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Abstract –In this paper, we propose a window-based 
architecture with parallel filtering engine to accelerate the 
adaptive deblocking filter in H.264/AVC video coding standard. 
In order to improve overall system performance, we use a 
configurable 44x32-bit FIFO memory with a novel processing 
order to simultaneously process the horizontal filtering of 
vertical edge and vertical filtering of horizontal edge. As a 
result, the performance of our configurable window-based 
architecture with parallel engine significantly outperforms the 
previous designs in terms of memory references and processing 
cycles. 
 

I. INTRODUCTION 
 

The new video coding standard Recommendation H.264 of 
ITU-T [1], also known as International Standard 14496-10 or 
MPEG-4 Part 10 Advanced Video Coding (AVC) of 
ISO/IEC, has been developed. It significantly outperforms 
the previous ones (H.261 [2], MPEG-1 Video [3], MPEG-2 
Video [4], H.263 [5], and MPEG-4 Visual or part 2 [6]) in 
bit-rate reduction. The functional blocks of H.264/AVC 
decoder, as well as their features, are shown in Fig. 1. It is 
rich with diverse coding methods including the adaptive 
deblocking filter [7], integer transform [8] instead of the 
DCT [9], multiple reference frame [10], new frame types 
(SP-frames and SI-frames) [11], further predictions using 
B-slices [12], quarter per motion compensation [13] or 
CABAC [14]. At the same time, preliminary studies [15] 
using software based on this new standard, suggest that 
H.264 offers up to 50% better compression than MPEG-2 
and up to 30% better than H.263+ and MPEG-4 advanced 
simple profile. 
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Fig. 1.  Block diagram of H.264/AVC decoder 

 

The block-based structure of the H.264/AVC architecture 
produces artifacts known as blocking artifacts. These 
blocking artifacts can occur from both the quantization of the 
transform coefficients and the block-based motion 
compensation. In order to reduce the blocking artifacts, the 
overlapped block motion compensation (OBMC) [16] is 
adopted into the H.263 standard. Unlike the OBMC in H.263, 
H.264/AVC uses an adaptive deblocking filter that has 
shown to be a more powerful tool in reducing artifacts and 
improving the video quality. As a result, the filter reduces the 
bit rate typically by 5-10% while producing the same 
objective quality as the non-filtered video [17]. Adaptive 
deblocking filter can also be used in inter-picture prediction 
to improve the ability to predict other picture as well. Since it 
is within the motion compensation prediction loop, the 
deblocking filter is often referred to as an “in-loop filter.” A 
detailed description of the adaptive deblocking filter can be 
found in [7]. 

As our experiment result indicates, the operation of the 
deblocking filter is the most time consuming part of 
H.264/AVC video decoder. The filtering operations of 
H.264/AVC standard require more instructions to process 
deblocking. Due to intensive computations, in [18], [19], 
[20], [21], [22], [23], [24] and [25] dedicated hardware was 
developed for acceleration. However, the small block size is 
employed for residual coding in the H.264/AVC video 
coding algorithm. With the 4x4 blocks and a typical filter 
length of two samples in each direction, each sample in a 
picture must be transferred from and to internal memory four 
times; either to be modified or to determine if the 
neighbouring samples will be modified. In order to reduce 
the number of memory references and improve the overall 
system performance, we propose a window-based processing 
architecture with parallel filtering engine, which can 
simultaneously process the horizontal filtering of vertical 
edge and vertical filtering of horizontal edge. The proposed 
architecture is called “PWin.” 

The organization of this paper is as follows. In Section II, 
the algorithm of the deblocking filter is explained. Section III 
illustrates the block diagram of our proposed architecture 
using the window processing approach. Section IV shows the 
simulation results. Finally, the conclusion is presented in 
Section V. 
 

