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Abstract—Software-based self-test (SBST) is a promising ap-
proach for testing a processor core embedded in a system-on-chip
(SoC) system. Test routine development for SBST can be based
on information of different abstraction levels. Multilevel ab-
straction-based SBST develops the test program for a pipeline
processor using the information abstracted from its architecture
model, register transfer level (RTL) descriptions, and gate-level
netlist for different types of processor circuits. The proposed
methodology uses gate-level and architecture information to
improve coverage for structural faults. This SBST methodology
uses an automatic test pattern generation tool to generate the
constrained test patterns to effectively test the combinational
fundamental intellectual properties used in the processor. The ap-
proach refers to the RTL code and processor architecture for the
rest of the control and steering logic for test routine development.
The effectiveness of this SBST methodology is demonstrated by
the achieved fault coverage, test program size, and testing cycle
count on a complex pipeline processor core. Comparisons with
previous works are also made.

Index Terms—Automatic test pattern generation (ATPG), fault
coverage, functional testing, processor testing, scan chain, soft-
ware-based self-test (SBST).

I. INTRODUCTION

SOFTWARE-BASED self-test (SBST) has become increas-
ingly popular for embedded processor testing [1]. This

methodology has many advantages, such as at-speed testing,
testing for critical paths [21], no area and performance over-
head, and no requirement of using expensive external testers.
In SBST, the processor fetches the test program from the
memory, executes the instructions, and writes back the results
into memory. The results are compared with the correct one to
determine whether the processor core is successfully manufac-
tured. The test program and data in a sense are the functional
patterns stored in memory. In current system-on-chip (SoC)
designs, built-in memory can be used for storing or uploading
the test program. Alternatively, a low-cost automatic test equip-
ment (ATE) that provides the external storage and bus interface
for accessing the test code and data can jointly support the
testing as shown in Fig. 1(a). It is called self test because the
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processor executes the instructions to test itself despite the help
from the low-cost ATE machine.

To improve the speed of processor functional testing, the test
routine can be loaded into the processor cache by a special cache
loader [12]. The processor executes the test routine at its ac-
tual speed. The test results are either written back to the in-
ternal memory as in Fig. 1(a) or directly to the external memory
in the ATE. In a different way, the test results are compressed
and stored in a multiple-input signature register (MISR) as il-
lustrated in Fig. 1(b). Finally, the processor writes back the re-
sponse out of the MISR to the ATE machine which checks with
the correct result during manufacturing testing.

The test program can be developed in different ways, in-
cluding random test routine [2]–[5], [8] or deterministic test
code [1], [6], [10]. In the case of random test code, a mechanism
that makes sure continuous and legitimate instruction execution
must be provided, either through software instruction generator
[12] or built-in hardware [4].

The test routine can be programmed or generated by refer-
ring to the original instruction set architecture (ISA) of the pro-
cessor or by adding special test instructions, hence changing the
original ISA to improve the testability of the processor [9]. In
test routine development, especially for deterministic method-
ology, different levels of information of the processor can be
used. Using the design information from lower abstraction level,
such as the gate-level netlist often results in more efficient and
effective testing program since in this case the test program is
developed directly against the known structural faults [5].

Test development can also be carried out based on the infor-
mation of higher abstraction level such as the RTL (register-
transfer-level) descriptions [1] or the ISA [2]. In these cases,
at the test development stage, the fault list of the processor may
be still unknown so the test development deductively targets at
the possible structural faults. Due to the high abstract level, a
test program only based on the RTL description or ISA is likely
difficult to attain a high coverage for the structural faults except
for specific functional modules, for instance, a general purpose
ALU [10], [21].

In this paper, we present a methodology that uses multiple-
level abstractions (MLA)-SBST of embedded processors. The
approach explores the SBST development for different types of
circuit based on the design information from the processor ar-
chitecture, register-transfer-level, and gate-level. The idea be-
hind the methodology is to apply the most useful information
of a certain level to the different parts of the processor core.
The proposed methodology uses gate-level and architecture in-
formation to improve coverage for structural faults. Our SBST
methodology uses an automatic test pattern generation (ATPG)
tool to generate the constrained test patterns to effectively test
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Fig. 1. System environment of SBST for embedded processor cores.

the simple combinational fundamental intellectual properties
(IPs) used in the processor. Finally, the approach refers to the
register transfer level (RTL) code and processor pipeline archi-
tecture for the rest of the control and steering logic in the pro-
cessor for test routine development.

The effectiveness of this MLA-SBST methodology is
demonstrated by the achieved fault coverage, test program size,
and testing cycle count on a Linux-verified pipeline processor
core that incorporates pipeline hazard control and operand for-
warding. Comparisons with previous work are also presented.
The rest of this paper is organized as follows. Section II dis-
cusses some related research. Section III presents the proposed
methodology. A case study with detailed test sequences is
presented in Section IV. Section V shows the experimental
results and comparisons with other SBST schemes. Finally,
Section VI gives the conclusions of this paper.

II. PREVIOUS WORK

SBST of processor cores has received great attention and in-
terest recently [1]–[7], [10], [11]. The approach in [5] uses pseu-
dorandom patterns to test a processor component by component.
In the test preparation step, test patterns for a component are de-
veloped using random number generator under constraints im-
posed by the instructions. The consideration of constraints is
to make sure that the generated patterns are realizable by the
processor instructions or system constraint [12]. In the case of
random patterns, the patterns are encapsulated into signatures.
In the self-testing step, the generated patterns are applied to the
considered components by a software tester which is an on-chip
test generation program that emulates a pseudorandom pattern
generator and expands the signatures into test patterns. Then the
test application program applies these patterns to the considered
components. The authors used an 8-bit Parwan processor core
which consists of 888 equivalent NAND gates and 53 flip-flops
as the target processor. The work has achieved 91.42% in pro-
cessor fault coverage.

