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SUMMARY In this paper, we study and analyze the computational
complexity of deblocking filter in H.264/AVC baseline decoder based on
SimpleScalar/ARM simulator. The simulation result shows that the mem-
ory reference, content activity check operations, and filter operations are
known to be very time consuming in the decoder of this new video cod-
ing standard. In order to improve overall system performance, we propose
a novel processing order with efficient VLSI architecture which simultane-
ously processes the horizontal filtering of vertical edge and vertical filtering
of horizontal edge. As a result, the memory performance of the proposed
architecture is improved by four times when compared to the software im-
plementation. Moreover, the system performance of our design signifi-
cantly outperforms the previous proposals.
key words: deblocking filter, H.264/AVC, video coding

1. Introduction

Video compression is a critical component in today’s multi-
media systems. The limited transmission bandwidth or stor-
age capacity for applications such as DVD, digital televi-
sion, or internet video streaming emphasizes the demand for
higher video compression rates. To achieve this demand,
the new video coding standard Recommendation H.264 of
ITU-T [1], also known as International Standard 14496-
10 or MPEG-4 Part 10 Advanced Video Coding (AVC) of
ISO/IEC, has been developed. It significantly outperforms
the previous ones (H.261 [2], MPEG-1 Video [3], MPEG-
2 Video [4], H.263 [5], and MPEG-4 Visual or part2 [6]) in
bit-rate reduction. The functional blocks of H.264/AVC,
as well as their features, are shown in Fig. 1. Compar-
ing the H.264/AVC video coding tools like adaptive de-
blocking filter [7], integer DCT-like transform [8] instead
of the DCT [9], multiple reference frame [10], new frame
types (SP-frames and SI-frames) [11], further predictions
using B-slices [12], quarter per motion compensation [13] or
CABAC [14] to the tools of previous video coding standard,
H.264/AVC provides the most advanced functionality in the
evolution of video coding as well as error robustness and
network friendliness [15]–[20]. At the same time, prelimi-
nary studies [21] using software based on this new standard,
suggest that H.264 offers up to 50% better compression than
MPEG-2 and up to 30% better than H.263+ and MPEG-4
advanced simple profile.
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Fig. 1 Block diagram of H.264/AVC.

As our experiment result indicates, the operation of
the deblocking filter is the most time consuming part of
the H.264/AVC video decoder. The block-based structure
of the H.264/AVC architecture produces artifacts known as
blocking artifacts. These blocking artifacts can occur from
both quantization of the transform coefficients and block-
based motion compensation. In order to reduce the block-
ing artifacts, the overlapped block motion compensation
(OBMC) [22] is adopted into H.263 standard. Unlike the
OBMC in H.263, H.264/AVC adopts an adaptive deblocking
filter [7] that has shown to be a more powerful tool in reduc-
ing artifacts and improving the video quality. As a result, the
filter reduces the bit rate typically by 5–10% while produc-
ing the same objective quality as the non-filtered video [23].
Adaptive deblocking filter can also be used in inter-picture
prediction to improve the ability to predict other picture as
well. Since it is within the motion compensation prediction
loop, the deblocking filter is often referred to as an in-loop
filter. A detailed description of the adaptive deblocking filter
can be found in [7].

The filtering operations of H.264/AVC standard require
more instructions to process deblocking. Due to the inten-
sive computations, in [24]–[30] and [31] dedicated hardware
was developed for acceleration. However, the deblocking
filter described in the H.264/AVC standard is highly adap-
tive. Several parameters and thresholds, as well as the con-
tent of the picture itself, control the boundary strength of the
filtering process. These issues are also equally challenging
during parallel processing under DSP or SIMD computa-
tional architecture. In order to reduce the conditional branch
operations, we include the content activity check operations,
table-derived operations, filtering operations, and computa-
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tion of boundary strength operations into edge filtering unit
to accelerate the deblocking filtering of H.264/AVC video
coding. In addition, we propose an efficient VLSI architec-
ture to improve memory performance by four times when
compared to the software implementation [1]. The proposed
architecture is called Simultaneous Processing Architecture
(SPA). It uses a novel processing order within a macroblock
to simultaneously process the horizontal filtering of vertical
edge and vertical filtering of horizontal edge. Hence, our ar-
chitecture is able to significantly improve the system perfor-
mance and reduce the power consumption in the embedded
system.

