

Windows Processing for Deblocking Filter in H.264/AVC

Chung-Ming Chen and Chung-Ho Chen Jian-Ping Zeng, Wan-Chug Hsu and Chao-Tang Yu
Department of Electrical Engineering Department of Electronics Engineering

National Cheng Kung University Southern Taiwan University of Technology, Taiwan
Tainan City, Taiwan m9430107@webmail.stut.edu.tw

cmchen@ee.ncku.edu.tw shimmeryhsu@gmail.com
chchen@mail.ncku.edu.tw ctyu@mail.stut.edu.tw

Abstract –In this paper, we propose a window-based
architecture with parallel filtering engine to accelerate the
adaptive deblocking filter in H.264/AVC video coding standard.
In order to improve overall system performance, we use a
configurable 44x32-bit FIFO memory with a novel processing
order to simultaneously process the horizontal filtering of
vertical edge and vertical filtering of horizontal edge. As a
result, the performance of our configurable window-based
architecture with parallel engine significantly outperforms the
previous designs in terms of memory references and processing
cycles.

I. INTRODUCTION

The new video coding standard Recommendation H.264 of
ITU-T [1], also known as International Standard 14496-10 or
MPEG-4 Part 10 Advanced Video Coding (AVC) of
ISO/IEC, has been developed. It significantly outperforms
the previous ones (H.261 [2], MPEG-1 Video [3], MPEG-2
Video [4], H.263 [5], and MPEG-4 Visual or part 2 [6]) in
bit-rate reduction. The functional blocks of H.264/AVC
decoder, as well as their features, are shown in Fig. 1. It is
rich with diverse coding methods including the adaptive
deblocking filter [7], integer transform [8] instead of the
DCT [9], multiple reference frame [10], new frame types
(SP-frames and SI-frames) [11], further predictions using
B-slices [12], quarter per motion compensation [13] or
CABAC [14]. At the same time, preliminary studies [15]
using software based on this new standard, suggest that
H.264 offers up to 50% better compression than MPEG-2
and up to 30% better than H.263+ and MPEG-4 advanced
simple profile.

Intra-Frame
Prediction

Motion
Compensation

Motion
Estimation

Deblocking
Filter

Motion data

Decoded
Macroblock

Intra/Inter

Quantized Coefficients

Entropy
Coding

CAVLC
CABAC M

U
X

Profile
+

TransformQuant.

Buffer

Fig. 1. Block diagram of H.264/AVC decoder

The block-based structure of the H.264/AVC architecture
produces artifacts known as blocking artifacts. These
blocking artifacts can occur from both the quantization of the
transform coefficients and the block-based motion
compensation. In order to reduce the blocking artifacts, the
overlapped block motion compensation (OBMC) [16] is
adopted into the H.263 standard. Unlike the OBMC in H.263,
H.264/AVC uses an adaptive deblocking filter that has
shown to be a more powerful tool in reducing artifacts and
improving the video quality. As a result, the filter reduces the
bit rate typically by 5-10% while producing the same
objective quality as the non-filtered video [17]. Adaptive
deblocking filter can also be used in inter-picture prediction
to improve the ability to predict other picture as well. Since it
is within the motion compensation prediction loop, the
deblocking filter is often referred to as an “in-loop filter.” A
detailed description of the adaptive deblocking filter can be
found in [7].

As our experiment result indicates, the operation of the
deblocking filter is the most time consuming part of
H.264/AVC video decoder. The filtering operations of
H.264/AVC standard require more instructions to process
deblocking. Due to intensive computations, in [18], [19],
[20], [21], [22], [23], [24] and [25] dedicated hardware was
developed for acceleration. However, the small block size is
employed for residual coding in the H.264/AVC video
coding algorithm. With the 4x4 blocks and a typical filter
length of two samples in each direction, each sample in a
picture must be transferred from and to internal memory four
times; either to be modified or to determine if the
neighbouring samples will be modified. In order to reduce
the number of memory references and improve the overall
system performance, we propose a window-based processing
architecture with parallel filtering engine, which can
simultaneously process the horizontal filtering of vertical
edge and vertical filtering of horizontal edge. The proposed
architecture is called “PWin.”