In [2], test instructions and their operands are generated
randomly using probability distribution functions and a genetic

algorithm, respectively. The genetic algorithm is used to max-
imize the number of detected faults by selecting the proper
operands for the instructions in the macro. If new faults are
detected, the test macro is added to the final test program. If
not, the probability of being selected again of this macro is
decreased. The authors evaluated their work on an 8-bit 8051
microcontroller which has a gate-count of about 6000. The
fault coverage attained is 85.19%.

In [1], Kranitis et al. analyzed the RTL descriptions of a pro-
cessor and then chose instructions and operands to form the test
routines determinedly according to their test library. This ap-
proach is carried out at a high abstraction level and gate-level in-
formation is not required during test development. The test rou-
tine development methodology is basically a divide-and-con-
quer approach relying on processor ISA and its RT-level de-
scriptions. The work has reported 95.3% in fault coverage for
a three-stage simple pipeline MIPS processor core. For a more
complicated five-stage pipeline implementation of the same in-
struction set, the achieved fault coverage drops to 92.6%. Deter-
ministic SBST has also been used in testing the specific func-
tional units of a processor such as the ALU, multiplier-accumu-
lator, and shifter [10]. Automation in SBST has been the focus
in [7] for automatic synthesis of test programs for processor
modules as well as for automated constraint extraction from an
RTL module in [19]. Apart from SBST for processor cores, the
full scan approach has been used in testing a fully synthesizable
processor core [13]. The downside of the scan-based approach
comes from the processor area overheads and possible perfor-
mance degradation.

III. PROPOSED MULTIPLE-LEVEL ABSTRACTION-BASED

SBST METHODOLOGY

The idea behind our proposed processor SBST methodology
is to exercise the most cost-effective test method on the selected
processor part. The processor core is decomposed into the fol-
lowing parts for deterministic test routine development:

• ISA registers;
• fundamental IP units, which are the simple ALUs inside

the processor core;
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Fig. 2. Proposed MLA-SBST methodology for processor core testing.

TABLE I
LIST OF INTERFACES OF A SINGLE D FLIP-FLOP

• control, steering logic, and pipeline registers;
• pipeline-related control logic, such as load-use hazards,

control hazards, and result forwarding mechanism, in-
cluding interrupt supporting logic.

The classification is based on the mechanism used to apply
on test routine development. The MLA-SBST methodology for
processor cores consists of the following two stages of work.

• Stage 1: Processor part classification based on multiple-
level abstraction. The first stage is classification of the
previously mentioned processor parts based on the mul-
tiple-level abstraction model that includes processor ISA,
pipeline architecture, and synthesized gate-level processor
core.

• Stage 2: Test routine development. The second stage in-
cludes the test code development for each individual part,
which can be conducted in parallel.

We explain the detail of our multiple-level abstraction-based
SBST strategy in the following subsections.

A. Stage 1: Processor Part Classification Based on
Multiple-Level Abstraction

Before test code development, our SBST methodology re-
quires classification of the processor components into the four
functional groups as previously mentioned. Fig. 2 illustrates the
concept of the proposed test routine development methodology.

1) ISA Registers: In a soft processor core, all the declared
registers in RTL description are clocked and edge-triggered.
Typically, they are synthesized into clocked D flip-flops with
the input/output (I/O) pins listed in Table I. Different technology
libraries and different synthesis parameters may introduce dif-
ferent state elements, but they are normally of little variation.

The MLA-based strategy derives the test sequences for pro-
grammer-visible registers according to the information in the
gate-level and the processor pipeline architecture. Through the
information from these two levels, effective test routines can be

Fig. 3. Fundamental IP (a 32-bit adder) in the netlist.

developed easily for regular state structures without the tedious
manual efforts. After synthesis, the programmer visible registers
are mapped into D flip-flops. If the test sequences are developed
at the RT-level (register transfer level), some of the faults on the
D flip-flops, such as the faults on the write enable pins, are in-
visible at this level and thus are probably ignored and untested
by the test program based on the high RT-level. In addition, in-
formation of architectural level such as the pipeline forwarding
depth between the EXE stage and the WB stage must also be
used in order to develop useful test sequences for the general
purpose registers.

2) Fundamental IP: The fundamental IP refers to the com-
binational logic introduced by the synthesis tool, such as adders
and multipliers invoked by the related RTL statements. For ex-
ample, the synthesis tool will insert an adder into the design to
realize the addition function in the RTL code of the processor.
Fig. 3 illustrates the netlist of the memory access unit which
includes a 32-bit adder. This adder’s operation and interfaces,
both of which are simple enough for an ATPG tool to produce
effective constrained test patterns, are shown in Fig. 4.

In a processor core, the fundamental IP mainly comes from
two components: the ALU and the memory access unit. The fun-
damental IP units used in the ALU are for the implementation of
data processing instructions, such as add, subtract, and multiply.
The fundamental IP units used in the memory access module are
for the manipulation of memory addresses. Pipelining is another
source of using fundamental IP. In a pipelined architecture, the
address of current executed instruction and the current PC value
often have a difference such as 8, 12, or 16, depending on the
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Fig. 4. Interfaces of the fundamental IP in Fig. 3.

pipeline depth. If an interrupt or a function call happens, the pro-
cessor needs to backup the return address, using a subtractor to
recover the actual instruction address from the PC. In a complex
pipeline processor with various interrupt and exception modes,
there may exist many fundamental IP units to handle address
backup.

For these simple fundamental IPs, which are found to occupy
a large portion of the processor, the effective strategy for test
routine development is to rely on the ATPG tool for the gener-
ation of efficient test patterns with only simple constraints. The
test routine for a fundamental IP can be easily designed without
struggling in the complex constraint setting process as in other
complicated processor modules.

