Scheduler Optimization by Exploring Wakeup Locality

Kuo-Su Hsiao and Chung-Ho Chen
Department of Electrical Engineering, National Cheng Kung University
No.1, Ta-Hsuech Road, Tainan 701, Taiwan
newjimmy@ee.ncku.edu.tw, chchen@mail ncku.edu.tw

Abstract- In a high-performance superscalar processor, the
instruction scheduler often comes with poor scalability and high
complexity due to the expensive instruction wakeup operation.
Using detailed simulation-based analyses, we find that the
wakeup distances between two dependent instructions are short.
By exploiting this wakeup locality, an effective wakeup design is
proposed to improve the speed, power, and scalability of the
dynamic scheduler. By limiting the wakeup range of instructions,
load capacitance and match activities on the scheduler’s critical
path can be reduced. The architectural level simulation and
circuit-level timing analyses show that the proposed design saves
65-76% of the power consumption, reduces 44-78% in the
wakeup latency with negligible (less than 1%) performance
degradation. The results also show that the proposed design is
excellent in scalability.

I. INTRODUCTION

The complexity of dynamic instruction schedulers is one of
the most important issues in high-performance
microprocessor design. To extract more instruction level
parallelism (ILP) and boost instructions per cycle (IPC),
superscalar processors tend towards the specification of using
a large issue window and wide issue width. Consequently, the
dynamic scheduler required for out-of-order execution
becomes more complex and less scalable. The complex
scheduler consumes a lot of energy and may slow down the
clock cycle time.

In particular, the complexity of the scheduler comes mainly
from the wakeup logic that traces the instruction dependences
and wakes the instructions up when their source operands
become available. The wakeup logic is typically implemented
by using the content-addressable memories (CAM) that fully
match all the source tags in the issue window with the result
tags. However, the CAM structures consume a lot of energy
and slow down the wakeup speed due to considerable circuit
activities and heavy load capacitance.

The scheduler becomes the major critical path, which limits
the clock cycle time, of the pipeline stages mainly due to the
complexity of the CAM-based wakeup logic. Although a
pipelined dynamic scheduler can increase the clock frequency,
the operations of instruction wakeup and instruction selection
should be an atomic operation to avoid significant
performance degradation. Recent study has shown that the
latencies associated with the wakeup and selection form the
critical path of the pipeline stages [1]. The wakeup latency
increases significantly with both the issue width and the
window size; and the wakeup logic dominates the latency for
the scheduler [1]. Increasing the window size and issue width
will continue to increase the burden to the clock cycle time.

For the energy consideration, the power consumption
associated with the CAM-based scheduler constitutes a
significant portion of the processor power consumption. For

1-4244-0272-7/06/$20.00 ©2006 IEEE

example, the issue logic is the most power hungry component
of the Compaq Alpha 21464 processor; it is responsible for
46% of the total processor power [2]. Similarly, the out-of-
order scheduler of the Intel Pentium 4 processor accounts for
40% of the total power consumption. As a result, the CAM-
based wakeup logic not only slows down the clock speed but
also shifts more power budget to the scheduler.

Analyses reveal that 96% of the wakeup distances between
the dependent instructions are in a range of 16 instructions.
Based on this observation, the proposed optimization limits
the wakeup range for the instructions in the issue window to
improve the complexity and the scalability of the scheduler.
In particular, the proposed design divides the monolithic
wakeup logic into multiple segments and the wakeup ranges
for the segments are limited to a smaller range. In this way,
only the segments that are selected by the result tags are
activated during the wakeup process. Since most of the
wakeup distances are short, this technique -effectively
removes the needless wakeup operations to reduce the power
consumption and wakeup delay.

The remainder of this paper is organized as follows.
Section II explains the limitations of the current wakeup logic
used in dynamic schedulers and provides a brief review of
related works. Section III details the proposed wakeup
designs. Section IV presents the experimental methodology
and the evaluation results. Finally, Section V concludes this

paper.
II. BACKGROUND

This section gives the background of the wakeup logics,
including the current design and related works.

A. Limitations of the current wakeup logic

Figure 1 shows the conventional implementation of
wakeup logic based on the CAM structure [1]. This wakeup
logic employs two CAM structures to match the result tags
with the left and right source tags of the instructions in the
issue window. Each entry of the CAM stores the source tag of
the instruction. Besides, the ready bits (Rdy L and Rdy R) are
employed to indicate whether their corresponding operands
are available or not. For the wakeup operation, the result tags
are driven on the tag buses (Tag 1 to Tag w) into the CAM
structures to match with the left and right source tags (Tag L
and Tag R). If one of the result tags is matched with a source
tag, the corresponding ready bit is set to indicate that this
operand is available.

