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Abstract In this paper, we study and analyze the computational
complexity of deblocking Jilter in H.264A VC baseline decoder
based on SimpleScalar/ARM simulator. The simulation result
shows that the memory reference, content activity check operations
and filter operations are known to be very time consuming in the
decoder of this new video coding standard. In order to improve
overall system performance, we propose a window processing
approach with efjicient VLSI architecture which simultaneously
processes the horizontal filtering of vertical edge and vertical
filtering of horizontal edge. As a result, the processing capability
of the proposed architecture is very appropriate for real-time
deblocking of high-definition television (HDTV, 1920x]080
pixelslframe, 60frames/s video signals) video operation at 60MHz.
Moreover, the memory and system performance of our proposal
significantly outperforms the previous designs as shown in result
section.

Keyword Deblocking Filter, H.2641A VC, Video Coding

I. INTRODUCTION

Video compression is the critical component in today's
multimedia systems. The limited transmission bandwidth or

storage capacity for applications such as DVD or digital
television, and internet video streaming emphasizes the
demand for higher video compression rates. To achieve this
demand, the new video coding standard Recommendation
H.264 of ITU-T [1], also known as International Standard
14496-10 or MPEG-4 Part 10 Advanced Video Coding
(AVC) of ISO/IEC, has been developed. It significantly
outperforms the previous ones (H.261 [2], MPEG-1 Video
[3], MPEG-2 Video [4], H.263 [5] and MPEG-4 Visual or

part 2 [6]) in bit-rate reduction. The functional blocks of
H.264/AVC, as well as their features, are shown in Fig. 1.
Comparing the H.264/AVC video coding tools like adaptive
deblocking filter [7], integer transform [8] instead of the
DCT [9], multiple reference frame [10], new frame types
(SP-frames and SI-frames) [11], further predictions using B-

slices [12], quarter per motion compensation [13] or CABAC
[14] to the tools of previous video coding standard,
H.264/AVC brought in the most algorithm in the evolution
of video coding as well as error robustness and network
friendliness. At the same time, preliminary studies [15] using
software based on this new standard, suggest that H.264
offers up to 50% better compression than MPEG-2 and up to

30% better than H.263+ and MPEG-4 advanced simple
profile.
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Fig. 1. Block diagram of H.264/AVC

As our experiment result indicates, the operation of the
deblocking filter is the most time consuming part of
H.264/AVC video decoder. The block-based structure of the
H.264/AVC architecture produces artifacts known as
blocking artifacts. These blocking artifacts can occur from
both quantization of the transform coefficients and block-
based motion compensation. In order to reduce the blocking
artifacts, the overlapped block motion compensation (OBMC)
[16] is adopted into H.263 standard. Unlike the OBMC in
H.263, H.264/AVC adopts an adaptive deblocking filter [7]
that has shown to be a more powerful tool in reducing
artifacts and improving the video quality. As a result, the
filter reduces the bit rate typically by 5-10% while producing
the same objective quality as the non-filtered video [17].
Adaptive deblocking filter can also be used in inter-picture
prediction to improve the ability to predict other picture as
well. Since it is within the motion compensation prediction
loop, the deblocking filter is often referred to as an "in-loop
filter". A detailed description of the adaptive deblocking
filter can be found in [7].

The filtering operations of H.264/AVC standard require
more instructions to process deblocking. Due to intensive
computations, in [18], [19], [20], [21], [22], [23], [24] and
[25] dedicated hardware was developed for acceleration.
However, the deblocking filter described in the H.264/AVC



standard is highly adaptive. Several parameters and
thresholds, as well as the content of the picture itself, control
the boundary strength of the filtering process. These issues
are also equally challenging during parallel processing under
DSP or SIMD computational architecture. In order to reduce
the conditional branch operations, we include the content
activity check operations, table-derived operations, and
filtering operations into edge filtering unit to accelerate the
deblocking filtering of H.264/AVC video coding. In addition,
we propose a window processing architecture to improve
memory performance by 4 times when compared to the
software implementation [1]. The proposed architecture is
called "Win". It uses a novel processing order within a
macroblock to simultaneously process the horizontal filtering
of vertical edge and vertical filtering of horizontal edge.
Hence, our architecture is able to significantly improve the
system performance.