3) Control, Steering Logic, and Pipeline Registers: Apart
from the ISA registers and fundamental IPs, the remaining parts
of the processor components to be considered is the control and
steering logic, such as the distributed logic gates, multiplexers,
and pipeline registers. For the two former elements, they are
difficult to be identified with the structural information from the
gate-level netlist. Pipeline registers are not ISA accessible. To
test these units, we explore the instruction sequences similar
to the programs for verification, which attains very high code
coverage of the RTL descriptions with the consideration of fault
observations and pipeline architecture.

4) Pipeline-Related Control Logic: Pipeline architecture is
widely used in processor designs to enhance the performance.
Pipeline architecture not only introduces complex pipeline con-
trol logic but also complicates the exception processing unit. To
test additional stuck-at faults related to pipeline control, infor-
mation of pipeline architecture can be explored. When the pro-
cessor encounters a branch instruction, exception, or external
interrupt, its execution flow will be altered. In a pipelined pro-
cessor, the mechanism to handle these operations is known as
the branch hazard detection or control hazard detection. Another
commonly found pipeline control logic is the forwarding logic
which bypasses the result to the execution unit before the desti-
nation register is updated.

B. Stage 2: Test Routine Development

In this section, we address the process of test routine devel-
opment for each of the major processor parts.

1) ISA Register: In a synthesized processor core, the ISA reg-
isters are mapped into edge-triggered D flip-flops which have a
regular structure. Hence, the test routine development can focus
on the structural faults of the D flip-flops’ I/O interface with
the consideration of the processor pipeline architecture, i.e., the
pipeline forwarding structure. This part of test routine develop-
ment is simple and effective.

2) Fundamental IP: To extract a fundamental IP, the IP (with
no other logic) is copied directly from the netlist of the selected
module and then the ATPG tool is used to generate the test pat-
terns for the IP. We feed one IP to the ATPG tool at a time. At
this moment, we have full controllability and observability on
the IP’s inputs and outputs. However, this is not the case when
the IP is embedded in the processor. The input space of each fun-
damental IP is restricted by the ISA and the architecture of the
processor. Hence, we must set constraints for the ATPG process
based on the functionality of the IP in the processor core. The
constrained ATPG is performed, which generates the dedicated
test patterns for each fundamental IP. Then, the test routine that
reproduces the test patterns for the inputs of each IP inside the
processor can be developed. The fundamental IP is further clas-
sified into data processing IP, data memory address manipula-
tion IP, and instruction memory address manipulation IP.

a) Constraint setting: There are two kinds of constraints:
mandatory constraints and optional constraints. Mandatory con-
straints are used to prevent the generation of illegal test pat-
terns for the IP that is embedded in the processor core. For ex-
ample, consider a subtractor IP that calculates the start address
for the multiple load/store instructions (ldm/stm) with a certain
addressing mode. One of its data inputs (A) represents the 32-bit
base address coming from a general purpose register specified
in the instruction while the other data inputs (B) is a 5-bit wide
number representing the number of memory accesses in the in-
struction. The start address is calculated as (the
access is word aligned). The legitimate number of memory ac-
cesses in the multiple load/store instruction is from 1 to 16.
Thus, the constrained test pattern required for input B only con-
sists of the bit patterns of 1 to 16, excluding the rest of the 5-bit
patterns. Another commonly found mandatory constraint is set-
ting the least significant two bits of a word-address test pattern
to zero.

The other types of constraints are referred to as the optional
constraints that help reduce test cost, but they are optional. Con-
sider the subtractor for the multiple load/store instruction as an
example again. The input A of the subtractor represents the base
address for accessing a word, and we need to restrict the least
significant two bits to 00 for mandatory constraint to ensure
word alignment of the memory accesses. Under this constraint,
the ATPG tool will generate patterns for input A ranged from 0
to fffffffc(h). This implies that the system needs to prepare 4 GB
of memory for the processor to perform memory accesses to test
the subtractor. This is not practical. However, if we restrict the
most significant 12 bits to only two values: 000(h) and fff(h); the
system needs only 2 MB of the memory: 1 MB at the bottom and
1 MB at the top of the 4-GB address space.

Setting these stricter optional constraints may cause fault cov-
erage loss and augmentation of the pattern numbers generated
by the ATPG. However, our experimental results show that if
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the constraints are not made drastically strict, the fault coverage
and the number of test patterns will stay at the same level or not
even change at all.

b) Test routine development for data processing IP: The
data processing IPs come from the processor ALU for the imple-
mentation of data processing instructions. To invoke them, the
corresponding data processing instructions are the only choices.
In a typical RISC processor, the inputs of the IPs are connected
to the general purpose registers specified by the corresponding
instruction or to the decoder or instruction register output for
an immediate operand coded in the instruction itself. Usually, a
32-bit pattern cannot be coded as the immediate operand with
only one instruction. Thus, the test program only requires using
register operands. In this case, the test patterns for a data pro-
cessing IP can be placed into a register via the memory load
instructions. Then, the corresponding instructions are executed
to invoke the IP and the results are sent to registers, which are
then stored into memory for observation. These kinds of test se-
quences can be coded as a compact loop and the test program
size can be reduced.

c) Test routine development for data memory address ma-
nipulation IP: To test the IP for data address generation, the data
memory access instructions are used. The test patterns for these
IPs come from the general purpose registers and the address off-
sets of the instructions. The instruction ISA of the tested pro-
cessor provides the information. When testing an address-gen-
eration IP, the test responses (data access addresses) will be au-
tomatically propagated to the primary outputs. Generally, load
and store instructions share the same adders/subtractors for ad-
dress calculation. Thus, it is preferred that load instructions are
used instead of store instructions because a store instruction can
modify the content of target address which may contain data or
instructions for future use.

d) Test routine development for instruction memory ad-
dress manipulation IP: An instruction address generation IP is
mainly used for the calculation of return address of branch-and-
link instructions, exceptions, and interrupts. The IP is invoked
when such special events occur. In general, one of their inputs is
the PC value, and the other is a constant. Consequently, they can
be seen as an IP with a single input. As a result, the generated
patterns must be propagated to this type of IP via the program
counter. This means that the test routine must invoke the event
at the addresses indicated by the test patterns generated from the
ATPG.