The organization of this paper is as follows. In Section II,
the algorithm of the deblocking filter is explained. Section III
illustrates the block diagram of our proposed architecture
using the window processing approach. Section IV shows the
simulation results. Finally, the conclusion is presented in
Section V.

II. ALGORITHM OF DEBLOCKING FILTER

In this section, we briefly describe the algorithm of
deblocking filter in H.264/AVC from processing order to
sample processing level. A detailed description of the
adaptive deblocking filter can be found in [7].

34281-4244-0136-4/06/$20.00 '2006 IEEE

A. Processing Order

By the recommendation of H.264/AVC standard [1], for
each luminance macroblock, the left-most edge of the
macroblock is filtered first, followed by the other three
internal vertical edges from left to right. Similarly, the top
edge of macroblock is filtered first, followed by the other
three internal horizontal edges from top to bottom. According
to this rule, there are four types of processing orders which
are proposed by [18], [20] and [22] as shown in Fig 2 (a), (b),
(c), and (d). It is obvious that adaptive deblocking filter shall
be applied to all 4x4 block edges of a picture, except for the
edges at the boundary of the picture and most of the 4x4
blocks need to be filtered four times with the adjacent blocks
(left, right, top, and bottom). In order to improve the memory
performance, we propose a window-based VLSI architecture
with a novel processing order to reduce the number of
memory references of each 4x4-block to one as shown in
Section III.

B1

25

26

21 B3

33

34

43

B9

27

28

109 B11

35

36

1211

65 87

1413 1615

B4

37

38

B2

29

30

B12

39

40

B10

31

32

B8B7B6B5

B13 B14 B15 B16

E1 E2 E3 E4

E8

E7

E6

E5B1

25

29

51 B3

27

31

139

B9

33

37

73 B11

35

39

1511

62 1410

84 1612

B4

28

32

B2

26

30

B12

36

40

B10

34

38

B8B7B6B5

B13 B14 B15 B16

E1 E2 E3 E4

E8

E7

E6

E5

(a) Basic processing order of [18] (b) Advanced processing order of [18]

B1

3

11

21 B3

7

15

64

B9

19

27

1817 B11

23

31

2220

109 1412

2625 3028

B4

8

16

B2

5

13

B12

24

32

B10

21

29

B8B7B6B5

B13 B14 B15 B16

E1 E2 E3 E4

E8

E7

E6

E5 B1

3

7

21 B3

5

9

43

B9

11

15

109 B11

13

17

1211

65 87

1413 1615

B4

6

10

B2

4

8

B12

14

18

B10

12

16

B8B7B6B5

B13 B14 B15 B16

E1 E2 E3 E4

E8

E7

E6

E5

(a) Processing order of [20] (b) Processing order of [22]

Fig. 2. Processing order of various architectures

B. Sample Processing Level

The complexity of the H.264/AVC deblocking filter is
mainly based on the high adaptive filtering, which requires
several conditional processing on each block edges and
sample levels. On the sample processing level, the
quantization parameter, threshold value of Alpha and Beta,
and content of picture itself can turn on or turn off the
filtering for each individual set of sample. For example, Fig.3
illustrates the principle of the deblocking filter in a typical
situation where the filter would be turned on. The filtering of

p0 and q0 only takes place if the following content activity
check operations are satisfied:

 Bs != 0 (1)
 |p0 - q0| <Alpha(QP) (2)
 |p1 - p0| <Beta(QP) and |q1 - q0| <Beta(QP) (3)

Correspondingly, the filtering of p1 or q1 takes place if the

condition below is satisfied.

 |p2-p0| <Beta(QP) or |q2-q0 |<Beta(QP) (4)

Block Edge

α

β

β

q0
q3

q2
q1

p0
p3 p2

p1

{

{ | p1 - p0 |<β(QP)

 | q1 - q0 |<β(QP)

Bs != 0
|p0 - q0| <α(QP)

1. Theβ(QP) is considerably smaller
 thanα(QP).
2. Filtering of p1 or q1 takes place if
 the corresponding condition below
 is satisfied:
 |p2-p0|<β(QP) or |q2-q0|<β(QP)

Fig. 3. Principle of deblocking filter

The basic idea is that if a relatively large absolute

difference between samples near a block edge is less than the
threshold value of Alpha and Beta, it is quite likely to be a
blocking artifact and should therefore be filtered. However, if
the value of that difference is so large that it can no longer be
explained by the quantization and compensation used in the
encoding, the edge is more likely to reflect the actual
behaviour of the source picture and should not be smoothed
over.

