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Wake-Up Logic Optimizations Through Selective
Match and Wakeup Range Limitation
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Abstract—This paper presents two effective wakeup designs that
improve the speed, power, area, and scalability without instruc-
tions per cycle (IPC) loss for dynamic instruction schedulers. First,
a wakeup design is proposed to aim at reducing the power con-
sumption and wakeup latency. This design removes the READ of
the destination tags from the wakeup path by matching the source
tags directly with the grant lines. Moreover, this design eliminates
the redundant matches during the wakeup operations by matching
the source tags with only the selected grant lines. Next, the second
design explores a metric called wakeup locality to further reduce
the area cost of the wakeup logic. By limiting the wakeup ranges for
the instructions in the issue window, this design not only reduces
the area requirement but also improves the scalability. The exper-
imental results show that this range-limited-wakeup design saves
76%–94% of the power consumption and reduces 29%–77% in the
wakeup latency compared to the conventional CAM-based scheme
with only 5%–44% of the area cost in a traditional RAM-based
scheme. The results also show that this design scales well with the
increase of both the issue width and the window size.

Index Terms—Instruction scheduler, issue window, wakeup lo-
cality, wakeup logic.

I. INTRODUCTION

MANY FACTORS such as power consumption, speed, and
area used by the dynamic scheduler are important for

designing a high-performance microprocessor, and the wakeup
logic contributes the most limiting factors to the dynamic sched-
uler. In a dynamic scheduler, the wakeup logic traces the in-
struction dependences and wakes the instructions up when their
source operands become available. There are two typical imple-
mentations for the wakeup logic—the CAM-based and RAM-
based schemes which have their respective advantages and dis-
advantages.

The CAM-based wakeup designs impose a high complexity
on the schedulers. In current schedulers, the primary wakeup
logic is implemented by using the CAM structures that fully
match all the source tags in the issue window with the result
tags. However, the CAM structures consume a lot of power and
slow down the wakeup latency due to considerable circuit ac-
tivities and heavy load capacitance. In an effort to extract more
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instruction-level parallelism, scheduler designs often employ a
larger window with more aggressive issue width. In other words,
scheduler designs employ accordingly larger and more complex
CAM structures that further deteriorate the power consumption
and wakeup latency.

The scheduler becomes the major critical path, which limits
the clock cycle time, of the pipeline stages mainly due to
the complexity of the CAM-based wakeup logic. Although
pipelining a dynamic scheduler can increase the clock fre-
quency, the operations of instruction wakeup and instruction
selection should be an atomic operation to avoid significant
performance degradation. A recent study has shown that the
latency associated with the instruction wakeup and selection
forms the critical path of the pipeline stages [1]. Increasing both
the window size and the issue width will continue to increase
the burden to the clock cycle time.

Considering the energy issue, the power consumption associ-
ated with the CAM-based wakeup logic constitutes a significant
portion of the processor power consumption and may lead to the
use of costly cooling systems [2]. For example, the issue logic is
the most power-hungry component of the Compaq Alpha 21464
processor; it is responsible for 46% of the total processor power
[2]. Similarly, the out-of-order scheduler of the Intel Pentium 4
processor accounts for 40% of the total power consumption. As
a result, using a complex CAM-based wakeup logic not only
slows down the clock speed but also shifts more power budget
to the scheduler.

In addition to the CAM design, an alternative wakeup de-
sign is the bit-map RAM scheme that records instruction de-
pendences in the format of bit position in order to wakeup in-
structions through a READ operation. This design alleviates both
the power consumption and the wakeup latency of the CAM
scheme. However, the area requirement of this design grows
proportional to the square of the issue window size, and the
large area requirement may lead to more wire delay in future
technologies.

In this paper, we propose two wakeup designs that improve
the clock cycle time, power consumption, and area requirement
without instructions per cycle (IPC) loss. First, we observe that
most tag matches in the wakeup logic are unnecessary during the
wakeup operation. As shown in Fig. 1, about 96% of the wakeup
operations wake up only one or less (zero) instruction for the
left or right source operand. Based on this observation, we pro-
pose a selective-match wakeup design, which activates only the
match circuit that is selected by predecoding the source tag, to
reduce power consumption and latency. Next, we note that most
of the wakeup distances between two dependent instructions
are short. Based on the selective match design, we introduce a
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Fig. 1. Number of awoken instructions per wakeup operation for the left and right source operands in a 16-issue, 128-entry processor.

Fig. 2. Baseline superscalar processor model used in this paper.

range-limited-wakeup design that limits the wakeup ranges for
the instructions in the issue window to reduce area requirement
and improve scalability. The proposed wakeup designs achieve
the following features—energy saving, high speed, low area re-
quirement, no IPC degradation, and excellent scalability.

The remainder of this paper is organized as follows. Section II
surveys dynamic schedulers used in superscalar processors.
Section III reviews two primary wakeup designs. Section IV
details the proposed wakeup designs. Section V presents the ex-
perimental methodology and the evaluation results. Section VI
provides a brief review of previous related works. Finally,
Section VII concludes this paper.

II. DYNAMIC SCHEDULERS FOR SUPERSCALAR PROCESSORS

This section provides the background discussions of the dy-
namic schedulers used in superscalar processors.