As for the branch-and-link instructions or internal exceptions
raised by instructions, this is not a problem. For these cases,
we just need to place the PC-control instructions at the indi-
cated addresses, ensuring that the addresses are not occupied by
other instructions or data. The address overlapping problem can
be solved by using additional constraints to avoid the used ad-
dresses, but this may affect the fault coverage and the number
of generated patterns. To resolve this issue, we propose the use
of self-modifying code, a much more elegant and effective ap-
proach. For example, if a software-interrupt instruction and a
branch-and-link instruction must be placed at the same address,
after the software-interrupt instruction is executed, the instruc-
tion on this address can be changed to the branch-and-link by
the test program itself. This is done in the following way. First,

a simple loader replaces the old test program with the new test
program of the IP for instruction address manipulation. The
loader moves the new test program from the data area to the
program area where the generated patterns must be propagated
to this type of IP via the program counter. The second step is
simply jumping to and executing the new test program. As for
the external interrupt, the interrupt signal is scheduled to occur
from outside at appropriate time by matching the interrupt event
with the desired PC value.

3) Test Routine Development for Control, Steering Logic, and
Pipeline Registers: To develop test routines for control, steering
logic, and pipeline registers, we refer to the RTL descriptions of
the processor core with emphasis on preventing fault masking.
Taking a multiplexer for example, for the pursuit of high RTL
code coverage, the instruction sequence only makes sure in se-
lecting every input of the multiplexer. However, for testing, se-
lecting every input is not enough. The test sequence must also
differentiate every input value to prevent masking of faults on
the select signals due to identical input values.

The methodology for testing the pipeline registers is similar,
but the difficulty of testing them well becomes higher. This is
because there is no instruction that can explicitly access them as
well as there is no way to definitely freeze their values. To test a
specific pipeline register, we refer to the ISA specification and
RTL descriptions to select the proper instructions. In general,
the faults related to D, Q, and CK of all pipeline registers are
easy to be detected while R’s s-a-0 and EN’s s-a-1 are the faults
that appear to be functionally undetectable.

4) Test Routine Development for Pipeline-Related Control
Logic: To test the pipeline control logic, the methodology
relies on the exploration of the pipeline architecture of the
target processor. Specifically, the test routine examines the
single stuck-at faults from the pipeline control hazard logic and
the forwarding logic. In a classic five-stage pipelined processor
with always not-taken for branch prediction, when a branch
occurs, the IF and ID pipeline stage must be flushed for correct
program execution. The rationale behind the test program is to
test if the flush logic successfully nullifies the instructions in
these pipeline stages. As for the forwarding mechanism, the
idea is simply to test if the forwarding does occur from behind
the pipeline stages.

IV. CASE STUDY: TEST ROUTINE DEVELOPMENT FOR A

LINUX-VERIFIED PROCESSOR CORE

A. Processor Model

We have realized a processor core that implements the
compatible ARMv4 instruction set to demonstrate the proposed
methodology [14]. Despite its RISC ISA, this processor has
resembling complex instruction set computer (CISC) features,
such as the multiple load and store instructions that manipulate
more than one memory address and register by just one instruc-
tion. In addition to the complex instruction set, the processor
is implemented in a classic five-stage pipeline that supports
the mechanisms for resolving branch hazard, load-use hazards,
and pipeline forwarding [15]. Fig. 5 depicts the processor
core architecture. Including the caches, translation lookaside
buffers (TLBs), and memory management unit (MMU) system,
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Fig. 5. Architecture of the target processor.

the processor core was verified in a field-programmable gate
array (FPGA) board that successfully runs the Linux operating
system. This shows that the full functionality of the processor
core can be included in the test routine development. Different
from many previous works that use a much simpler processor,
the processor we use in this paper incorporates the complete
functionality for operating system support in addition to its
pipeline mechanisms for hazard detection and operand for-
warding.

B. ISA Registers

In this paper, the fault model assumed is single stuck-at-fault.
Thus, a 1-bit register (or a D flip-flop) with the gate-level struc-
ture shown in Table I will have ten faults. To test a general pur-
pose register, say r1, it is intuitive to write the following instruc-
tion sequence:

mov r1, #0x 0 ;write all 0’s to r1
str r1, [address] ;read r1 and store it for observation
mvn r1, #0x 0 ;write all 1’s to r1
str r1, [address] ;read r1 and store it for observation.

The register r1 is a 32-bit register composed of 32 D flip-
flops, and, according to the previous D flip-flop model, it has 320
probable single stuck-at faults. In the previous sequence, values
of all 1’s and all 0’s are written into r1, respectively. After the
write to the register, a store instruction reads the same register
and propagates the value to the primary outputs (data output
bus). Unfortunately, this instruction sequence cannot detect any
faults of r1 because the sequence does not actually access r1.
The store instruction receives its operand from the forwarding
path but not the physical register r1.

To resolve this problem, the pipeline architecture of the pro-
cessor must be taken into account, which requires the insertion
of no operations (nops) between the move and store instructions.
The function of nops is to wait for the written value to actually
go into the register. Hence, the useful test segment is shown as
follows:

mov r1, #0x 0

str r1, [address]

where the number represents the number of pipeline stages
between register reading and write-back.

After the insertion of nops, the faults on D, Q, and CK of
every bit of the register can be detected. The reason that faults
on the clock signals can be detected is that the register is edge-
triggered. If the CKs are stuck at any level, the contents of r1 will
not be able to be updated. Additionally, R’s s-a-1 (reset signal)
and EN’s s-a-0 (register write enable) are also detected. This is
because the s-a-1 faults of reset will set the register value to 0
and EN’s s-a-0 faults will cause the register value unable to be
changed; effects of these faults can be observed via the store
instruction.