The organization of this paper is as follows. In section II,
the algorithm of the deblocking filter is explained. Section III
illustrates the block diagram of our proposed architecture
using window processing approach. Section IV shows the
simulation results. Finally, conclusion is presented in Section
V.

II. ALGORITHM OF DEBLOCKING FILTER

In this section, we briefly describe the algorithm of
deblocking filter in H.264/AVC from processing order to
sample processing level. A detailed description of the
adaptive deblocking filter can be found in [7].

A. Processing Order
As H.264/AVC standard recommendation [1], for each

luminance macroblock, the left-most edge of the macroblock
is filtered first, followed by the other three internal vertical
edges from left to right. Similarly, the top edge of
macroblock is filtered first, followed by the other three
internal horizontal edges from top to bottom. Chrominance
filtering follows a similar order in each direction for each
8x8 chrominance macroblock as shown in Fig. 2.
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Fig. 2. Processing method of standard

B. Sample Processing Level
On the sample processing level, the quantization

parameter, threshold value of Alpha and Beta, and content of

picture itself can turn on or turn off the filtering for each
individual set of sample. For example, Fig.3 illustrates the
principle of the deblocking filter using a one-dimensional
visualization of a block edge in a typical situation where the
filter would be turned on. Whether the samples p0 and qO as
well as pl and ql are filtered is determined by using
Boundary Strength (Bs), dependent threshold Alpha(QP) and
Beta(QP), and content of picture itself. Thus the filtering of
p0 and qO only takes place if the following content activity
check operations are satisfied:

Bs != 0
Ip0 - qO° <Alpha(QP)
Ipl - p01 <Beta(QP) and Iql - qO <Beta(QP)

(1)
(2)
(3)

Correspondingly, the filtering of pl or ql takes place if
the condition below is satisfied

p2-pO <Beta(QP) or Iq2-q0 l<Beta(QP) (4)
The dependency of Alpha and Beta on the quantizer,

links the strength of filtering to general quality of the
reconstructed picture prior to filtering. For small quantizer
values, the thresholds both become zero, and filtering is
effectively turned off altogether.
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Fig. 3. Principle of deblocking filter

III. PROPOSE ARCHITECTURE
The key features of our proposed architecture can be

divided into two major components, including the edge
filtering unit and window processing engine that employs a
novel processing order to simultaneously process the
horizontal filtering of vertical edge and vertical filtering of
horizontal edge.

A. Edge Filtering Unit
The complexity of the H.264/AVC Deblocking Filter is

mainly based on two reasons. The first reason is the high
adaptive filtering, which requires several conditional
processing on each block edges and sample levels. As
described in the previous section, the threshold value of
Alpha and Beta, the table-derived operations, and edge
filtering operation are known to be very time consuming.



Therefore, we propose an efficient VLSI architecture that
includes content activity check operations, the table-derived
operations, and filtering operations into the edge filter unit to
accelerate the horizontal and vertical filtering on the
boundary of two adjacent basic 4x4 blocks as shown in Fig.
4. A detailed description of the edge filtering unit can be
found in [21].
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B. Window Processing Architecture
Another reason for the high complexity is the small block

size employed for residual coding in the H.264/AVC video
coding algorithm. With the 4x4 blocks and a typical filter
length of 2 samples in each direction, each sample in a
picture must be transferred from and to inteeal memory 4
times; either to be modified or to determine if the
neighboring samples will be modified. In order to reduce the
numbers of memory reference and improve the overall
system performance, we proposed a window processing
architecture, which can simultaneously process the
horizontal filtering of vertical edge and vertical filtering of
horizontal edge as shown in Fig. 5. The proposed
architecture is called "Win".