III. PROPOSED ARCHITECTURE

The key features of our proposed architecture include edge
filtering units, a configurable window-based architecture
with parallel processing engine (the horizontal and vertical
filtering unit), and a novel processing order. The architecture
and processing approach are described in the following
section.

A. Edge Filtering Unit

As described in the previous section, the threshold value of
Alpha and Beta, the table-derived operations, and edge
filtering operations are known to be very time consuming.
Therefore, we propose an efficient VLSI architecture that
includes content activity check operations, the table-derived
operations, and filtering operations into the edge filter unit to
accelerate the horizontal and vertical filtering on the
boundary of the two adjacent basic 4x4 blocks as shown in
Fig. 4. A detailed description of the edge filtering unit (EFU)
can be found in [21].

3429

decode
0:Luma 1:Chroma

Luma4

Chroma4

M
U

X

32

32

32
32P

Q

P

Q

64

2

CLIP_Table

Standard Filter

For Luma3 only

64

64

64

BY PASS

Bs

|q1-q0|<β
|p1-p0|<β

Bs[0]

|p1-q0|<α

β Table
derived

α Table
derived

YES

YES

QP

OffsetA

OffsetB

Content activity
check operation

Fig. 4. Edge filter unit

B. Configurable Window-based Architecture

In order to reduce the number of memory references and
improve the overall system performance, we propose a
window-based processing architecture with parallel filtering
engine, which can simultaneously process the horizontal
filtering of vertical edge and vertical filtering of horizontal
edge as shown in Fig. 5. The proposed architecture is called
“PWin.”

T1

M
em

er
y

C
on

tr
ol

er

T2

Vertical Filtering UnitHorizontal Filtering Unit

F2 WindowF1

12
8b

it
s

12
8b

it
s

E
F
U

E
F

U
E

F
U

E
F
U

M
em

er
y

C
on

tr
ol

er

E
F
U

E
F

U
E

F
U

E
F
U

……

Fig. 5. Configurable window-based architecture

There are three major sub-functions in our window-based
architecture. The first component is the memory buffers
which are two FIFO memories in our proposed architecture.
The first one is F1 which contains four entries, each with
four processed samples as shown in Fig. 5. The other one is
the configurable processing window, F2, which is able to be
configured to any size of windows as shown in Table I that
presents the performance of various window size. According
to various image resolutions, the configurable window-based
architecture can be configured to any size of windows by
setting the window register as shown in Table II. The
processing approach is described in next subsection. The
second sub-function in our proposed architecture is the

transposing operation. The transposing unit T1 and T2 latch
the 4x4 block sample values which are transposed from FIFO
F1 and the end of FIFO F2 respectively. In order to speedup
the overall system performance, the final important
sub-functions are the parallel horizontal and parallel vertical
filtering units, each containing 4 EFU processing engine
which can process a 4x4 basic block at a time.

TABLE I
THE NUMBER OF BLOCK CYCLES FOR A QCIF FRAME

Config For one Luma Cluster For one Chroma Cluster
WIN2 5+2x36=77 5+2x18=41
WIN3 6+3x36=114 6+3x18=60
WIN4 7+4x36=151 7+4x18=79
WIN5 8+5x36=188 8+5x18=98
WIN22 25+22x36=817 25+22x18=421
WIN44 47+44x36=1631 Non

TABLE II

THE NUMBER OF BLOCK CYCLES FOR VARIOUS RESOLUTIONS
Resolution Win Size Luma Two

Chroma
Total

QCIF 176x144 44&22 1631 842 2473
CIF 352x288 88&44 6427 3262 9689
VGA 640x480 160&80 19363 9766 29129
Video conf. 1280x720 320&160 58923 29126 88049
HDTV 1920x1080 480&240 130083 65286 195369

C. Parallel Filtering Engine

In order to speedup the processing time, the edge filtering
unit is extended into a parallel engine. As shown in Fig. 5,
both the horizontal and vertical filter units are extended into
4 EFU units so that the memory bus needs a 128-bit width to
speedup the data transmission. Therefore, the performance
can achieve 4 times when compared to the previous design
[24].