To test R’s s-a-0 faults (reset signal), the method is to store
the register’s value immediately after system reset. If the register
had been successfully reset, the value of 0 would be propagated
to the data output bus. If not, an unpredictable value will be
propagated and the fault effect of R’s s-a-0 can be observed on
the data output bus. To detect EN’s s-a-1 faults (register write
enable) needs a special treatment. The netlist of the processor
core shows that all general purpose registers have the same input
data source except r14. This means that a value written to a
particular register, say r1, will also be transmitted to all other
general purpose registers. Whether a register receives this value
or not is decided by the write enable (EN) signals. The following
sequence can be used to test this mechanism:

mvn r1, #0x 0 ;write all 1’s to r1
mov r5, #0x 0 ;write all 0’s to r5

str r1, [address] ;read r1 and store it for observation.

If the ENs of r1 are stuck at 1, that is, always write-enable, the
value of r1 will be changed and the fault effect can be observed
on the data output bus after storing r1. Using the previous tech-
niques, all general purpose registers that share the same input
data source can be fully tested in a pipeline processor with for-
warding path.

C. Test Routine Development for Fundamental IP

The test pattern for testing each fundamental IP can be gen-
erated through the constrained ATPG process.

1) Test Routine Development for Data Processing IP: As an
example, we show the sequence of instructions for the testing
of a combined adder-subtractor in the ALU that realizes related
data-processing instructions. This fundamental IP has three in-
puts, two 32-bit data inputs, and a control input deciding the op-
eration mode (add or subtract). For this IP, the ATPG tool gen-
erates 27 patterns each of which is 65-bit wide .
The two 32-bit patterns represent the two data inputs which will
be placed in the memory while the control bit is used to decide
the type of operation (add or sub). The ATPG process for this
fundamental IP does not require any constraint setting.

The test routine shown as follows consists of the loop for
the sub instruction. The operands (test patterns) for the IP are
first loaded from the memory to the registers r1 and r2, respec-
tively. Then, the principal instruction, sub, is executed to acti-
vate the fundamental IP. Next, the store instructions are exe-
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cuted to propagate the result to the primary outputs for obser-
vation. Note that some of the faults of this fundamental IP can
be observed only on the carry-out pin, so the current processor
status register (CPSR) is stored for observation.

mov r5, #0x 2100 ;starting address for response store
mov r6, #0 ;loop-index preparation
mov r0, #0x 2400 ;starting address for pattern fetch

atpg_label_1
ldr r1, [r0], #4 ;load test pattern, after loading,

ldr r2, [r0], #4 ;load test pattern
subs r3, r1, r2 ;test pattern application (subtract)
str r3, [r5], #4 ;store for result(r3) observation
mrs r9, cpsr ;move cpsr to r9
str r9, [r5], #4 ;store for result(r9) observation
add r6, r6, #1 ;increment of the loop index
cmp r6, #13 ;compare r6 with 13(total 13 iterations)
bne atpg_label1 ;branch if not equal.

2) Test Routine Development for Data Memory Address Ma-
nipulation IP: We choose the adder that calculates the data ad-
dress of the multiple-load instruction (ldmda) as the example
to illustrate the test routine development through constrained
ATPG. This adder has a 32-bit input that receives a value from a
general purpose register specified by the ldmda instruction as
the base address and another input represents the number of
memory accesses of the multiple-load instruction (from 1 to 16).
The first constraint, which is a mandatory constraint, is to limit
the least significant two bits of the generated patterns to 00 to en-
sure word alignment of memory accesses. Besides, an optional
constraint can be set to limit the most significant 12 bits of the
test pattern to zero, reducing the memory blocks needed.

Another place for setting an optional constraint is the input
that represents the access number of the multiple load instruc-
tion. For instance, the maximum access number can be limited
to two instead of 16 specified by the ISA. In this way, the number
of the test cycles can be reduced. By exploring the fault coverage
attained from the constrained ATPG, a satisfying access number
can be determined easily.

As a result, the ATPG tool generates 23 patterns for this fun-
damental IP. Before placed in the memory, these patterns are
sorted according to the indicated access number. The final in-
struction sequence is as follows. When the ldmda instruction is
executed, both the bit pattern in r1 and the access number will
be fed to this adder. Then, the calculation result, i.e., the data ad-
dress, is propagated to the primary outputs (data address pins)
where the result can be observed.

mov r6, #0 ;loop-index preparation
mov r0, #0x 00240000;starting address for pattern fetch

atpg_label_1 ;loop for the 2-access ldmda
ldr r1, [r0], #4 ;load the base address into r1
ldmda r1, {r3, r4} ;activate the targeted adder

;load data at addresses r1 & r1 4
;from memory to r3 and r4
sequentially

add r6, r6, #1 ;increment of the loop index

cmp r6, #20 ;total 20 iterations for 2-access
bne atpg_label_1 ;branch if not equal

mov r6, #0 ;loop-index preparation
atpg_label_2 ;loop for the 1-access ldmda

ldr r1, [r0], #4 ;load the base address into r1
ldmda r1, {r3} ;activate the targeted adder
add r6, r6, #1 ;increment of the loop index
cmp r6, #3 ;total 3 iterations for 1-access
bne atpg_label_2 ;branch if not equal.

3) Test Routine Development for Instruction Memory Ad-
dress Manipulation IP: We demonstrate the test routine devel-
opment strategy for instruction memory address manipulation
IPs with the following example. Inside the processor, a sub-
tractor is used to calculate the return address of a software in-
terrupt (SWI) which is activated by the SWI instruction. When
an SWI is raised, the address of the next instruction is stored in-
ternally for the use of future return. In many RISC processors,
the stored address is the PC value at this moment subtracted by
a constant, 0xC in our example. Thus, the subtractor IP has a
32-bit input that is fed with the value of the PC and another input
is simply the fixed value. For this fundamental IP, the ATPG tool
generates 15 test patterns which represent the PC values.