There are three major sub-functions in our proposed
architecture. The first component is the memory FIFO. There
are two FIFO memories in our proposed architecture. The
first one is Al which contains 4 entries, each with 4
processed samples as shown in Fig. 5. The other is
processing window which contains 44 block entries as
shown in Fig. 5. The second sub-function in our proposed
architecture is the transposing operation as shown in Fig. 5.
The TI and T2 latch the 4x4 block sample values that are
transposed from Al and windows respectively. The final
important functions are the horizontal and vertical filter units
which are described in the previous subsection.

C. Window Processing
In this section, we describe a window base approach to

process deblocking filter in H.264/AVC. For the first cluster
(4 columns, 4x36 blocks), as shown in Fig. 6 (a) and Table 1,
each phase needs 4 block cycles to process a window data.
During the initialization phase (the first phase), it takes 4
block cycles to load block B 1, and perform horizontal
filtering of vertical edge V2 and V3, and V4 sequentially.
After initialization, in the second phase, the block B5 is
loaded from the internal memory to Fl FIFO at the fifth
block cycle, and then filtered with the block B6 at the sixth
block cycle. At the seventh block cycle, the proposed
architecture Win can simultaneously process the horizontal
filtering of vertical edge V7 (the boundary of block B6 and
B7) and the vertical filtering of horizontal edge H7 (the
boundary of block B I and B5), and then write the block BI
to the internal memory at the eighth block cycle. Then V8,
H8 follows, so on and so forth. Therefore, it takes 7 block
cycles (28 clock cycles) to process the first block B1. Then
B2 follows, so on and so forth. Therefore, the number of
total processing time for the first cluster is 7+143=150 block
cycles (600 clock cycles).

For the second cluster (5 columns, 5x36 blocks), as
shown in Fig. 6 (b) and Table 2, each phase needs 5 block
cycles to process a window data and the window size is
reconfigured as 5. Therefore, the number of total processing
time for the second cluster is 8+179=187 block cycles (748
clock cycles). Table 3 shows variety window sizes of Win
architecture.

Fig. 5. Proposed architecture
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Table 1. Data flow of 4 windows (wI, w2, w3, and w4)
State H BlockCyele

1 2 T 3 T 4 T 5 1 6 1 7 1 8 T 9 T 10
.~~~~~~~~~~~~~~~~~

11

BI B2 B3 B4 B5 B6 B7 B8 B9
B B4 B5 B6 B7 B8

_Bi B2 B3 B4 B5 B6 B7
BI B2 B3 B4 B5 B6

~Bi B2 B3 B4 B5

= = = = = = Bl B2 B3 B4
I I BI B2 B3

Table 2. Data flow of 4+1 windows (wl, w2, w3, w4, and w5)
State Block Cycle |

1 2 3 T 4 T 5 6 7 1 8 T 9 T 10

Fl Bi B2 B3 B4 B5 B6 B7 B8 B9 B1O
T2 B| B2 B3 B4 B5 B6 B7 B8 B9
WI Bi B2 B3 B4 B5 B6 B7 B8

W2 B1 B2 B3 B4 B5 B6 B7
W3 BI B2 B3 B4 B5 B6
W4 Bi B2 B3 B4 B5

W5 BD B2 B3 B4

T8 BI B2 B5

MEM Bi B2

Table 3. The performance comparison of variety window size

Win Size [ Num of 4x4 block Num of block cycles
2+1 Win 3 2449
4+1 Win 5 2020
8+1 Win 9 1825
16+1 Win 17 1707
32+1 Win 33 1668
44 Win 44 T 1630

IV. RESULT

The simulation results are shown in Table 4. The
architecture of Win as a co-processor can accelerate
H.264/AVC decoder system. Moreover, the number of total
memory references for load and store is reduced by 34% and
36% respectively.