II. ALGORITHM OF DEBLOCKING FILTER 
 

In this section, we briefly describe the algorithm of 
deblocking filter in H.264/AVC from processing order to 
sample processing level. A detailed description of the 
adaptive deblocking filter can be found in [7]. 
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A. Processing Order 
 

By the recommendation of H.264/AVC standard [1], for 
each luminance macroblock, the left-most edge of the 
macroblock is filtered first, followed by the other three 
internal vertical edges from left to right. Similarly, the top 
edge of macroblock is filtered first, followed by the other 
three internal horizontal edges from top to bottom. According 
to this rule, there are four types of processing orders which 
are proposed by [18], [20] and [22] as shown in Fig 2 (a), (b), 
(c), and (d). It is obvious that adaptive deblocking filter shall 
be applied to all 4x4 block edges of a picture, except for the 
edges at the boundary of the picture and most of the 4x4 
blocks need to be filtered four times with the adjacent blocks 
(left, right, top, and bottom). In order to improve the memory 
performance, we propose a window-based VLSI architecture 
with a novel processing order to reduce the number of 
memory references of each 4x4-block to one as shown in 
Section III. 

 

B1

25

26

21 B3

33

34

43

B9

27

28

109 B11

35

36

1211

65 87

1413 1615

B4

37

38

B2

29

30

B12

39

40

B10

31

32

B8B7B6B5

B13 B14 B15 B16

E1 E2 E3 E4

E8

E7

E6

E5B1

25

29

51 B3

27

31

139

B9

33

37

73 B11

35

39

1511

62 1410

84 1612

B4

28

32

B2

26

30

B12

36

40

B10

34

38

B8B7B6B5

B13 B14 B15 B16

E1 E2 E3 E4

E8

E7

E6

E5

 
(a) Basic processing order of [18]   (b) Advanced processing order of [18] 
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(a) Processing order of [20]               (b) Processing order of [22] 

 
Fig. 2.  Processing order of various architectures 

 
B. Sample Processing Level 
 

The complexity of the H.264/AVC deblocking filter is 
mainly based on the high adaptive filtering, which requires 
several conditional processing on each block edges and 
sample levels. On the sample processing level, the 
quantization parameter, threshold value of Alpha and Beta, 
and content of picture itself can turn on or turn off the 
filtering for each individual set of sample. For example, Fig.3 
illustrates the principle of the deblocking filter in a typical 
situation where the filter would be turned on. The filtering of 

p0 and q0 only takes place if the following content activity 
check operations are satisfied: 

 
 Bs != 0 (1) 
 |p0 - q0| <Alpha(QP) (2) 
 |p1 - p0| <Beta(QP) and |q1 - q0| <Beta(QP) (3) 

 
Correspondingly, the filtering of p1 or q1 takes place if the 

condition below is satisfied. 
 

 |p2-p0| <Beta(QP) or |q2-q0 |<Beta(QP) (4) 

Block Edge
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Fig. 3.  Principle of deblocking filter 

 
The basic idea is that if a relatively large absolute 

difference between samples near a block edge is less than the 
threshold value of Alpha and Beta, it is quite likely to be a 
blocking artifact and should therefore be filtered. However, if 
the value of that difference is so large that it can no longer be 
explained by the quantization and compensation used in the 
encoding, the edge is more likely to reflect the actual 
behaviour of the source picture and should not be smoothed 
over. 
 

III. PROPOSED ARCHITECTURE 
 

The key features of our proposed architecture include edge 
filtering units, a configurable window-based architecture 
with parallel processing engine (the horizontal and vertical 
filtering unit), and a novel processing order. The architecture 
and processing approach are described in the following 
section. 
 