The organization of this paper is as follows. In Sect. 2,
the algorithm of the deblocking filter is explained. Section 3
analyzes the computational complexity of H.264/AVC base-
line decoder. Section 4 illustrates the block diagram of our
proposed architecture using a novel processing order. Sec-
tion 5 shows the simulation results. Finally, conclusion is
presented in Sect. 6.

2. Algorithm of Deblocking Filter

In this section, we briefly describe the algorithm of the de-
blocking filter in H.264/AVC from processing order to sam-
ple processing level. A detailed description of the adaptive
deblocking filter can be found in [7].

2.1 Processing Order

As in the H.264/AVC standard recommendation [1], for
each luminance macroblock, the left-most edge of the mac-
roblock is filtered first, followed by the other three internal
vertical edges from left to right. Similarly, the top edge of
macroblock is filtered first, followed by the other three in-
ternal horizontal edges from top to bottom. Chrominance
filtering follows a similar order in each direction for each
8×8 chrominance macroblock as shown in Fig. 2.

According to this rule, there are three types of process-
ing orders which are proposed by [24] and [26] as shown in
Figs. 3, 4, and 5. It is obvious that an adaptive deblocking
filter should be applied to all 4×4 block edges of a picture,
except for the edges at the boundary of the picture. There-
fore, most of the 4×4 blocks need to be filtered four times
with the adjacent blocks (left, right, top, and bottom). In
order to improve the memory performance, we propose an

Fig. 2 Processing method of standard.

efficient VLSI architecture with a novel processing order to
reduce the memory reference of each 4×4-block to one as
shown in Sect. 4.

Fig. 3 Basic processing order of [24].

Fig. 4 Advanced processing order of [24].

Fig. 5 Processing order of [26].
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Fig. 6 Principle of deblocking filter.

2.2 Sample Processing Level

On the sample processing level, the quantization parameter,
threshold value of Alpha and Beta, and content of the picture
itself can turn on or turn off the filtering for each individual
set of sample. For example, Fig. 6 illustrates the principle of
the deblocking filter using a one-dimensional visualization
of a block edge in a typical situation where the filter would
be turned on. Whether the samples p0 and q0 as well as p1

and q1 are filtered is determined by using Boundary Strength
(Bs), dependent threshold Alpha(QP) and Beta(QP), and
content of the picture itself. Thus the filtering of p0 and
q0 only takes place if the following content activity check
operations are satisfied:

Bs! = 0 (1)

|p0 − q0| < Alpha(QP) (2)

|p1 − p0| < Beta(QP)and|q1 − q0| < Beta(QP) (3)

Correspondingly, the filtering of p1 or q1 takes place if
the condition below is satisfied:

|p2 − p0| < Beta(QP)and|q2 − q0| < Beta(QP) (4)

The dependency of Alpha and Beta on the quantizer,
links the strength of filtering to the general quality of the
reconstructed picture prior to filtering. For small quantizer
values, the thresholds both become zero, and filtering is ef-
fectively turned off altogether.

3. Computational Complexity

The simulator used in this study is derived from the Sim-
pleScalar/ARM tool set [32], a suite of functional and tim-
ing simulation tools for ARM ISA. Our baseline simulation
configuration models the Intel’s StrongARM SA-110 pro-
cessor. The hardware parameter is described in Table 1.

The H.264/AVC JM9.2 code [33] is used for reporting
the complexity assessment of the experiments. The test se-
quences used in the computational complexity assessment

Table 1 Simulator parameter.

Parameter value
Fetch Queue size 4
Fetch Speed 1
Decode Width 1
Issue Width 1
Commit Width 1
D-Cache 32-way, LRU, 1-cycle hit, total 16 KB
I-Cache 32-way, LRU, 1-cycle hit, total 8 KB
Memory Latency 12
Memory Width 4 bytes

Table 2 Computational complexity of decoder.

Function Complexity
Deblocking Filtering 36%
Interpolation 22%
Entropy Coding 13%
Inverse Transfers and Reconstruction 13%
Others 14%

Table 3 The complexity of the deblocking filter.

Function Complexity
Computation of Boundary Strength 40%
Filtering Operations 60%

are Forman 30 Hz QCIF and CIF, Mother and Daughter
30 Hz QCIF, Mobile and Akiyo 30 Hz CIF. A fixed quanti-
zation parameter setting with a QP of 28 has been assumed.