A. Scheduling Model Overview

The baseline superscalar processor model is depicted in
Fig. 2. The fetch unit retrieves multiple instructions from the
instruction cache with a branch predictor to assist in fetching
instructions speculatively over basic blocks during a clock
cycle time. Subsequently, the instructions are decoded and their
register designators are renamed for resolving WRITE after READ

(WAR) and WRITE after WRITE (WAW) dependences. Next,
the instructions are dynamically scheduled for out-of-order
execution. Before execution, their source operands are read
from the register file or bypassed from the functional units.
Finally, the instructions are committed in program order to
ensure the correct completion of the program. This scheduling

model is implemented in HP PA8000 [4], Intel Pentium 4 [5],
MIPS R10000 [6], Alpha 21264 [7], and its successors.

In the scheduler stage, the wakeup and select logic directs
the instructions that are waiting for their source operands to be-
come available or waiting for execution. The select logic selects
appropriate instructions for execution from the instructions that
have both their source operands ready. The wakeup logic is re-
sponsible for waking up the instructions that depend on the se-
lected instructions.

Fig. 3 shows another processor model that dynamically
schedules the instructions for out-of-order execution by using
a reorder buffer and reservation stations. There are two major
differences between this model and our baseline model. The
first difference is that the register READ stage is placed before
the scheduler stage in this model. In particular, after rename,
the available source operands are read from the register file
or the reorder buffer and then inserted into the reservation
station together with the corresponding source tags. Therefore,
the reservation station must have extra data fields to store
the values of the source operands. The second difference is
that the wakeup operation is triggered by the functional units.
Specifically, after execution, both the result tags and result
values are forwarded to the wakeup logic to wakeup-dependent
instructions. The Intel P6 [8], PowerPC 604 [9], and HAL
SPARC64 [10] are implemented based on this model. More
discussions on this scheduling model can be found in [11].

B. Wakeup and Select Logic

Fig. 4 shows the scheduling flow of the wakeup and selection
logic. After rename, the instructions are inserted into the issue
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Fig. 3. Superscalar processor model that comes with a reorder buffer and reservation station.

Fig. 4. Flow chart of dynamic scheduling.

window to wait for their operands or wait for execution. The
ready instructions, which have both their source operands ready,
send signals to the select logic to request for execution. The se-
lect logic selects the appropriate instructions for execution from
the ready instructions. In particular, once a functional unit be-
comes available, the select logic then directs a suitable instruc-
tion to that unit for execution by asserting the corresponding
grant signal. Many selection policies have been presented for
the case where the number of ready instructions exceeds the ca-
pacity of the available functional units [12], [13], for instance,
the oldest first selection algorithm [12].

In the baseline processor, the grant signals from the select
logic are used not only to select instructions for execution
but also to wake up the dependent instructions. When for-
warding the grant lines for the wakeup operations, the grant
lines are delayed according to the execution cycle time of
the corresponding instructions. Only the grant lines with one
cycle execution time are immediately used for the following
wakeup operation. To wakeup the dependent instructions,
first, the asserted grant lines are used as index addresses to
READ their corresponding destination tags. Then, the desti-
nation tags are forwarded to the wakeup logic to match with
the entire source tags in the issue window. For the matched
source tags, their ready bits are set to indicate that the source
operands are available. The instructions are marked ready
for execution when both their source operands are available.

The ready instructions ask for execution by sending the cor-
responding request signals to the select logic. More details
on wakeup designs will be discussed in the following section.

III. DESIGNS OF WAKEUP LOGIC: TWO PRIMARY APPROACHES

This section illustrates two typical designs of wakeup logic
in more detail. One is the CAM-based wakeup logic [1] and the
other is the RAM-based design [14].

A. CAM-Based Approach

Conventional implementation of the wakeup logic is based
on the CAM structure as shown in Fig. 5(a). The destination tag
RAM, shown at the top of the figure, is used to store the renamed
destination tag. In addition, two CAM structures are used to
match the destination tags with the left and right source tags, re-
spectively. Two ready bits (Rdy L and Rdy R) are employed for
each entry to indicate whether their corresponding operands are
available. The wakeup operations begin when the select logic
asserts the grant lines. Assuming is the issue window size and

is the issue width. The select logic asserts at most of the
grant lines to select instructions for execution and to wakeup
the instructions that depend on the selected instructions. The
asserted grant lines are used to retrieve the corresponding re-
sult tags from the destination tag RAM. The result tags are then
driven on the tag buses (Tag 1 to Tag ) to the CAM structures
to match with the left and right source tags (Tag L and Tag R).
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Fig. 5. (a) CAM-based wakeup logic. (b) Single cell of the CAM structure.

If there is a match, the corresponding ready bit is set to indicate
that this operand is available. For each entry, the left and right
ready bits are ANDed to generate one of the execution requests
(Req to Req ).

The detail of how the destination tags match with the source
tags can be illustrated with Fig. 5(b). At the center of the upper
part, two chained inverters represent a memory cell that stores
a single bit of the source tag (Data[0], for instance). On both
sides of this memory cell, the corresponding bits ( to

) of the result tags and their complements ( to
) go vertically through the cell to match with the bit of

the source tag. At the bottom of this figure, two NMOS tran-
sistors form a comparator and pairs of comparators to match
the incoming tag bits with the data bit. There is a precharged
match line, reacting to the match result. If the incoming tag bit
does not match with the data bit, the corresponding match line
is pulled down by one of the two comparators. The match line
only remains high if all the bits of the result tag are matched
with the corresponding bits of the source tag. Finally, the ready
bit (Rdy) is produced by ORing all of the match lines. If one
of the result tags is matched with the source tag, the corre-
sponding match line is high and the ready bit is set to indicate
that this source operand is available now.