D. Basic Window Processing Approach

In this section, we use Luma blocks of a QCIF frame to
describe the basic window processing approach. For the first
cluster (4 columns, 4x36 blocks), as shown in Fig. 6 (a) and
Table III, each phase needs four cycles to process a window
data. During the initialization phase (the first phase), it takes
four cycles to load blocks B1, B2, B3 and B4, and perform
horizontal filtering of vertical edges V2 and V3, and V4
sequentially. After initialization, in the second phase, block
B5 is loaded from the internal memory to F1 FIFO at the
fifth cycle, and then filtered with block B6 at the sixth cycle.
At the seventh cycle, the proposed architecture PWin can
simultaneously process the horizontal filtering of vertical
edge V7 (the boundary of block B6 and B7) and the vertical
filtering of horizontal edge H7 (the boundary of block B1
and B5), and then write block B1 to the internal memory at
the eighth cycle. Then edges V8, H8, and the rest follow in
the same way. As a result, it takes seven cycles to process the
first block B1. After that, B2 follows and so on. Therefore,
the number of total processing time for the first cluster is
7+144=151 cycles.

For the second cluster (5 columns, 5x36 blocks), as shown
in Fig. 6 (b) and Table IV, each phase needs 5 cycles to
process a window data and the window size is reconfigured

3430

to five. As a result, the number of the total processing time
for the second cluster is 8+180=188 cycles.

Second Phase

B285 B286 B287 B288

B12

B16

B4

B8

Initial Phase

H9

V3V2

H11

V5V4

H14

H19

V13V12

H16

H21

V15V14

V8V7 V10V9

V18V17 V20V19

H12H10

H17

H22

H15

H20

B144

~
~

.

.
.
.

H184 H186

V183V182 V185V184

H188H185

B141 B142 B143 B144

.

.

H143 H145

V142 V144V143

H146H144

Initial Phase

H7

V2

H9

V4V3

H11

H15

V10

H13

H17

V12V11

V6 V8V7

V14 V16V15

H10H8

H14

H18

H12

H16

B1 B3

B9 B11

B4B2

B12B10

B8B7B6B5

B13 B14 B15 B16

B145 B147

B153 B155

B148B146

B156B154

B152B151B150B149

B157 B158 B159 B160

Second Phase

~
~

~
~

~
~

~
~4 Windows 4+1 Windows

(a). 4 windows (b). 4+1 windows

Fig. 6. Basic window processing

TABLE III
DATA FLOW OF 4 WINDOWS (W1, W2, W3, AND W4)

State Cycle
 1 2 3 4 5 6 7 8 9 10
F1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
T1 B1 B2 B3 B4 B5 B6 B7 B8 B9
W1 B1 B2 B3 B4 B5 B6 B7 B8
W2 B1 B2 B3 B4 B5 B6 B7
W3 B1 B2 B3 B4 B5 B6
W4 B1 B2 B3 B4 B5
T2 B1 B2 B3 B4
MEM B1 B2 B3

TABLE IV
DATA FLOW OF 4+1 WINDOWS (W1, W2, W3, W4, AND W5)

State Cycle
 1 2 3 4 5 6 7 8 9 10
F1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
T1 B1 B2 B3 B4 B5 B6 B7 B8 B9
W1 B1 B2 B3 B4 B5 B6 B7 B8
W2 B1 B2 B3 B4 B5 B6 B7
W3 B1 B2 B3 B4 B5 B6
W4 B1 B2 B3 B4 B5
W5 B1 B2 B3 B4
T2 B1 B2 B5
MEM B1 B2

E. Advanced Window Processing Approach

For luma blocks (44x36=1584 blocks) of a QCIF frame
using the advanced window processing, the window size is
configured to 44. As show in Fig. 7 (a), it requires 44 cycles
to load and process the first phase, including the initial phase.
At the 47th cycle, the block B1 just finished all adjacent
filtering and then the block B1 is written to the internal
memory in next cycle (the 48th cycle). After that, B2 follows
and so on. As a result, the number of total processing time
for all luma blocks using the PWin44 architecture is
47+44x36 = 1631.