A. Edge Filtering Unit 
 

As described in the previous section, the threshold value of 
Alpha and Beta, the table-derived operations, and edge 
filtering operations are known to be very time consuming. 
Therefore, we propose an efficient VLSI architecture that 
includes content activity check operations, the table-derived 
operations, and filtering operations into the edge filter unit to 
accelerate the horizontal and vertical filtering on the 
boundary of the  two adjacent basic 4x4 blocks as shown in 
Fig. 4. A detailed description of the edge filtering unit (EFU) 
can be found in [21]. 
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Fig. 4.  Edge filter unit 
 
 
B. Configurable Window-based Architecture 
 

In order to reduce the number of memory references and 
improve the overall system performance, we propose a 
window-based processing architecture with parallel filtering 
engine, which can simultaneously process the horizontal 
filtering of vertical edge and vertical filtering of horizontal 
edge as shown in Fig. 5. The proposed architecture is called 
“PWin.” 
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Fig. 5.  Configurable window-based architecture 
 

There are three major sub-functions in our window-based 
architecture. The first component is the memory buffers 
which are two FIFO memories in our proposed architecture. 
The first one is F1 which contains four entries, each with 
four processed samples as shown in Fig. 5. The other one is 
the configurable processing window, F2, which is able to be 
configured to any size of windows as shown in Table I that 
presents the performance of various window size. According 
to various image resolutions, the configurable window-based 
architecture can be configured to any size of windows by 
setting the window register as shown in Table II. The 
processing approach is described in next subsection. The 
second sub-function in our proposed architecture is the 

transposing operation. The transposing unit T1 and T2 latch 
the 4x4 block sample values which are transposed from FIFO 
F1 and the end of FIFO F2 respectively. In order to speedup 
the overall system performance, the final important 
sub-functions are the parallel horizontal and parallel vertical 
filtering units, each containing 4 EFU processing engine 
which can process a 4x4 basic block at a time. 
 

TABLE I 
THE NUMBER OF BLOCK CYCLES FOR A QCIF FRAME 

Config For one Luma Cluster  For one Chroma Cluster 
WIN2 5+2x36=77 5+2x18=41 
WIN3 6+3x36=114 6+3x18=60 
WIN4 7+4x36=151 7+4x18=79 
WIN5 8+5x36=188 8+5x18=98 
WIN22 25+22x36=817 25+22x18=421 
WIN44 47+44x36=1631 Non 

 
TABLE II 

THE NUMBER OF BLOCK CYCLES FOR VARIOUS RESOLUTIONS 
Resolution Win Size Luma Two 

Chroma 
Total 

QCIF             176x144 44&22 1631 842 2473 
CIF                352x288 88&44 6427 3262 9689 
VGA              640x480 160&80 19363 9766 29129 
Video conf.  1280x720 320&160 58923 29126 88049 
HDTV        1920x1080 480&240 130083 65286 195369 

 
C. Parallel Filtering Engine 
 

In order to speedup the processing time, the edge filtering 
unit is extended into a parallel engine. As shown in Fig. 5, 
both the horizontal and vertical filter units are extended into 
4 EFU units so that the memory bus needs a 128-bit width to 
speedup the data transmission. Therefore, the performance 
can achieve 4 times when compared to the previous design 
[24]. 
 
D. Basic Window Processing Approach 
 

In this section, we use Luma blocks of a QCIF frame to 
describe the basic window processing approach. For the first 
cluster (4 columns, 4x36 blocks), as shown in Fig. 6 (a) and 
Table III, each phase needs four cycles to process a window 
data. During the initialization phase (the first phase), it takes 
four cycles to load blocks B1, B2, B3 and B4, and perform 
horizontal filtering of vertical edges V2 and V3, and V4 
sequentially. After initialization, in the second phase, block 
B5 is loaded from the internal memory to F1 FIFO at the 
fifth cycle, and then filtered with block B6 at the sixth cycle. 
At the seventh cycle, the proposed architecture PWin can 
simultaneously process the horizontal filtering of vertical 
edge V7 (the boundary of block B6 and B7) and the vertical 
filtering of horizontal edge H7 (the boundary of block B1 
and B5), and then write block B1 to the internal memory at 
the eighth cycle. Then edges V8, H8, and the rest follow in 
the same way. As a result, it takes seven cycles to process the 
first block B1. After that, B2 follows and so on. Therefore, 
the number of total processing time for the first cluster is 
7+144=151 cycles. 