1) Gate-Off Scheme: Based on the CAM-based wakeup
logic, the gate-off scheme dynamically disables the needless
wakeup operations to reduce power consumption [15]. In this
scheme, the entries of the issue window are classified into three
types according to their status to gate-off unnecessary wakeup
operations. First, the entries that have invalid instructions or
have no instruction are called empty entries. These empty
entries need not be searched during the wakeup operation.
Second, the entries that have valid instructions with available
operands are called ready entries. These ready entries need not
be searched either during the wakeup operation because the

operands are already available. Finally, the entries that have
valid instructions with unavailable operands are the only entries
that need to be searched during the wakeup operation. To put it
precisely, the scheme avoids the source tags matching with the
result tags by disabling the precharge of the match lines for the
empty and ready entries in the CAM structures.

B. Bit-Map RAM Scheme

In addition to the CAM-based design, an alternative approach
is implemented by using the bit-map RAM structure [14].

Fig. 6 shows this RAM-based wakeup design. This wakeup
design employs two bit-map memory structures, of which the
height and width are both identical to the issue window size, to
handle the wakeup operations. In this RAM structure, each bit
position represents the data dependence between two instruc-
tions. For example, the bit located at the intersection of the th
column and the th row in the bit-map
RAM indicates that the th instruction requires a source operand
from the output of the th instruction. In the same way, other in-
structions that depend on instruction will set the corresponding
bit in column . Different from the structure of a general RAM
which outputs a row of data, this bit-map RAM outputs a column
of data. To wakeup the dependent instructions, the grant lines
READ the corresponding columns from the bit-map RAM. If the
bits on the selected column have been set, the corresponding
ready bits are set to indicate that the result is now available for
the waiting instructions.

The detail of the access to the bit-map RAM can be illustrated
with Fig. 7. The source tags are inserted into the bit-map RAM
in the following way. For each instruction, its entry number in
the issue window is used as the address to select a row, driving
the selected WRITE wordline as shown at the left side of the
figure. Besides, the source tag of the instruction is decoded to
assert the bitline for the selected row as shown at the bottom
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Fig. 6. Wakeup logic implemented by using the bit-map RAM.

Fig. 7. Bit-map RAM circuit.

of the figure. In other words, only one bit is set when writing a
source tag into the wakeup logic. As an illustration, the instruc-
tion with its and is inserted
in the following way. The entry number is used as the address
to index the th wordline and the source tag drives the th bit-
line. Consequently, the cell located at the intersection of the th
column and the th row is set high to specify that instruction
depends on instruction .

On the other hand, the instruction wakeup operation is per-
formed by means of a READ operation. The grant signal from the
select logic drives the corresponding READ wordline to READ out
a column of data. If the cells at the selected column have been
set, they pull down their READ bitlines. These bits at the output
column drive the ready bits according to their bit position. For
example, the select logic asserts the th grant line to select in-
struction for execution. This grant line is also used to wake
up the dependent instructions, driving the th READ wordline to
select column for output. Because the th cell at the selected
column has been set previously, the th READ bitline is pulled
down by this cell, which then sets the corresponding ready bit.

This RAM-based wakeup design has the advantages in power
dissipation and latency; however, it incurs a large area cost. The

Fig. 8. Selective match wakeup logic.

wire delay of the wakeup path increases as the logic size grows,
leading to excessive wire delay in the processes of future tech-
nology [16]. Besides, the bit-map RAM may not suit for a large
window processor due to its prohibitive area requirement.

IV. OPTIMIZATIONS OF WAKEUP LOGIC

In this section, we present two wakeup designs that are ef-
ficient in terms of energy usage, latency, area, and scalability
without performance degradation. Based on the observation that
the wakeup operation only wakes up a few instructions, our first
design uses a novel selective match circuit that only matches
the candidate grant line with the predecoded signal from the
source tag. This scheme improves the wakeup latency as well
as the energy usage of the scheduler. In addition, based on the
observation that the wakeup distances between two dependent
instructions are often short, the second design limits the wakeup
ranges for the instructions in the issue window to improve the
area cost and scalability without the compromise of IPC.

A. Reducing Energy and Latency via Selective Match

Fig. 8 shows the selective match wakeup design that trades
the costly destination tag memory with a simple combinational
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Fig. 9. Basic wakeup unit.

Fig. 10. (a) Using expanded wakeup units. (b) Using multiple lanes of basic wakeup units to form the wakeup logic for a 128-entry issue window.

circuit by using source tag predecoding (STP). Different from
the CAM-based design, the grant lines are directly connected to
the wakeup logic without the need for reading the destination
tags. In addition, the source tag is decoded in advance before
the tag match process. In this way, only the corresponding grant
line is matched with the predecoded output of the source tag.
This wakeup design is constructed by using the basic wakeup
unit shown in Fig. 9.