Table 4. The performance comparison

Item Software SPA Reduce_by
Inst. 128640967 75123050 42%
Load 30443106 20180448 34%
Store 16098837 10295823 36%
Branch 14324486 7901023 49%
Cycles 220929397 132532824 40%

A. Memory Performance

In our proposed window architecture using novel
processing order, the memory performance is improved by 4
times, when compared to software implementation. Table 5
shows the comparison of various architectures. The memory
access times of our window architecture using novel
processing can reduce by 592 to 16, when compared to the
previous designs in [18], [22], and [25].

Table 5. Memory reference per macroblock
Author J Architecture [MEM

JM9.2 [1] Software Implementation 768
Huang [18] Basic+Single-port SRAM 768
Huang [18] Advance+Dual-port SRAM 384
Huang [18] Basic+Two-port SRAM 768
Huang [18] Dual Arrays+Two-port SRAM 384
Chen [22] Dual-port SRAM or 192

Two Single port SRAM
Li [25] 5120 bits Dual-Port SRAM 192
Win Dual-port SRAM and 176

Using 44 window sizes

B. System Performance
As described in previous section, using 44 and 22

window size for luma and chroma respectively, the total
filtering for a QCIF frame takes 1630x4 = 6520 and (420x4)
x 2 = 3360 cycles respectively. As a result, the total filtering
takes 9880 cycles for a QCIF frame. Our filtering scheme
takes less number of cycles when compared to
240x99=23760, 286x99=28314, 240x99=23760, and 192x99
= 19008 cycles of the architecture described in [18], [20],
[22], and [25]. Table 6 shows the performance comparison of
various architectures. The cycle counts of memory reference
between the external and internal memory are not calculated
for a fair comparison.

Table 6. Processing cycles for QCIF
Author Architecture [ Cycles

Huang [18] Basic+Single-port SRAM 504x99
Huang [18] Advance+Dual-port SRAM 440x99
Huang [18] Basic+Two-port SRAM 408x99
Huang [18] Dual Arrays+Two-port SRAM 240x99
Sheng [18] 2-D Deblocking Filter 286x99
Chen [22] Dual-port SRAM or 240x99

Two Single port SRAM
Li [25] 5120 bits Dual-Port SRAM 192x99
Win Dual-port SRAM and 9880

Using 44 window sizes

C. Implemantation
We implemented the window architecture by Verilog

HDL and synthesized the design using TSMC 0.18um
Artisan CMOS cell library using Synopsys Design Compiler
with critical path constraint set to 10 ns (100MHz). The
hardware comparison of variety architecture is shown in
Table 7.

Table 7. The hardware comparison of variety architecture
Author Architecture Gate Count

Huang[18] Basic+Single-port SRAM 18.91K
Huang[18] Advance+Dual-port SRAM 20.66K
Li[25] 5120 bits Dual-Port 9.57K
Chen [21] Edge Filter Unit 5.66K
Chen [22] Dual-port SRAM 22K
Win 44 window sizes 14.75K

F1
T7.

B2 B3 B4 B5 [B6 B7 B8 B9 B10



V. CONCLUSION

In this paper, we study and analyze the memory reference
of H.264/AVC baseline decoder based on SimpleScalar-
ARM architecture. The result shows that the memory
reference is known to be very time consuming in this new
video coding standard. In order to reduce the memory
reference and thus improve overall system performance, we
propose window-based VLSI architecture to accelerate the
operations of deblocking filter for H.264/AVC video coding.
The major idea is to reduce the number of memory
references through the simultaneous processing architecture
Win using novel processing order. As a result, the processing
capability of the proposed architecture is very appropriate for
real-time deblocking of high-definition television (HDTV,
1920x1080 pixels/frame, 60 frames/s video signals) video
operation at 60MHz. The proposed architecture Win only
requires a simple bus interface for the integration into video
SoC platforms that support a wide range of applications such
as video telephone, video conferencing, video streaming,
digital video authoring, and many others.
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