One of the most important issues in computational
complexity of H.264/AVC decoder is the distribution of
time complexity among its major sub-functions. In our
simulation result, as shown in Table 2, deblocking filtering
(36%) is the largest component, followed by interpolation
(22%), bitstream parsing and entropy decoding (13%), and
inverse transfers and reconstruction (13%). The computa-
tional complexity of the deblocking filter is shown in Ta-
ble 3.

3.1 Computation of Boundary Strength

As our experimental result indicates, the operation of the de-
blocking filter, which is the most time consuming part of an
H.264/AVC decoder, can be separated into two major sub-
functions. The first sub-function is the computation of the
Boundary Strength (Bs) parameter for each edge filtering
operation. The purpose of this computation is to determine
whether a block artifact may have been produced across the
boundary, and thus determine the strength (Bs) of the filter
to be used on the edge. A Boundary Strength (Bs) is as-
signed an integer value from 0 to 4. A strongest filter (Bs=4)
is used if one or both sides of edges are intra coded and the
boundary is a macroblock boundary, whereas a value of 0
means no filtering is applied on this specific edge. In the
standard mode of filtering which is applied for edges with
Bs from 1 to 3, the value of Bs affects the maximum modi-
fication of the sample values that can be caused by filtering.
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3.2 Edge Filtering Operation

The second important sub-function is the content activity
check and filtering operations as shown in the Eqs. (1) to (4)
and the Eqs. (5) to (19) respectively. In order to separate
the true edge and blocking artifact, the sample values across
every edge to be filtered are analyzed. As stated in Sect. 2,
filtering does not take place for edges with Bs equal to zero.
For edges with nonzero Bs values, a pair of quantization-
dependent parameters, referred to as Alpha and Beta, are
used in the content activity check that determines whether
each set of samples is filtered. Both table-derived threshold
Alpha and Beta are dependent on the average quantization
parameter (QP) employed over the edge, as well as encoder
selected offset values that can be used to control the proper-
ties of the deblocking filter on the slice level. The filtering
operations are shown in the following:

Luma4 for Q samples: (Bs=4)

q′0 = (p1 + 2p0 + 2q0 + 2q1 + q2 + 4) >> 3 (5)

q′1 = (p0 + q0 + q1 + q2 + 2) >> 2 (6)

q′2 = (2q3 + 3q2 + q1 + q0 + p0 + 4) >> 3 (7)

Luma4 for P samples: (Bs=4)

p′0 = (q1 + 2q0 + 2p0 + 2p1 + p2 + 4) >> 3 (8)

p′1 = (q0 + p0 + p1 + p2 + 2) >> 2 (9)

p′2 = (2p3 + 3p2 + p1 + p0 + q0 + 4) >> 3 (10)

Chroma4 for P and Q samples: (Bs=4)

q′0 = (2q1 + q0 + p1 + 2) >> 2 (11)

p′0 = (2p1 + p0 + q1 + 2) >> 2 (12)

Luma and Chroma: (Bs=3, 2, and 1)

Di f = Clip(−tc, tc, ((((q0 − p0) << 2) +

(p1 − q1) + 4) >> 3)) (13)

p′0 = Clip(p0 + Di f ) (14)

q′0 = Clip(q0 − Di f ) (15)

Luma only: (Bs=3, 2, and 1)

Di f = Clip(−tc0, tc0, (p2 + ((p0 + q0 + 1) >> 1) −
(p1 << 1)) >> 1) (16)

p′1 = p1 + Di f (17)

Di f = Clip(−tc0, tc0, (q2 + ((p0 + q0 + 1) >> 1) −
(q1 << 1)) >> 1) (18)

q′1 = q1 + Di f (19)

4. Proposed Architecture

The key features of our proposed architecture can be divided
into two major components, including the edge filtering unit
and a simultaneous processing engine that employs a novel
processing order to simultaneously process the horizontal
filtering of vertical edge and vertical filtering of horizontal
edge.

4.1 Edge Filtering Unit

The complexity of the H.264/AVC deblocking filter is
mainly based on two reasons. The first reason is the highly
adaptive filtering, which requires several conditional pro-
cessing on each block edges and sample levels. As de-
scribed in the previous section, the computation of boundary
strength, the threshold value of Alpha and Beta, the table-
derived operations, and edge filtering operation are known
to be very time consuming. Therefore, we propose an effi-
cient VLSI architecture that includes content activity check
operations, the table-derived operations, filtering operations,
and computation of boundary strength operations into the
edge filter unit to accelerate the horizontal and vertical fil-
tering on the boundary of two adjacent basic 4×4 blocks as
shown in Fig. 7. A detailed description of the edge filtering
unit can be found in [27]. There are five major sub-functions
in our Edge Filtering Unit architecture as described below.