The basic wakeup unit is the circuit that matches a 5-bit
source tag with 32 grant lines. At the center of Fig. 9, the two
chained inverters stand for a RAM cell. Five cells store the
source tag and another one stores the valid bit that indicates
whether this tag is valid. The 32 grant input lines, which are
represented by the vertical lines (Grant 0 to Grant 31), are
arranged equally on both sides of the tag cells. Each of the
32 grant lines is connected to the match circuit to match with
the corresponding decoded line from the tag cells. The match
circuit, which consists of two nMOSFET transistors, matches
the grant line and the decoded line that are both connected to
it. A match line, at the bottom of the figure, reacts to the match
result.

For wakeup operation, the 5-bit tag cells are decoded to drive
one of the 32 output lines. The asserted line activates the match
circuit to wait for the corresponding grant line while the rest

of the decoded lines turn off the 31 match circuits connected
to them. When the waited grant line becomes high, the corre-
sponding match circuit is turned on to pull the match line down.
In short, only one of the 32 match circuits is activated to wait
for the grant line.

There are two approaches for building up the wakeup logic for
a large issue window design, for instance a 128-entry window.
The first approach uses the expanded wakeup unit, which is an
expansion of the basic wakeup unit, to build up the large wakeup
logic. Fig. 10(a) shows an example of this approach for a 128-
entry design. Each entry of the wakeup logic uses the expanded
wakeup unit that matches the 7-bit source tag with the incoming
128 grant lines. In the expanded wakeup unit, the 7-bit source
tag is predecoded by a 7-to-128 decoder. The 128 output lines
of the decoder and the incoming 128 grant lines are matched as
that in the basic wakeup unit.

In reality, arranging the 128 decoded lines in silicon circuit
has posed an adverse effect on the area cost. For instance, with
the experimental environment in which the technology process
supports six metal layers, we employed four metal layers to
route the 128 decoded lines. To reduce the area used, the 128
decoded lines can be divided into two groups going to the left
and right sides to match with the grant lines, respectively. To
route the 64 decoded lines for each direction, 16 rows of the
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Fig. 11. Distribution of wakeup distances.

four metal layers were used. The area cost due to routing these
decoded lines becomes unacceptable when the size of the issue
window increases. As a result, in a four-issue processor the area
cost of this approach is 133% that of the bit-map RAM scheme
for a 128-entry issue window and it becomes 235% when the
size of the issue window grows to 256 entries. Besides, the area
due to routing the decoded lines increases the wire resistance of
the grant line bus. The increased wire resistance deteriorates the
wakeup latency and even the power consumption.

To tackle the previous problem, the second approach builds
up the wakeup logic by merging multiple lanes of the basic
wakeup units. For example, Fig. 10(b) depicts the wakeup logic
that employs four lanes of the basic wakeup units for a 128-entry
issue window. This structure handles the wakeup operations for
the left or the right source operands in the issue window. The
128 grant input lines are divided into four groups as the inputs
for the four lanes, respectively. Each lane of this wakeup logic,
which consists of 128 entries of the basic wakeup unit, handles
the wakeup operations for its incoming 32 grant lines. In this
design, there are four basic wakeup units for each entry (row)
and their match lines are connected together (wire OR) to drive
the ready bit.

When an instruction is inserted in the issue window, the
source tag of this instruction is written into the allocated entry
in the following way. First, the most significant two bits of the
source tag are used to select one from the four basic wakeup
units in the allocated entry. Then, the least significant five bits
are written into the tag field of the selected unit. The other three
tag fields in this entry are set to be invalid. The 5-bit source tag
is decoded to drive a decoded line that is corresponding to the
source tag. For example, if the value of the source tag equals
to , the th decoded line will be asserted to wait the th grant
line. For the next instruction, the next entry of the STP wakeup
structure is allocated. In that entry, the written source tag drives
the corresponding decoded line to wait for the grant line that
is indexed by the source tag. In summary, only one tag field is
valid even four basic wakeup units are employed for an entry.
In each entry, only one decoded line would be asserted by the
written source tag.

This design greatly improves the disadvantages of the CAM
and RAM schemes. First, compared to the CAM-based design,

the inputs to this wakeup logic are the grant lines rather than the
outputs from the destination tag RAMs. In addition, at most,
only grant lines are driven rather than tag bits are driven
where

issue width

and

issue width tag length

Moreover, only one match circuit is active for each entry and
only the match line that depends on the execution result is acti-
vated. These optimizations make the STP design faster and more
energy efficient than the CAM-based design. On the other hand,
unlike the bit-map RAM area that grows with the square of the
issue window size, the current design reduces the area cost by
separating the tag RAM cells from the match circuits.

B. Improving Area Cost via Wakeup Range Limitation

The observation on the wakeup distances between two de-
pendent instructions motivates the second optimization. Fig. 11
shows the statistics of the wakeup distances between two de-
pendent instructions for the benchmark programs. The wakeup
distance is the instruction count between two dependent instruc-
tions. On average, 96% of the wakeup operations come with the
wakeup distances less than 17 instructions. Based on this obser-
vation, a compact wakeup design that supports the range-limited
wakeup operation is proposed to reduce the area requirement
and improve the scalability.

Fig. 12 shows the 128-entry example of the proposed com-
pact wakeup design with a backup unit. The compact design,
shown at the upper part, handles the wakeup operations only for
the instructions with the wakeup distances in the limited wakeup
range. In addition, a backup unit, shown at the lower part, is em-
ployed to deal with the instructions that their wakeup distances
are out of range. In this design, the issue window is assumed to
work as a circular ring. Thus, the grant lines interfaced with the
compact sets are also arranged in a circular order.