Applying the mandatory constraint that limits the least sig-
nificant 2 bits of the generated patterns to 0 ensures the word
alignment of instructions. Additionally, an optional constraint is
set to limit the most significant 12 bits of the generated patterns
to zero. Therefore, the SWI instructions will be centralized at
some memory blocks. On the other hand, if these constraints are
not set, the SWI instructions will scatter over the 4-GB memory
space, making it not practical for program execution.

In order to set the PC to the desired value, the test routine
should execute instructions at the corresponding address, and
consequently by placing the SWI instructions at addresses in-
dicated by the generated patterns (there is a fixed offset be-
tween the addresses of SWI instructions and the generated pat-
tern values). The following sequence is one of the 15 instruction
blocks that invoke the instruction memory address manipulation
IP:

@01F2C5BE ;starting address determined by ATPG
EF123456 //swi 0x 123456 ;activate a software-interrupt
E4964004 //ldr r4, [r6], #4 ;load next address from

memory
E1A0F004 //mov pc, r4 ;jump to next SWI block.

To observe the fault effect of this fundamental IP, the value of
r14_svc (a general purpose register where the calculated return
address is deposited) is written to the memory in the SWI han-
dling routine (not shown previously). After the return from the
SWI handling routine, the following load instruction loads the
address of the next SWI instruction from the memory (the 15
addresses of SWI instructions are placed in the memory before
test program execution) and this value is written to the PC (a
jump operation) for the next execution of the SWI instruction.
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D. Test Routine Development for Pipeline-Related Control
Logic

To test a pipeline processor effectively, we explore the
pipeline architecture of the target processor for test program
development.

1) Test Routine Development for Control Hazard Detection
Logic: In a classic five-stage pipelined processor with always
not-taken for branch prediction, when a branch is taken, the IF
and ID stage must be flushed for correct program execution.
This means that the decoding of the instruction following the
branch must be disabled, and the fetching of the next instruc-
tion must also be disabled, too. To functionally test these mech-
anisms, we can insert another control-transfer instruction fol-
lowing the branch. For example, note the following:

b branch_target ;branch
swi 0x 123456 ;raise an exception

.

In the viewpoint of normal program execution, the instruction
following the branch is meaningless. However, from the view-
point of functional testing, it can check the correctness of the
pipeline control hazard mechanism. The effect of the SWI in-
struction is easily observable, if it is decoded, a control transfer
(to the exception vector) will occur. Thus, we can observe the
fault effects on the instruction address bus. Alternatively, other
types of instructions can be used to test this mechanism with the
arrangement for fault observation as shown in the following:

b branch_target ;branch
mvn r1, r1 ;invert r1’s value

branch_target
str r1, [address] ;store r1

.

In this example, if the ID stage flush mechanism does not
function correctly, the value in r1 will be inverted, and the store
instruction at branch target will propagate the fault effect to the
primary output. Note that flushing incorrect fetched instruction
in the pipeline is not centric to a particular implementation. It
is a common practice in pipeline implementation when dealing
with branch hazards. More details on this issue can be found in
[15].

The method of testing the IF flush mechanism is similar. Nor-
mally, when a branch occurs, the IF stage will be disabled and
a bubble instruction is inserted into the pipeline. If this is not
the case, an instruction will be fetched and cause unpredictable
results after decoding. We can append an instruction with well
observable effects, such as software interrupt or branch, after
the previously mentioned ID-flush-testing instruction to test this
mechanism.

2) Test Routine Development for Pipeline Forwarding Mech-
anism: In a pipeline processor, the forwarding mechanism is
often implemented to improve the performance of the processor.
Intuitively, to test the forwarding logic functionally, the fol-
lowing instruction sequence can be used:

mov r0, #0x ff
add r2, r0, r1 ;forward to r0
str r2, [address] ;response observation.

In this example, the result of the mov instruction is forwarded
to the add instruction; this sequence will activate the forwarding
mechanism. However, considering the processor pipeline archi-
tecture, we can further raise the fault coverage by adding the
following two instructions before the previous sequence:

mov r0, #0x 12
ldr r0, [address_1] ;load a value other than 0x 12 and 0x ff
mov r0, #0x ff
add r2, r0, r1 ;forward to r0
str r2, [address_2] ;observation.

A forwarding path is typically implemented by a reg-
ister-index comparator and an operand multiplexer. In a classic
five-stage pipeline, the multiplexer has three data inputs, input
from the EXE stage, input from the MEM stage, and input
from the physical general purpose register. As mentioned
previously, when testing a multiplexer, we must differentiate
its inputs to prevent fault masking. If the three inputs of the
forwarding multiplexer are all the same, we will not be able to
observe the faults on the select signals, and thus the faults in
the register-index comparator.

In the previous sequence, the first three instructions con-
tribute to the three inputs, respectively, (three possible sources
of r0 for the add instruction), and their results arrive at the same
time due to the pipeline architecture, and thus the three inputs
are differentiated. The first two instructions seem meaningless
because the value of r0 will be overwritten immediately, but in
views of testing they can help detecting more faults.

A pipeline processor may use a different implementation
model such as three-stage or seven-stage, or even more. Without
the loss of generality, the rationales presented above can be
extended in the in-order execution models of different pipeline
depth.

V. EXPERIMENTAL RESULTS

We use ModelSim from Mentor Graphics, Design Analyzer
from Synposys for logic simulation and logic synthesis. Tur-
boScan from SynTest [16] is used for ATPG and fault simula-
tion [17].

