

the National Cheng-Kung University

in 2003, and the M.S. degree in

computer and communication engineering

from the National Cheng-Kung Univer-

sity in 2005. Presently, he is a R&D

engineer in worldwide-headquarter of

Zyxel Communication Corpora- tion. He focuses on the

production line of FTTx.

Chen-Chieh Wang received a B.S.

degree in electrical engineering with a

minor in computer science from the

Feng-Chia University, Taiwan, and an

M.S. degree in computer and commu-

nication engineering from the National

Cheng-Kung University, Taiwan, in

2003 and 2005, respectively. He is currently pursuing the

Ph.D. degree in the Institute of Computer and

Communication Engineering, National Cheng-Kung

University, Taiwan. His research interests include network

storages, network security, and SoC integration.

Journal of Internet Technology Volume 8 (2007) No.3

270

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