The compact wakeup design consists of eight compact sets
(S0–S7). Each compact set is formed by using 16 entries of the
basic wakeup unit to handle the wakeup operations only for the
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Fig. 12. Compact wakeup design for 128-entry issue window with a backup unit.

instructions assigned to it. For each compact set, the 32 grant
input lines are arranged so that the instruction in the first entry
of the compact set begins with a wakeup range of 16 instruc-
tions. For the instruction in the second entry, its wakeup range
increases by one. Thus, the instruction at the last (16th) entry of
the compact set has a wakeup range of 31 instructions. In sum-
mary, all the instructions in the compact set have the wakeup
range of 16 instructions at least.

For example, the first compact set of the compact design
handles the wakeup operations for the instructions in the issue
window from entry 0 to entry 15. The instruction in entry
0 has the wakeup range of 16 instructions (from entry 112
to 127). The instruction in entry 1 has the wakeup range of
17 instructions (from entry 112 to 0, wrapping around). For
the instruction in entry 15, the wakeup range increases to 31
instructions (from 112 to 14). In a similar fashion, the other
compact sets handle the wakeup operations for the rest of the
instructions in the issue window.

Because the compact set only stores the low-order five bits of
the source tag, the connection of the grant lines to the compact
set must conform to the order of the decoded line as shown in
Fig. 9. Specifically, the 32 grant lines for a compact set are di-
vided into two groups where the first 16 lines are represented by

and the rest are denoted as .
The relationship for interfacing the grant lines with the compact
sets can be written as follows:

if odd
if even

if odd
if even

where is the entry numbers of the compact set, is the
size of the issue window, and is the number of the compact
set. For example, the first compact set (S0) is connected to the
grant lines numbered from 0 to 15, the same as the entry num-
bers of the first compact set, for the first half and the grant
lines numbered from 112 to 127 for the second half . For
the second compact set (S1), the first half is the grant lines num-
bered from 0 to 15 while the second half is the grant lines num-

TABLE I
VALID DISTANCE CODE FOR A COMPACT SET FOR A 128-ENTRY ISSUE WINDOW

bered from 16 to 31, the same as the entry numbers of the second
compact set. Fig. 12 also illustrates the rest of the connections.

The access to this compact wakeup logic is different from the
access to the STP design. After rename, the source tags are in-
serted into the compact sets only if the wakeup distances of the
source tags are within the specified wakeup range. The wakeup
distance of the instruction is easy to determine by examining
the most significant bits of the instruction’s source tag. For the
example in Fig. 12, the most significant three bits of the source
tag are compared with the two distance codes listed in Table I
according to the allocated compact set. Note that the instruc-
tion entry number obtained from the issue window determines
which compact set the instruction is assigned to. For a compact
set, the two distance codes listed in Table I come from the three
high-order bits of the two grant line groups ( and ), re-
spectively. If the three high-order bits of the source tag match
with one of the two distance codes of the allocated compact set,
the wakeup distance of the instruction is in the range of this com-
pact set. Then the least significant five bits of this source tag are
inserted into the allocated entry. If the three high-order bits do
not conform to any of the two codes of the allocated compact
set, the wakeup distance is out of the range of this compact set
and this tag is inserted into the backup unit.

A backup unit, which is shown at the lower half of Fig. 12,
is employed to deal with the instructions that have the wakeup
distances out of the limited range. This backup unit consists
of a 16-entry 128-input STP design and a 16-entry 128-output
bit-map RAM structure. Since this backup unit only takes care
of the wakeup operations that occur infrequently, the design here
uses 16 entries. Further discussions on the number of entries
used for the backup unit will be elaborated in the result section.
In this backup unit, the STP wakeup logic is used for the purpose
of serving the out-of-range wakeup operations and the bit-map
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TABLE II
ARCHITECTURAL PARAMETERS

RAM structure is used to record the instruction entry numbers in
the issue window for the instructions in the STP wakeup struc-
ture. In particular, the bit position in the rows of the bit-map
RAM represents the entry number in the issue window for the
instructions in the STP wakeup logic. The STP outputs, which
are the match results, are used to READ the corresponding rows
of the bit-map RAM. Each bit of the output of the bit-map RAM
is connected to the corresponding ready bit.

Specifically, when an instruction exceeds the wakeup dis-
tance of its designated compact set, an entry with the same index
in both of the STP wakeup logic and the bit-map RAM is allo-
cated for this instruction. The source tag of the instruction is
then inserted into the STP logic to wait for the corresponding
grant line. In addition, of the same selected entry in the bit-map
RAM, the bit that corresponds to the instruction’s entry number
in the issue window is set. On the contrary, if all the entries in the
backup unit are allocated, instruction dispatching is stalled until
the backup unit is available again. Once the source tag matches
with a grant line, the match line from the matched entry of the
STP logic is asserted as an index to READ the bit-map RAM.
The asserted bits of the output from the bit-map RAM are used
to set the ready bit through the OR gates.

With the backup unit, this design significantly reduces the
used area compared to the STP wakeup logic without IPC loss.
Since the wakeup range is limited, each entry of the compact
set consists of only one basic wakeup unit regardless of the
issue window size. Although the range-limited design may in-
duce dispatch stalls that deteriorate the performance (IPC), these
stalls can be avoided by using a 16-entry backup unit.