There are two QCIF chroma blocks (22x18x2 blocks) to be
processed. The processing approach is the same as the luma
blocks but the window size is configured to 22. The
processing order is presented in Fig. 7 (b). The initial
processing cycles for each chroma block using the PWin22 is
25. At 26th cycle, the first block B1 has finished two times
filtering and is written to the internal memory. After that, B2
follows and so on. As a result, the number of total processing
time for two chromas using the PWin22 architecture is
(25+22x18)x2=842 cycles.

Second Phase

B1541 B1542 B1543 B1544

.

.

V1542 V1544V1543

Initial Phase

H47

V2

H49

V4V3

V46 V48V47

H50H48
B1 B3 B4B2

B48B47B46B45

44 Windows ~
~

~
~

B1581 B1582 B1583 B1584

H1583 H1585

V1582 V1584V1583

H1586H1584

~ ~
~ ~

……

H87

V42

H89

V44V43

V86 V88V87

H90H88
B41 B43 B44B42

B88B87B86B85

V5

V49

V41

V85

~~ ~~

V1581

H1543 H1546H1544 H1545

V1545

44 Basic 4x4blocks

36

(a) PWin44 for QCIF luma blocks

Second Phase

B375 B376 B377 B378

.

.

H377 H379

V376 V378V377

H380H378

Initial Phase

H25

V2

H27

V4V3

V24 V26V25

H28H26
B1 B3 B4B2

B26B25B24B23

22 Windows ~
~

~
~

B393 B394 B395 B396

H395 H397

V394 V396V395

H398H396

~ ~
~ ~

H43

V20

H45

V22V21

V42 V44V43

H46H44
B19 B21 B22B20

B44B43B42B41

V5

V27

V19

V41

~~ ~~

V393V379

22 Basic 4x4 Blocks

18

(b) PWin22 for QCIF chroma blocks

Fig. 7 Processing a QCIF frame using the PWin44 and PWin22 architecture

IV. RESULT

The simulation results are shown in Table V. The
architecture of PWin as a co-processor can accelerate the
H.264/AVC decoder system. Moreover, the number of total
memory references for load and store is reduced by 34% and
36% respectively.

TABLE V

 THE PERFORMANCE COMPARISON

Item Software PWin Reduced by
Inst. 128640967 75123050 42%
Load 30443106 20180448 34%
Store 16098837 10295823 36%
Branch 14324486 7901023 49%
Cycles 220929397 132532824 40%

A. Memory Performance

Using our proposed configurable window-based
processing architecture, the memory performance is
improved by 6 times, when compared to the software

3431

implementation. Table VI shows the comparison of various
architectures. Our window-based processing architecture can
reduce the memory access times per macroblock from 592 to
66 when compared to the previous designs in [18], [22], and
[25].

TABLE VI
MEMORY REFERENCE PER MACROBLOCK

Author Architecture MEM
JM9.2 [1] Software Implementation 768
Huang [18] Basic+Single-port SRAM 768
Huang [18] Advance+Dual-port SRAM 384
Huang [18] Basic+Two-port SRAM 768
Huang [18] Dual Arrays+Two-port SRAM 384
Chen [22] Dual-port SRAM or

Two Single port SRAM
192

Li [25] 5120 bits Dual-Port SRAM 192
PWin Dual-port SRAM and

Using 44 window sizes
126

B. System Performance

As shown in the previous section, using 44 and 22 window
size for luma and chroma respectively, the total filtering for a
QCIF frame takes 1631 and 421 x 2 = 842 cycles
respectively. As a result, the number of total filtering cycles
for a QCIF frame is 2473. Our filtering scheme takes less
number of cycles when compared to 294x99=29106,
286x99=28314, 240x99=23760, and 192x99 = 19008 cycles
of the architecture described in [18], [20], [22], and [25]
respectively. Table VII shows the performance comparison
of various architectures. The cycle counts of memory
reference between the external and internal memory are not
calculated for a fair comparison.