• The Computation of Boundary Strength: The pur-
pose of this computation is to determine whether a
block artifact may have been produced across the
boundary, and thus determine the appropriate strength
(Bs) of the filter to be used on the edge. A detailed de-
scription of the computation of boundary strength can
be found in Sect. 3. For each boundary between neigh-
boring 4×4-luma blocks, a boundary strength assign-

Fig. 7 Edge filter unit.
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ment is implemented as shown in Fig. 8.
• The Filtering Operation: The most important func-

tion of deblocking filter is the filtering operation, which
is divided into two modes. A special mode of filtering
that allows for stronger filtering is applied when Bs is
equal to 4 as shown in the Eqs. (5) to (12). The others
are standard mode of filtering with a Bs parameter of 1
to 3 as shown in the Eqs. (13) to (19).
• Clipping Operation: The filtering operation would re-

sult in too much low-pass filtering (blurring). A sig-
nificant part of the adaptive filter is obtained by limit-
ing these values. This process is called clipping. For
Eqs. (14) and (15), the result value of P and Q are lim-
ited between 0 and 255. The value of tc0 is derived
from the Clip Table. The threshold tc is determined as
follows:
If the edge is Luma

tc = tc0 + ((αp < β)?1 : 0) + ((αq < β)?1 : 0) (20)

Otherwise the edge is chroma

tc = tc0 + 1 (21)

• Content Activity Check Operation: Conditional
branches which are described in the Eqs. (1) to (4) al-
most inevitably appear in the inner most loops of the
algorithm. So, we implement it into our Edge Filtering
Unit.
• Table-derived Operations: In order to simultaneously

access Alpha, Beta, and Clip tables, since most values
of these tables are zero, we used combinational logic
to implement Alpha, Beta, and Clip tables instead of
using memory buffer. This can save most of the space
of memory buffer and improve overall system perfor-
mance and then reduce power consumption.

4.2 Simultaneous Processing Architecture

Another reason for the high complexity is the small block
size employed for residual coding in the H.264/AVC video

Fig. 8 Flowchart for determining boundary strength.

coding algorithm. With the 4×4 blocks and a typical fil-
ter length of 2 samples in each direction, each sample in a
picture must be transferred from and to internal memory 4
times; either to be modified or to determine if the neighbor-
ing samples will be modified. In order to reduce the number
of memory references and improve the overall system per-
formance, we propose an efficient architecture, which can
simultaneously processes the horizontal filtering of verti-
cal edge and vertical filtering of horizontal edge as shown
in Fig. 9. The proposed architecture is called Simultaneous
Processing Architecture (SPA).

There are three major sub-functions in our proposed ar-
chitecture. The first component is the Shift Operation Array.
There are six forwarding shift register arrays in our proposed
architecture (for example, Array1, 3, 4, 5, 6, and 7). Each
array contains four entries, each with 4 processed samples.
And the shift direction is shown in Fig. 9. The second sub-
function is the transposing operation as shown in Fig. 9. The
Array2 and Array8 latch the 4×4 block sample values that
are transposed from Array1 and Array7 respectively. The fi-
nal important functions are the horizontal and vertical filter
units which are described in the previous subsection.

4.3 Novel Processing Order in Macroblock

In a 16×16 sample macroblock, our architecture utilizes
a novel processing order, which allows the simultaneous
processing of horizontal and vertical filtering as shown in
Fig. 10. The processing order begins from V6 to V7 (V de-
notes Vertical edge and 6 represents the sixth block cycle).
And then at the eighth block cycle, the vertical edge V8 and
horizontal edge H8 (H denotes Horizontal edge and 8 repre-

Fig. 9 Proposed architecture.
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Fig. 10 Proposed processing order.

sents the eighth block cycle) are simultaneously processed
with the horizontal and vertical filtering unit. Then V9, H9
follows, so on and so forth.