V. EXPERIMENTAL EVALUATION AND ANALYSIS

This section presents the evaluation methodology and dis-
cusses the latency, power, area, and performance of the proposed
optimization schemes and the conventional wakeup designs.

A. Experimental Methodology

The power consumption and IPC results were obtained
through architectural simulation, which was conducted by
using Wattch [17] and SimpleScalar [18] toolsets. These exe-
cution-driven simulators simulate a superscalar processor with

two-level caches, branch predictors, dynamic scheduler, and et
al. by performing cycle by cycle instruction-level simulation,
including execution down any speculative path until a branch
misprediction is detected.

Table II lists the architectural parameters for the three dif-
ferent configured processors evaluated in this study. In Wattch,
the basic wakeup unit was modeled in three components. First,
the valid bit and the source tag were modeled as a 6-bit general
RAM structure. Second, the decoder that predecodes the source
tag was modeled as a 5-to-32 decoder that is composed of the
NAND gates. Next, the 32 comparators that match the decoded
lines with the grant lines were modeled as the match circuits
shown in Fig. 9. Besides, the RAM cell of the bit-map RAM
structure was modified from the cell in the conventional RAM.
In particular, as shown in Fig. 7, the READ wordlines were mod-
ified to go vertically and the READ bitlines were modified to go
horizontally. The other configurations for the Wattch include
1-GHz clock frequency, 1.8-V voltage, and 0.18- m technology
process.

The simulation results were collected from seven-integer and
nine-floating point programs of the SPEC2000 benchmark suite.
The test input set was used for the benchmark programs. Addi-
tionally, five programs of the Media-bench [19] were also em-
ployed for a more comprehensive evaluation of the wakeup de-
signs. All of the selected benchmark programs were compiled
with full optimization (-O4) and were run to completion.

To evaluate the wakeup delays and area sizes, the circuit char-
acteristics of the different structures must be examined. The
circuit models were extended from the one proposed by Ernst
and Austin [20] and the timing results for the designs were
extracted by using the Avant! Hspice tool. For the area sizes,
only the structures of the evaluated designs were estimated, for
example, the CAM structure, the bit-map RAM structure, the
STP structure, the STP design constrained with wakeup locality
(STP-WL), and the backup unit structure. The ready bits, re-
quest signals, and the interconnections outside the structures
were not estimated into the area sizes. The area sizes of the
wakeup designs were estimated based on the cells and wires in
[21] and were scaled to 0.18- m process. Finally, the parame-
ters of CMOS transistors and wires were all conformed to the
design rules of the TSMC 0.18- m process.
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Fig. 13. Power consumption for an 8-issue 64-entry processor (w).

TABLE III
POWER CONSUMPTION STATISTICS (W)

B. Power Consumption Statistics

Fig. 13 presents the power consumptions for the five wakeup
logics in an 8-issue processor with 64-entry issue window. The
power consumption of the CAM-based wakeup design, shown
at the left most bars, is found to be the most power hungry of
all. This is due to the READ operation for the destination tags,
the heavy load capacitance, and the surplus activities of the
CAM structure. Although the gated-off CAM scheme reduces
the power consumption by eliminating the redundant matches
for the source tags in the ready and empty entries of the issue
window, the power consumption is still high as shown in the
second bars due to the inherent nature of the CAM structure.

The power consumed by the bit-map RAM scheme, shown
in the middle bars, is about only 29% of that consumed in the
CAM scheme. This significant reduction comes from the fewer
amounts of activities incurred for each wakeup operation in the
RAM structure.

Similarly, less grant and match lines are activated in the selec-
tive match wakeup scheme during the wakeup operation. For a
64- and 128-entry processor, the smaller area size (shown later)
of the STP scheme leads to smaller load capacitance, which re-
sults in further power reduction, compared to the RAM-based
scheme.

The final bars show that the STP-WL scheme achieves the
best power saving among the five schemes. This advantage
comes from the slight load capacitance of the small compact set.
This design reduces the power consumption of the STP scheme
by 39% on the average. Specifically, the power consumption of

the STP-WL design is only 14% that of the CAM-based design
and 50% that of the bit-map RAM design.

Additionally, the power consumption of these wakeup de-
signs for different configurations is shown in Table III. Exam-
ining the 16-issue, 128-entry configuration, the conventional
CAM design consumes about 10 W while the STP-WL design
dissipates only about 0.57 W. The STP-WL design takes this no-
ticeable advantage by using the compact set that is much smaller
and less complex than the other designs. The size of the com-
pact set is constant (16 entries) and does not grow with the issue
window size. Importantly, the STP-WL design is scalable with
the issue window size in terms of power consumption.

C. Circuit Delay Results

Since the gated-off CAM scheme only gates off the match
lines in the empty and ready entries, this does not affect the
critical path of the wakeup operation. Thus, the latency is the
same as that in the CAM-based design. Hence, the wakeup delay
of these two wakeup logics can be summarized as follows:

where is the time for reading the destination tag from
the tag RAM, is the time for driving the tag into the
CAM structure, is the time spent by the match circuit
in pulling the match line low, and is the time for per-
forming a logical OR operation with the match lines.
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Fig. 14. Wakeup latencies of different designs (ps).