TABLE VII

PROCESSING CYCLE FOR LUMA BLOCKS OF A QCIF FRAME

Author Architecture Cycles
Huang [18] Basic+Single-port SRAM 504x99
Huang [18] Advance+Dual-port SRAM 440x99
Huang [18] Basic+Two-port SRAM 408x99
Huang [18] Dual Arrays+Two-port SRAM 294x99
Sheng [20] 2-D Deblocking Filter 286x99
Chen [22] Dual-port SRAM or

Two Single port SRAM
240x99

Li [25] 5120 bits Dual-Port SRAM 192x99
Window Dual-port SRAM and

Using 44 window sizes
9892

PWin Dual-port SRAM(128bits data
bus)

2473

C. Implementation

We implemented the window-based architecture by
Verilog HDL and synthesized the design using TSMC
0.18um Artisan CMOS cell library with Synopsys Design
Compiler by setting the critical path constraint to 5 ns

(200MHz). The hardware comparison of the various
architectures is shown in Table VIII.

TABLE VIII
THE HARDWARE COMPARISON OF VARIOUS ARCHITECTURE

Author Architecture Gate Count
Huang[18] Basic+Single-port SRAM 18.91K
Huang[18] Advance+Dual-port SRAM 20.66K
Li[25] 5120 bits Dual-Port 9.57K
Chen [21] Edge Filter Unit 5.66K
Chen [22] Dual-port SRAM 22K
Win 44 window sizes 14.75K
PWin 44 windows with 8 EFO 52.55K

D. Verification

In order to test our window-based architecture, we
modified JM9.2 to fit our test platform and implemented our
proposed architecture on an FPGA as shown in Fig. 8. Data
file of the reconstructed pixels before filtering is saved in
YUV non-filtered data RAM which is driven from software
model and then sent to deblocking filter architecture under
control. The filtered result of YUV data is compared with the
filtered result of the software module as shown in Fig. 8.

Entropy
Decoding

Q-1 T-1 +

Deblocking Filter

Memory

Intra/Inter

Motion Data

Decoded
Macroblock

YUV
NON-
fitered
Data

Software Model of
Configurable

Window-Based
Architecture

YUV
Fitered
Data

Trace
 DataSoftware Model

CP

YUV
NON-
fitered
Data

YUV
Fitered
Data

Parameter
Data

Intra-Frame
Prediction

Motion Comp.
Prediction

T1

M
em

er
y

C
on

tr
ol

er

T2

Vertical Filtering UnitHorizontal Filtering Unit

WindowF1

12
8b

it
s

12
8b

it
s

E
F

U
E

F
U

E
F

U
E

F
U

M
em

er
y

C
on

tr
ol

er

E
F

U
E

F
U

E
F

U
E

F
U

……

Fig. 8. The block diagram of verification

V. CONCLUSION

In this paper, we propose a window-based VLSI
architecture with parallel processing engine to accelerate the
operations of deblocking filter in H.264/AVC video coding.
There are three major ideas. The first idea is to reduce the
number of condition branch operations by implementing
content activity check, the table-derived, and edge filtering
operations into the edge filter unit. The second idea is to

3432

reduce the number of memory references using a novel
processing order to simultaneously process horizontal and
vertical filtering. The last is to parallelize the Edge Filtering
Unit to speed up the filtering performance. As a result, the
PWin can be used in a high performance system which only
requires a simple bus interface for the integration into video
SoC platforms that support a wide range of applications such
as video telephone, video conferencing, video streaming,
digital video authoring, and many others.

VI. ACKNOWLEDGMENT

The work in this paper is in part supported by the National
Science Council, Taiwan R.O.C., under NSC
94-2220-E-006-004.

VII. REFERENCES

[1] ITU-T Recommendation H.264, “Advanced video

coding for generic audiovisual services,” March 2003.
[2] ITU-T Recommendation H.261, “Video codec for

Audiovisual Services at p X 64 kbit/s,” March 1993.
[3] ISO/IEC 11172: “Information technology—coding of

moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s,” Geneva, 1993.

[4] ISO/IEC 13818–2: Generic coding of moving pictures
and associated audio information—Part 2: Video also
ITU-T Recommendation H.262, 1994.

[5] ITU-T Recommend H.263, Video Coding for Low Bit
Rate Communication, 1998.

[6] ISO/IEC 14496–2: Information technology—coding of
audiovisual objects—part 2: visual, Geneva, 2000.

[7] Peter List, Anthony Joch, Jani Lainema, Gisle
Bjøntegaard, and Marta Karczewicz, “Adaptive
Deblocking Filter,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 13, 2003,
pp.614-619.