A. Fault Simulation

Fig. 6 depicts the flow of fault simulation which is performed.
We first prepare the memory image file that contains the instruc-
tions and data required for test program execution. The test pro-
gram has two parts: scattered instructions and sequentially ex-
ecuted instructions. The sequences for the testing of the funda-
mental IPs for return address backup belong to the former, and
the other instructions belong to the latter. The sequentially exe-
cuted instructions and the ATPG generated data can be placed at
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Fig. 6. Flow of fault simulation.

a desired place in the memory; however, the scattered instruc-
tions must be placed at the addresses indicated by the ATPG
generated patterns.

After the preparation of the memory image file, we perform
the logic simulation using ModelSim to acquire the stimuli for
fault simulation. During the logic simulation, the instructions
and data in the memory image file will be fetched into the pro-
cessor core according to the execution of the test program. We
implement Verilog code in the test bench of the logic simula-
tion to capture all input signals during the logic simulation, and
these captured signals will become the stimuli fed to the fault
simulation tool. The capture code in the test bench is shown as
follows:

always @(posedge CLK or negedge CLK) begin
$fwrite(fp3, “%d ”, half_cycles);
$fwrite(fp3, “%h ”, uEASY.uARM9.uARM9TDMI.ID);
$fwrite(fp3, “%h ”, uEASY.uARM9.uARM9TDMI.DDIN);
$fwrite(fp3, “%h ”,

uEASY.uARM9.uARM9TDMI.CHSDE);
$fwrite(fp3, “%h ”,

uEASY.uARM9.uARM9TDMI.CHSEX);
$fwrite(fp3, “%h ”, uEASY.uARM9.uARM9TDMI.CPDIN);
$fwrite(fp3, “%b ”, uEASY.uARM9.uARM9TDMI.GCLK);
$fwrite(fp3, “%b ”, uEASY.uARM9.uARM9TDMI.rst_n);
$fwrite(fp3, “%b ”, uEASY.uARM9.uARM9TDMI.nWAIT);
$fwrite(fp3, “%b ”,

uEASY.uARM9.uARM9TDMI.IABORT);
$fwrite(fp3, “%b ”,

uEASY.uARM9.uARM9TDMI.DABORT);
$fwrite(fp3, “%b ”,

uEASY.uARM9.uARM9TDMI.BIGEND);
$fwrite(fp3, “%b ”,

uEASY.uARM9.uARM9TDMI.HIVECS);

$fwrite(fp3, “%b ”, uEASY.uARM9.uARM9TDMI.nfiq);
$fwrite(fp3, “%b ”, uEASY.uARM9.uARM9TDMI.nirq);
$fwrite(fp3, “%b\n”,

uEASY.uARM9.uARM9TDMI.CPEN);
End.

In the previous code, fp3 is the file pointer that represents the
file where the input signals are stored, and the last part of each
line is the signal (interface) name of the processor core. We cap-
ture input signals twice in a clock cycle. The recorded data do
not conform to the TurboScan’s input format, so a simple char-
acter transformation is required. The experimental processor
core has 110 input pins, so after the transformation the input
stimulus for a time frame (a half cycle) will has 110 charac-
ters representing the 110-bit input signals. Finally, we perform
fault simulation using the transformed stimuli and the gate-level
netlist of the processor as inputs and get the fault coverage,
which is based on the structural single stuck-at fault model.

B. Synthesis Case 1: TSMC 0.35 m, 30 MHz

In this case, we have synthesized the target processor using
the TSMC 0.35- m library. The synthesized processor has a
gate count of 45 046 (two-input NAND-gate equivalence) and
operation speed of 30 MHz. We develop the test program ac-
cording to our proposed methodology and produce a test pro-
gram of 1747 instructions (6988 bytes). It takes only 18 675
(with cache) or 24 073 (without cache) cycles to execute this test
program. The size of the stored patterns generated by the ATPG
tool is 2120 bytes. A total of 9108 bytes of data (instructions +
patterns) must be placed into the memory before self-testing.

The resultant fault coverage of each part as well as the pro-
cessor is listed in Table II. For comparison, the fault coverage
of both the full processor and the functional modules from full
scan chain is also presented. The MLA-SBST methodology has
achieved 93.74% in processor coverage. This result indicates
that the proposed pure software-based self test methodology
has shown promising test quality for the complex pipeline pro-
cessor. The difference of the fault coverage between applying
the full scan chain and the MLA-SBST methodology is about
4%–5%.

The fault coverage for each group of the pipeline registers,
the register file, and the status registers for this synthesis case is
listed in Table III. As expected, the fault coverage for the ISA
registers has achieved the best coverage among the registers.

C. Synthesis Case 2: TSMC 0.35 m, 50 MHz

In the second case, we have synthesized the target processor
using the TSMC 0.35- m library but with different parameters
for a higher speed. The synthesized processor has a gate count
of 63281 (two-input NAND-gate equivalence) and an operation
speed of 50 MHz. We redo the ATPG parts of the test program
development for the fundamental IPs while the remained parts
are the same as the first synthesis case. The change in the test
program size and the execution time is quite small. The fault
coverage of each processor part and comparisons are shown in
Table IV. It is noted that the test program developed for syn-
thesis case 1 has shown only a small degradation (0.04%) in
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TABLE II
BREAKDOWN OF FAULT COVERAGE FOR THE PROCESSOR IN SYNTHESIS CASE 1

TABLE III
FAULT COVERAGE OF VARIOUS REGISTERS IN SYNTHESIS CASE 1

fault coverage when directly used in the processor of this syn-
thesis case. The difference comes from the fundamental IPs in
the memory access unit.

D. Result Discussions

The fault coverage of the register bank cannot reach near
100% coverage because the write-enable pins of the r14s (6 r14s
in different modes) are hard to test functionally. In the ARM ar-
chitecture, the r14 of each processor mode is used to store the
return address of branch-and-link or exceptions, so it has a data
input source not shared by the other registers. The method of
testing the write-enable pins used for the general purpose reg-
isters is not applicable to this irregularity of structure. With a
more regular register file structure such as the MIPS processor,
we expect the proposed test methodology can achieve a higher
coverage than those obtained from the ARM-compatible pro-
cessor.