4.4 Basic Processing

In this subsection, the basic processing using raster scan
order for a picture is shown in Fig. 11. The data flow for
the raster scan processing order to process each luma mac-
roblock is presented in Table 4. For a basic 4×4-block, it
takes 13 block cycles (52 clock cycles) to process the first
block B1. In the first 5 block cycles (the first 20 clock cy-
cles), the blocks of E1, E2, E3, E4, and E5 are loaded from
the internal memory to SPA’s Array5, Array4, Array3, Ar-
ray2, and Array1 respectively and no filtering operations are
performed. In the next 2 block cycles (the sixth and seventh
block cycle), the horizontal filtering of vertical edge V6 and
V7 are performed sequentially. At the eighth block cycle,
the proposed architecture SPA can simultaneously process
the horizontal filtering of vertical edge V8 (the boundary
of block B2 and B3) and the vertical filtering of horizontal
edge H8 (the boundary of block E1 and B1), and write the
block E1 to the internal memory at the next block cycle (the
ninth block cycle). At the thirteenth block cycle, the vertical
filtering of horizontal edge H13 (the boundary of block B1
and B5) is performed. At this time, the block B1 has fin-
ished 4 times of filtering with the adjacent blocks (left block
E5, right block B2, top block E1, and bottom block B5).
Finally, SPA writes the block B1 to the internal memory at
the fourteenth block cycle. The following block B2 will be
completed at next block cycle. Then B3 follows, so on and
so forth. Therefore, the number of total processing time for
each luma macroblock is 32 block cycles (128 clock cycles).

4.5 Pipeline Processing

When processing the next macroblock M2, the advanced
processing uses the pipeline to pre-load the initial blocks
E9, E10, E11, E12 and B4 in SPA’s Array5, Array4, Array3,
Array2, and Array1 respectively as shown in Fig. 12. And

Fig. 11 Raster scan processing order.

Table 4 Data flow of raster scan processing order.

State 5 6 7 8 9 10 11 12 13
Array1 E5 B1 B2 B3 B4 E6 B5 B6 B7
Array2 E4 E5 B1 B2 B3 B4 E6 B5 B6
Array3 E3 E4 E5 B1 B2 B3 B4 E6 B5
Array4 E2 E3 E4 E5 B1 B2 B3 B4 E6
Array5 E1 E2 E3 E4 E5 B1 B2 B3 B4
Array6 E1 E2 E3 E4 E5 B1 B2 B3
Array7 E1 E2 E3 E4 E5 B1 B2
Array8 E1 E2 E3 E4 E5 B1
MEM E1 E2 E3 E4 E5

Fig. 12 Pre-load the initial blocks.

Table 5 Data flow of the pipeline processing method.

State 29 30 31 32 33 34 35
Array1 B4 B17 B18 B19 B20 B8 B21
Array2 E12 B4 B17 B18 B19 B20 B8
Array3 E11 E12 B4 B17 B18 B19 B20
Array4 E10 E11 E12 B4 B17 B18 B19
Array5 E9 E10 E11 E12 B4 B17 B18
Array6 B16 E9 E10 E11 E12 B4 B17
Array7 B15 B16 E9 E10 E11 E12 B4
Array8 B14 B15 B16 E9 E10 E11 E12
MEM B13 B14 B15 B16 E9 E10 E11

thus we can save 5 block cycles when processing each mac-
roblock. As a result, the number of the total block cycles
to process a luma macroblock is 24 (equal to 96 clock cy-
cles). Table 5 shows the data flow of the pipeline processing
approach.

5. Result

The simulation results are shown in Table 6. The architec-
ture of SPA as a co-processor can accelerate a H.264/AVC
decoder system. Moreover, the number of total memory ref-
erences for load and store is reduced by 34% and 36% re-
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Table 6 The performance comparison.

Item Software SPA Reduced by
Inst. 128640967 75123050 42%
Load 30443106 20180448 34%
Store 16098837 10295823 36%
Branch 14324486 7901023 49%
Cycles 220929397 132532824 40%

spectively.

5.1 Memory Performance

As the ITU-T Recommendation [1] and previous pro-
posal [24]–[30] and [31] suggest, an adaptive filtering shall
be applied to all 4×4 block edges of a picture. Most of the
4×4 blocks need to be filtered 4 times with the adjacent
blocks (left, right, top, and bottom), except for the mac-
roblock at boundary of a picture. Therefore, the number of
total memory reference for each macroblock, including read
and write, is 4× 4× 2× 16 = 512 (Assume that the memory
bus width is 32 bits).