Analyzing the delay of the bit-map RAM scheduler is based
on the circuit shown in Fig. 7. The wakeup latency of the bit-map
RAM scheme can be represented as follows:

where is the delay as the word line driver drives the
grant signal into the bit-map RAM, is the time for acti-
vating the bit line, and is the time for amplifying the
bit line.

The representation of latency for the selective match wakeup
(STP) design is similar to that of the bit-map RAM wakeup logic
and can be expressed as

where the delay components and are the time for
driving the grant line and pulling the match line down, respec-
tively.

For the STP-WL design, in the 32-entry configurations the
wakeup delays come directly from the compact set because no
backup unit is used in these configurations. In the other configu-
rations that the issue window size is greater than 32 entries, the
wakeup latency is the maximum latency of the compact set or
the backup unit. After evaluation, we found that the maximum
wakeup delay always comes from the backup unit that is given
by

where and are the delays of the 16-entry
selective match unit and 16-entry bit-map RAM, respectively.

is the time for ORing the two ready lines from the
compact set and the backup unit.

Fig. 14 shows the wakeup latencies of the five wakeup
designs for various configurations. The wakeup latencies of

the bit-map RAM scheme, selective match scheme (STP), and
STP-WL are presented in the last three bars. Compared to
the CAM-based schemes, these three designs have noticeable
improvements that result from the lower capacitance on the
wakeup path and equally from the fact that the READ of the
destination tag is removed from the critical path.

The STP design achieves the best wakeup delay in all configu-
rations. The wakeup delay of the STP design is more prominent
compared to the conventional CAM and RAM schemes when
the scheduler comes with a wider issue width and larger issue
window. This result comes from that of the STP design separates
the source tag from the match circuits in the basic wakeup unit
to restrain the increase of the load capacitance on the wakeup
path.

The last bars in Fig. 14 show the wakeup latency of the
STP-WL design. The wakeup latencies come directly from the
compact set for the 32-entry configurations because no backup
unit is employed in these configurations. For the 64/128-entry
configurations, the backup unit, which includes 16 entries of
the selective match wakeup logic and 16 entries of the bit-map
RAM, contributes to the total wakeup delay. As expected, the
wakeup latencies of STP-WL are higher than that of the STP
scheme. Despite this, the wakeup latencies of the STP-WL
design are measured to be only 23%–71% of the CAM schemes
in the evaluated configurations. Besides, the STP-WL design
is 10%–44% faster than the RAM scheme for the 32-entry and
128-entry configurations.

The STP and STP-WL designs suit for sophisticated sched-
ulers in terms of the latency. For the purpose of our study, we
assume that the wakeup and select logic form the critical path
of the pipeline stages. The STP-WL design has significantly im-
proved the clock cycle time by 56% and 25% compared to the
CAM and RAM schemes for a 16-issue 128-entry processor.
Having achieved this, the critical path may migrate to other
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Fig. 15. Area size of the evaluated wakeup logics (�m ).

Fig. 16. IPC loss due to the limit of wakeup distance with three different configured backup units.

pipeline stage since the scheduler has been improved by the
STP-WL design.

D. Area Size Tradeoff

Fig. 15 shows the area sizes of the evaluated wakeup designs
for three different issue widths of various window sizes. Note
that the scale is in logarithm. The area of the bit-map RAM
scheme, shown by the first line from the top, is proportional to
the square of the issue window size and becomes unacceptably
large in a larger window scheduler.

Similar to the RAM scheme, the number of entries of the STP
design grows with the issue window. However, the separation of
the source tag from the match circuits effectively reduces about
70% of the area compared with the RAM scheme in 128-entry
configurations.

For the CAM-based schemes, the entry number increases
with the issue window size but the tag length only increases
one bit as the issue window size doubles. Thus, the area of
the CAM-based schemes grows only linearly with the issue
window size. However, it is measured to be worse than the STP
scheme in smaller window schedulers due to the larger size of
the CAM cell.

In the wide-issue and large-window processors, the STP-WL
design effectively reduces the area cost compared to the STP
scheme. As shown, the area needed for the STP-WL scheme is
similar to that required in the conventional CAM-based designs.

The STP-WL design also scales well with the increase of the
issue window size especially for a 16-issue machine.

To summarize, considering wakeup latency, power efficiency,
area requirement, and scalability as a whole, the STP-WL de-
sign is the most attractive one. For the best speed performance,
the STP scheme clearly is the winner for all the configurations.

E. Wakeup Distance and Performance

To reduce the area of the wakeup logic used for a large issue
window, the STP-WL scheme takes the advantage of wakeup
locality by limiting the wakeup range. This, however, may stall
the insertion of the instructions that have wakeup distances out
of the limited wakeup range. A backup unit that supports the
wakeup operations with full wakeup distance is used to reduce
the impact on IPC. We experiment on a 16-issue 128-entry
processor to determine the number of entries required for this
backup unit.

Fig. 16 shows the performances, which is normalized to the
IPC of the STP-only scheme, for the STP-WL design with three
different configurations of the backup unit. The IPC loss due to
range-limited wakeup without a backup unit (STP-WL + zero-
entry BU) is 11% on the average. This IPC drop comes from
the stalling of instruction insertion into the issue window as the
wakeup distance exceeds the limit. In contrast, the average IPC
degradation is measured to be only 0.2% for the STP-WL design
with an 8-entry backup unit. In this configuration, the worst IPC
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degradation is 1.7% for the bzip2 program. When a 16-entry
backup unit is used, there is almost no IPC degradation for all
the benchmark programs.