For the second cluster (5 columns, 5x36 blocks), as shown 
in Fig. 6 (b) and Table IV, each phase needs 5 cycles to 
process a window data and the window size is reconfigured 
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to five. As a result, the number of the total processing time 
for the second cluster is 8+180=188 cycles. 
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Fig. 6. Basic window processing 
 
 

TABLE III 
DATA FLOW OF 4 WINDOWS (W1, W2, W3, AND W4) 

State Cycle 
 1 2 3 4 5 6 7 8 9 10 
F1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 
T1  B1 B2 B3 B4 B5 B6 B7 B8 B9 
W1   B1 B2 B3 B4 B5 B6 B7 B8 
W2     B1 B2 B3 B4 B5 B6 B7 
W3      B1 B2 B3 B4 B5 B6 
W4       B1 B2 B3 B4 B5 
T2       B1 B2 B3 B4 
MEM        B1 B2 B3 

 
 

TABLE IV 
DATA FLOW OF 4+1 WINDOWS (W1, W2, W3, W4, AND W5) 

State Cycle 
 1 2 3 4 5 6 7 8 9 10 
F1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 
T1  B1 B2 B3 B4 B5 B6 B7 B8 B9 
W1   B1 B2 B3 B4 B5 B6 B7 B8 
W2     B1 B2 B3 B4 B5 B6 B7 
W3      B1 B2 B3 B4 B5 B6 
W4       B1 B2 B3 B4 B5 
W5       B1 B2 B3 B4 
T2        B1 B2 B5 
MEM         B1 B2 

 
 
E. Advanced Window Processing Approach 
 

For luma blocks (44x36=1584 blocks) of a QCIF frame 
using the advanced window processing, the window size is 
configured to 44. As show in Fig. 7 (a), it requires 44 cycles 
to load and process the first phase, including the initial phase. 
At the 47th cycle, the block B1 just finished all adjacent 
filtering and then the block B1 is written to the internal 
memory in next cycle (the 48th cycle). After that, B2 follows 
and so on. As a result, the number of total processing time 
for all luma blocks using the PWin44 architecture is 
47+44x36 = 1631. 

There are two QCIF chroma blocks (22x18x2 blocks) to be 
processed. The processing approach is the same as the luma 
blocks but the window size is configured to 22. The 
processing order is presented in Fig. 7 (b). The initial 
processing cycles for each chroma block using the PWin22 is 
25. At 26th cycle, the first block B1 has finished two times 
filtering and is written to the internal memory. After that, B2 
follows and so on. As a result, the number of total processing 
time for two chromas using the PWin22 architecture is 
(25+22x18)x2=842 cycles. 
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(a) PWin44 for QCIF luma blocks 
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Fig. 7  Processing a QCIF frame using the PWin44 and PWin22 architecture 
 

IV. RESULT 
 

The simulation results are shown in Table V. The 
architecture of PWin as a co-processor can accelerate the 
H.264/AVC decoder system. Moreover, the number of total 
memory references for load and store is reduced by 34% and 
36% respectively. 

 
TABLE V 

 THE PERFORMANCE COMPARISON 

Item Software PWin Reduced by 
Inst. 128640967 75123050 42% 
Load 30443106 20180448 34% 
Store 16098837 10295823 36% 
Branch 14324486 7901023 49% 
Cycles 220929397 132532824 40% 
 
 

A. Memory Performance 
 

Using our proposed configurable window-based 
processing architecture, the memory performance is 
improved by 6 times, when compared to the software 
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implementation. Table VI shows the comparison of various 
architectures. Our window-based processing architecture can 
reduce the memory access times per macroblock from 592 to 
66 when compared to the previous designs in [18], [22], and 
[25]. 
 