In our proposed SPA architecture with the presented
processing order, the memory performance is improved by 4
times, when compared to software implementation. Table 7
shows the comparison of various architectures. Our SPA
architecture reduces the memory access times from 592 to
192, when compared to the previous design in [24].

5.2 System Performance

As described in previous section, using the proposed pro-
cessing order, the total filtering for one luma and two
chroma macroblocks takes 96 (24×4) and 32(8×4)×2 = 64
cycles respectively. As a result, the total filtering takes 160
cycles for a luma and two chroma macroblocks. Our filter-
ing scheme takes less number of cycles when compared to
240, 286, 240, and 192 cycles of the architecture described
in [24], [26], [28] and [31]. Table 8 shows the performance
comparison of various architectures. The cycle counts of
loads and stores between the external and internal memory
are not calculated for a fair comparison.

5.3 Implementation

We implemented the SPA architecture by Verilog HDL and
synthesized the design using TSMC 0.18 µm Artisan CMOS
cell library using Synopsys Design Compiler with critical
path constraint set to 5 ns (200 MHz). The synthesized gate
count is shown in Table 9 for edge filter unit and Table 10
for SPA architecture.

Another cost effective architecture is SPA-FIFO archi-
tecture. It can save 6088 gate counts when we use memory
FIFO instead of register array to implement the Ship Oper-
ation Array (Array1, Array3, Array4, Array5, Array6, and
Array7). The hardware comparison of various architectures
is shown in Table 11. Although the SPA-FIFO architecture

Table 7 Memory reference per macroblock.

Author Architecture MEM
JM9.2 [1] Software Implementation 768
Huang [24] Basic+Single-port SRAM 768
Huang [24] Advance+Dual-port SRAM 384
Huang [24] Basic+Two-port SRAM 768
Huang [24] Dual Arrays+Two-port SRAM 384
Chen [28] Dual-port or Two Single port SRAM 192
Li [31] 5120 bits Dual-Port SRAM 192
SPA Dual-port or Two Single port SRAM 192

Table 8 Processing cycles per macroblock.

Author Architecture Cycl
Huang [24] Basic+Single-port SRAM 504
Huang [24] Advance+Dual-port SRAM 440
Huang [24] Basic+Two-port SRAM 408
Huang [24] Dual Arrays+Two-port SRAM 240
Sheng [26] 2-D Deblocking Filter 286
Chen [28] Dual-port or Two Single port SRAM 240
Li [31] 5120 bits Dual-Port SRAM 192
SPA Dual-port or Two Single port SRAM 160

Table 9 The area of edge filtering unit.

Item Function Gate
1. Alpha Table derived 137
2. Beta Table derived 87
3. CLIP Table 66
4. Luma4 Filtering Operation 1372
5. Chroma4 Filtering Operation 247
6. Standard Filtering for Luma and Chroma 811
7. Content Activity Check 1937
8. Boundary Strength 1847
Total Edge Filter Unit 6300

Table 10 The area of SPA architecture.

Item Function Gate Count
1. Horizontal Filtering Unit 6300
2. Vertical Filtering Unit 6300
3. SPA Processing Circuit 8247
Total SPA Architecture 20847

Table 11 The hardware comparison of various architectures.

Author Architecture Gate Count
Huang[24] Basic+Single-port SRAM 18.91 K
Huang[24] Advance+Dual-port SRAM 20.66 K
Li[31] 5120 bits Dual-Port SRAM 9.57 K
Chen[27] Dual-port SRAM 5.66 K
Chen[28] Dual-port SRAM 22 K
SPA Dual-port SRAM 20.84 K
SPA-FIFO Dual-port SRAM 14.75 K

introduces some hardware overhead due to transposing cir-
cuit and computation of boundary strength, the implementa-
tion is also suitable for embedded systems. This is because
the cache memory and memory buffer occupy most of area
in a MPEG-4 codec system.

6. Conclusion

In this paper, we propose an efficient VLSI architecture to
accelerate the operations of deblocking filter for H.264/AVC
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video coding. The major idea is to reduce the number of
memory references through the simultaneous processing ar-
chitecture SPA using a novel processing order. As a result,
the SPA can be used in a high performance system which
only requires a simple bus interface for the integration into
video SoC platforms that support a wide range of applica-
tions such as video telephone, video conferencing, video
streaming, digital video authoring, and many others.
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