The IPCs of the STP-WL schemes for some benchmark pro-
grams are slightly higher than the STP-only scheme. This is
because some instructions on the miss-predicted paths may be
blocked in the STP-WL design and fewer misprediction recov-
eries are performed than that in the STP scheme.

In summary, when a 16-entry backup unit is used, area reduc-
tion for the wakeup logic is achieved with no IPC loss.

VI. RELATED WORKS

Many previous researches have attempted to reduce the la-
tency or energy consumption of the dynamic scheduler.

In addition to the gate-off technique mentioned in Section III,
Folegnani and González presented another technique that dy-
namically manages the size of the issue window to reduce the
power consumption [15]. However, this dynamically resizing
technique needs an extra dynamic manger and results in a little
IPC loss.

Hrishikesh et al. proposed a pipelined wakeup technique to
improve the wakeup delay [22]. This design divides the issue
window into multiple segments and wakes up the instructions
in the segments in multiple sequential cycles. In this scheme, all
the segments still need to be searched for the wakeup operation;
besides the dependent instructions can be issued back to back
only if they are in the first segment.

Brown et al. proposed a technique that removes the select
logic from the critical path of the scheduler by speculatively
selecting instruction for execution as soon as this instruction
becomes ready [23]. This scheduler employs the wire-or style
wakeup logic that is similar to the bit-map RAM wakeup de-
sign. This wakeup logic is efficient in terms of power consump-
tion and wakeup delay. However, the area cost of this design is
considerable for a large-window scheduler.

Ernst and Austin proposed a scheduler that employs less tag
comparators to reduce the complexity of the scheduler. This
scheduler also has a last tag speculator to reduce the frequency
of tag matching [20]. Ernst et al. also proposed a Cyclone sched-
uler that predicts the operand arrival time and schedules instruc-
tions in a countdown cyclic queue. This design boosts the clock
frequency and, at the same time, reduces the power consump-
tion and area cost of the scheduler [24]. However, the price for
these two schedulers is a small IPC degradation.

Kim and Lipasti proposed a sequential wakeup mechanism to
reduce the complexity of the scheduler [25]. In this design, the
last-arrival operand is placed into the fast wakeup entry and two
(left and right) source operands of the instructions are awak-
ened in two sequential steps. Although the sequential wakeup
logic enables a higher clock frequency by reducing the load ca-
pacitance for the tag driving, the two-cycle wakeup operation
induces some IPC degradation.

Ponomarev et al. used three techniques to reduce the power
dissipation of the issue window [26]. First, an efficient com-
parator is proposed to reduce the power dissipation due to tag
match. Then, the 0-B encoding is employed to reduce the activi-
ties of the data path and bitlines. Third, the bitline segmentation
is applied to the issue window in order to achieve a low-power

issue window. But then, these techniques result in the cost of
area and latency. The extra delays associate with the proposed
comparators and 0-B encoding may slow down the clock cycle
time of the processor.

Huang et al. proposed an index-based scheduler, which em-
ploys a producer instruction pointer and a consumer instruction
pointer to index the instructions that should be awakened, to im-
prove the energy efficiency of the scheduler [27]. This sched-
uler must work together with a conventional CAM structure.
Canal and Gonzalez proposed two schemes to reduce the com-
plexity of issue window [28]. One is the N-use scheme that
replaces the associative search by the RAM-based index. The
other scheme limits the associative search to a few entries of the
issue window. The recovery from a branch miss prediction for
these schemes becomes more complex. Henry et al. presented
a cyclic segmented prefix (CSP) circuit to improve the perfor-
mance of wakeup logic [29]. Other works [30]–[32] reduced the
complexity of scheduler by scheduling dependent instructions
into a data-flow based issue window.

VII. CONCLUSION

This paper presented two effective designs that improve
wakeup delay, power requirement, and area cost of the wakeup
logic without compromising the IPC. First, the proposed
selective-match design removes needless tag matches by pre-
decoding the source tags and activating only the selected match
circuits during the wakeup operation. This design also elimi-
nates the read of the destination tags from the critical wakeup
path by matching the grant lines directly with the source tags.
These optimizations significantly speedup 61%-84% of the
wakeup operation and save 71%–83% power consumption
compared to the conventional CAM scheme. Besides, by sep-
arating the match circuits from the tag RAM cells, this design
uses only 25%–44% of the area required by the conventional
RAM-based wakeup logic. Next, the STP-WL design explores
the wakeup locality, that most wakeup distances between two
dependent instructions are short in nature, to further minimize
the area usage of the wakeup logic. Without IPC degradation,
this design improves 78%–83% of the area cost in STP design
for the 512-entry processors by limiting the wakeup range.

The experimental results also reveal that the major limiting
factor for the scalability of the CAM scheme is the complexity
of the CAM structure that induces large power consumption and
considerable wakeup delay. As for the bit-map RAM scheme,
the limiting factor is its large area requirement. In contrast to
these two wakeup designs, the STP-WL design is attractive to
use in terms of latency, power, and area cost for not only con-
temporary schedulers but also future sophisticated schedulers.
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