TABLE VI 
MEMORY REFERENCE PER MACROBLOCK 

Author Architecture MEM 
JM9.2 [1] Software Implementation 768 
Huang [18] Basic+Single-port SRAM 768 
Huang [18] Advance+Dual-port SRAM 384 
Huang [18] Basic+Two-port SRAM 768 
Huang [18] Dual Arrays+Two-port SRAM 384 
Chen [22] Dual-port SRAM or 

Two Single port SRAM 
192 

Li [25] 5120 bits Dual-Port SRAM 192 
PWin Dual-port SRAM and 

Using 44 window sizes 
126 

 
 
B. System Performance 
 

As shown in the previous section, using 44 and 22 window 
size for luma and chroma respectively, the total filtering for a 
QCIF frame takes 1631 and 421 x 2 = 842 cycles 
respectively. As a result, the number of total filtering cycles 
for a QCIF frame is 2473. Our filtering scheme takes less 
number of cycles when compared to 294x99=29106, 
286x99=28314, 240x99=23760, and 192x99 = 19008 cycles 
of the architecture described in [18], [20], [22], and [25] 
respectively. Table VII shows the performance comparison 
of various architectures. The cycle counts of memory 
reference between the external and internal memory are not 
calculated for a fair comparison. 

 
TABLE VII 

PROCESSING CYCLE FOR LUMA BLOCKS OF A QCIF FRAME 

Author Architecture Cycles 
Huang [18] Basic+Single-port SRAM 504x99 
Huang [18] Advance+Dual-port SRAM 440x99 
Huang [18] Basic+Two-port SRAM 408x99 
Huang [18] Dual Arrays+Two-port SRAM 294x99 
Sheng [20] 2-D Deblocking Filter 286x99 
Chen [22] Dual-port SRAM or 

Two Single port SRAM 
240x99 

Li [25] 5120 bits Dual-Port SRAM 192x99 
Window Dual-port SRAM and 

Using 44 window sizes 
9892 

PWin Dual-port SRAM(128bits data 
bus) 

2473 

 
 
C. Implementation 
 

We implemented the window-based architecture by 
Verilog HDL and synthesized the design using TSMC 
0.18um Artisan CMOS cell library with Synopsys Design 
Compiler by setting the critical path constraint to 5 ns 

(200MHz). The hardware comparison of the various 
architectures is shown in Table VIII. 

 
 

TABLE VIII 
THE HARDWARE COMPARISON OF VARIOUS ARCHITECTURE 

Author Architecture Gate Count 
Huang[18] Basic+Single-port SRAM 18.91K 
Huang[18] Advance+Dual-port SRAM 20.66K 
Li[25] 5120 bits Dual-Port 9.57K 
Chen [21] Edge Filter Unit 5.66K 
Chen [22] Dual-port SRAM 22K 
Win 44 window sizes 14.75K 
PWin 44 windows with 8 EFO 52.55K 

 
D. Verification 
 

In order to test our window-based architecture, we 
modified JM9.2 to fit our test platform and implemented our 
proposed architecture on an FPGA as shown in Fig. 8. Data 
file of the reconstructed pixels before filtering is saved in 
YUV non-filtered data RAM which is driven from software 
model and then sent to deblocking filter architecture under 
control. The filtered result of YUV data is compared with the 
filtered result of the software module as shown in Fig. 8. 
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Fig. 8.  The block diagram of verification 
 
 

V. CONCLUSION 
 

In this paper, we propose a window-based VLSI 
architecture with parallel processing engine to accelerate the 
operations of deblocking filter in H.264/AVC video coding. 
There are three major ideas. The first idea is to reduce the 
number of condition branch operations by implementing 
content activity check, the table-derived, and edge filtering 
operations into the edge filter unit. The second idea is to 
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reduce the number of memory references using a novel 
processing order to simultaneously process horizontal and 
vertical filtering. The last is to parallelize the Edge Filtering 
Unit to speed up the filtering performance. As a result, the 
PWin can be used in a high performance system which only 
requires a simple bus interface for the integration into video 
SoC platforms that support a wide range of applications such 
as video telephone, video conferencing, video streaming, 
digital video authoring, and many others. 
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