Among the undetected faults, some faults are functionally
untestable, for example, bit 4 of the status registers (M4 of
the processor mode) are always 1 in any circumstance, so the
stuck-at-1 faults on the data interfaces of the D flip-flops rep-
resenting these bits cannot be detected functionally. However,
this stuck-at-1 fault will not affect the normal operation of the
processor. Hence, for the 6 status registers of the processor, the
fault coverage can be seen as 100% with our methodology. Due
to the limitation of the simulation tool, a quantitative analysis
of fault coverage based on functionally untestable faults is not
available.

The fault coverage of the pipeline registers ranges from 87%
to 90%. In general, faults related to the data or clock interfaces
of the D flip-flops composing the pipeline registers are easy to

detect. The undetected faults of the pipeline registers are mainly
the faults related to the write-enable and reset pins which are
hard to test or even functionally undetectable. To improve fault
coverage of the pipeline registers, two possible methods can be
explored: 1) providing special instructions to access the pipeline
registers and 2) using randomly generated test code. Integrating
randomly generated test code is also useful in improving the
coverage for control logic such as the decoder.

There are about 17 fundamental IPs in the processor core of
synthesis case 1. The number of generated test patterns for each
IP is small, generally ranging from 20 to 40 patterns, but in some
special cases the number may be up to 50. The test sequences
for most of the fundamental IPs can be coded as a compact loop.
The instruction number of each loop ranges from 10 to 20, and
the iteration number depends on the number of the generated
patterns. The fault coverage of each fundamental IP ranges from
90% to 100%; the undetected faults are generally caused by the
constraints or the redundant faults in the fundamental IP itself.

1) Application and Limitation: The effectiveness of a deter-
ministic SBST test program highly depends on the knowledge
about the processor’s ISA, architecture, and RTL implemen-
tation. The proposed method for the testing of pipeline mech-
anisms such as control hazard detection logic and forwarding
logic can be applied to a processor of the similar pipeline struc-
ture. For a processor with more complex features such as su-
perscalar capability or out-of-order execution, it is beyond this
study.

Due to the nature of deterministic programming, the test de-
velopment requires manual efforts; however, through multiple
abstractions, we can take advantage of the modern synthesis and
fault simulation tool to improve the efficiency of test develop-
ment. The method of using constrained ATPG for fundamental
IP units can also be used to other processor cores that are gen-
erated through a synthesis tool. To extract the constraint for a
fundamental IP, the test code developer just needs to find out
the functionality of the selected IP for constraint setting and re-
lies on the ATPG tool to get satisfied results. This is not an au-
tomated solution so far; however, it shows the feasibility that a
testing and synthesis integrated tool might eventually exploit the
architecture feature and generate the recommended constraints
for the testing of a fundamental IP.
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TABLE IV
BREAKDOWN OF FAULT COVERAGE FOR THE PROCESSOR IN SYNTHESIS CASE 2

TABLE V
COMPARISONS OF VARIOUS SBST WORK AND FULL SCAN CHAIN

Fault coverage based on functional testable faults.

Our observations from the synthesis result of the processor
core motivate the development of the constrained-ATPG based
technique because the simple fundamental IP units the synthesis
tool inserts have occupied a good portion of the processor core
and contributed about 35% of the faults in the fault list. Because
of the simplicity of the fundamental IP in its usage, this eases
the work for constraint extraction once the functionality of the
IP is identified, and thus allows the code development to take the
advantage of the ATPG technique for high fault coverage. How-

ever, for a less known IP or complicated module, constraints
can be quite complex and constraint extraction can become a
key challenge [7], [18]–[20].

For the hard-to-test steering logic, such as the multiplexers,
we not only explore the RTL code but also the effect of fault
masking to improve test result. However, in general determin-
istic SBST such as ours has limitation on the testing of control
logic; one way to improve the fault coverage for this part is fur-
ther applying randomly generated test code.
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E. Comparisons With Other Works

Table V summarizes the comparisons of the MLA-SBST
methodology with other works. It is worth of pointing out that
among the processors examined in [1]–[6], only our target pro-
cessor core possesses the full functionality of pipeline hazard
control, forwarding mechanism, and modern operating system
supports.

In [7], not all the experimental results of the processor are
available; only the fault coverage based on functional testable
faults for a large logic module, called EX1, which was extracted
from the Xtensa processor is shown. Assessing the scale and
complexity of the processor core tested, the proposed MLA-
SBST methodology clearly presents itself to be a promising so-
lution for processor functional testing.

VI. CONCLUSION

We have presented a MLA-based SBST methodology and
demonstrated its application on a complex pipeline processor
with different gate-level implementations. The proposed
methodology explores the design information of processor
architecture, RT-level, and gate-level for different types of the
processor components. The test routine development method-
ology applies the most useful information of a certain level to
the different parts of the processor core. Exploiting processor
architecture improves the selection and coding efficiency in
developing the test routine. Using gate-level information has
shown to provide good results in structural fault coverage,
especially for regular state elements. To test fundamental IPs
effectively, we present an ATPG-based scheme for the gener-
ation of the constrained test patterns. The methodology aims
to develop simple yet high fault-coverage test routines for the
fundamental IPs with a systematic approach. For processor
components that tend to be structurally unmanageable, we
resort to the information from the RT-level; however, randomly
generated test code can be useful to improve the test quality
of this part. We have demonstrated that the proposed SBST
methodology has attained 93.74% in processor fault coverage,
about 4%–5% less than the expensive full scan approach. The
experiments were performed on a pipeline processor which
has full functionality of pipeline hazard control, forwarding
mechanism, and complete ISA supports for modern operating
systems.
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