[8] H. Malvar, A. Hallapuro, M. Karczewicz, and L.
Kerofsky, “Low-Complexity transform and quantization
in H.264/AVC,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, July 2003,
pp.598–603.

[9] N. Ahmed, T. Natarajan, and R. Rao, “Discrete cosine
transform,” IEEE Transactions on Computers, vol.
C-23, Jan. 1974, pp.90–93.

[10] T. Wiegand, X. Zhang, and B. Girod, “Long-term
memory motion-compensated prediction for video
coding,” IEEE Transactions on Circuits and Systems
for. Video Technology, vol. 9, Feb. 1999, pp.70–84.

[11] M. Karczewicz and R. Kurçeren, “The SP and SI frames
design for H.264/AVC,” IEEE Transactions on Circuits
and Systems, vol. 13, no. 7, July 2003, pp.637–644.

[12] T. Wiegand, H. Schwarz, A. Joch, and F. Kossentini,
“Rate-constrained coder control and comparison of
video coding standards,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, July 2003,
pp.688–703.

[13] T. Wedi and H.G. Musmann, “Motion- and
aliasing-compensated prediction for hybrid video

coding,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, July 2003, pp.577–587.

[14] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based
adaptive binary arithmetic coding in the H.264/AVC
video compression standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13,
July 2003, pp.620–636.

[15] Jorn Ostermann, Jan Bormans, Peter List, Detlev Marpe,
Matthias Narroschke, Fernando Pereira, Thomas
Stockhammer, and Thomas Wedi, “Video Coding with
H.264/AVC: Tools, Performance, and Complexity,”
IEEE Circuit and Systems Magazine, 2004, pp.7-28.

[16] M.I T. Orchard and G.J. Sullivan, “Overlapped Bock
Motion Compensation: An Estimation-Theoretic
Approach,” IEEE Transactions on Image Processing,
1994, pp.693-699.

[17] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro,
“H.264/AVC baseline profile decoder complexity
analysis,” IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 13, 2003, pp.715–727.

[18] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh,
Tu-Chih Wang, Te-Hao Chang, and Liang-Gee Chen,
“Architecture Design for De-blocking Filter in
H.264/JVT/AVC,” Proc. IEEE Conf. on Multimedia and
Expo, 2003, pp.693-696.

[19] Miao Sima, Yuanhua Zhou, and Wei Zhang, “An
Efficient Architecture for Adaptive Deblock filter of
H.264/AVC Video Coding,” IEEE Transactions on
Consumer Electronics, Vol. 50, 2004, pp.292-296.

[20] Bin Sheng, Wen Gao and Di Wu, “An Implemented
Architecture of Deblocking Filter for H.264/AVC,”
IEEE International Conference on Image Processing
(ICIP’04), Vol.1, 24-27, Oct 2004, pp.665-668.

[21] Chung-Ming Chen and Chung-Ho Chen, “An Efficient
VLSI Architecture of Edge Filtering in H.264/AVC,
IASTED International Conf. on Circuits,” Signals, and
Systems, Oct. 2005, pp.118-122.

[22] Chung-Ming Chen and Chung-Ho Chen, “An Efficent
Architecture for Deblocking Filter in H.264/AVC Video
Coding,” IASTED International Conf. on Computer
Graphics and Imaging , August. 2005.

[23] Chung-Ming Chen and Chung-Ho Chen, “Parallel
Processing for Deblocking Filter in H.264/AVC,”
IASTED International Conf. on Communications,
Internet, and Information Technology, Oct. 2005,
pp.188-191.

[24] Chung-Ming Chen and Chung-Ho Chen, “A Memory
Efficient VLSI Architecture for Deblocking Filter in
H.264 Using Vertical Processing Order,” IEEE
International Conf. on Intelligent Sensors, Sensor
Networks & Information Processing, Dec. 2005,
pp.361-366.

[25] Lingfeng Li, Satoshi Goto, Takeshi Ikenaga, “A Highly
Parallel Architecture for Deblocking Filter in
H.264/AVC,” IEICE Transactions on Information and
Systems, Vol.E88-D No.7, July 2005, pp.1623-1629.

3433