The nature of the CAM structure is inefficient in terms of
energy and latency. During the wakeup process, many tag
lines are driven and the load capacitances on the tag lines are
heavy because the match circuits of all the entries in the
CAM must be driven. Additionally, many match lines are

115

Tag1 Tagw
A= =/
[RdyL[[Tagl] TagR[[RdyR]
[RdyL] [TaglL] [TagR| [RdyR]
CAM CAM

Figure 1: The conventional wakeup logic.

activated in wakeup operation no matter it is a match or not.
Both the tag driving and the tag matching consume a lot of
energy and slow down the wakeup speed.

In an effort to improve the instructions per cycle (IPC),
scheduler designs often cmploy larger window and
aggressive issue width. In other words, larger window leads
to larger wakeup logic and larger wakeup logic leads to
heavier load capacitances and more match activitics. At the
same time, wider issue width leads to driving more tag buses
into the wakeup logic. We can see that increasing the window
size and issue width leads to larger power consumption and
slower scheduling speed. As a result, the scheduler can not

scale well with the increasing of window size and issue width.

B Relatedworks

There have been many efforts to reduce the complexity of
dynamic schedulers, many of which can be used in
combination with the proposed technique.

Some current designs segment the monolithic issue
window into multiple banks to improve wakeup delay, while
the result tags need to be broadcast to all the banks [1][4].
This design induces extra wakeup delay and power
consumption due to the additional driver-transistors and tag
buses.

Hrishikesh et al. proposed a pipelined-wakeup design that
segments the issue window and wakes up the instructions in
the segments in multiple sequential cycles [3]. However, all
the segments stills need to be searched; besides the dependent
instructions can be issued back to back only if they are in the
first segment.

Some approaches dynamically manage the sizes of the
issue window and turn off the useless entries [4-9]. These
designs improve the power consumption of the scheduler
with extra dynamic managers that may complicate the
scheduler on the other hand. In [4], Folegnani and Gonzilez
also presented a gate-off technique that disables the useless
(empty and ready) entries of the issue window from tag
matching

Ernst and Austin proposed a scheduler that employs less
tag comparators to reduce the complexity of the scheduler.
This scheduler also has a last tag speculator to reduce the
frequency of tag matching [10]. Kim and Lipasti proposed a
sequential wakeup mechanism to reduce the complexity of
scheduler [11]. This mechanism places the last-arrival

operand into the fast wakeup logic and wakes up left and
right source operands of an instruction in two sequential steps.
Besides, some works [12-14] employ two-level issue window
to reduce the complexity of the scheduler. The critical
instructions are dispatched to the small and fast issue window
and the non-critical instructions, for example, the instruction
waiting for a load that misses in cache, are dispatched to the
large and slow window.

On the other hand, many wakeup designs employ the
custom components rather than the CAM structures. Goshima
et al. presented a wakeup design that uses bit matrix
structures instead of the CAM structures [15]. Henry et al.
presented a cyclic segmented prefix (CSP) circuit to improve
the performance of wakeup logic [16]. Hsiao and Chen
presented a wakeup design, which pre-decodes the source
tags and matches the decoded outputs directly with the grant
lines, to improve the wakeup speed and power consumption
[17]. Ponomarev et al. used three techniques, efficient
comparators, 0-B encoding, and bitline segmentation, to
reduce the energy dissipation of the issue window [18].

Finally, some designs reduce issue logic complexity
through index-based techniques, using pointers to connect the
producer instructions and consumer instructions [19-21].
Several works reduce the complexity of scheduler by pre-
scheduling dependent instructions into data-flow based issue
window [22-25].

Some of these designs improve the scheduler in one or
more issues (power consumption, speed, performance, etc.)
but induce overhead on the others. And some optimizations
improve the scheduler with extra large or complex units. In
contrast, our designs improve the complexity and scalability
of the scheduler with no extra large or complicated unit and
the performance degradation of the proposed design is
negligible.

III. WAKEUP DESIGN OPTIMIZATION

In this section, we observe an interesting program behavior
that most of the distances between two data dependent
instructions are short. Based on this observation, a wakeup
optimization is proposed to optimize the latency, energy, and
scalability of the dynamic scheduler.

A Wakeup locality

The wakeup locality is an inherent feature of two data
dependent instructions in programs. In programs, the
consumer instruction is often close to the producer instruction.
This program characteristic when referring to the wakeup
operation in an out-of-order execution processor is called the
wakeup locality. The wakeup locality is measured by the
instruction count between two data dependent instructions.
The instruction count is also referred to as the wakeup
distance.

To quantify the degree of the distance between two
dependent instructions, a dynamic scheduled processor was
simulated. When instructions were dispatched into the issue
window, the instruction count between two dependent
instructions was counted. Figure 2 shows the runtime
distribution of the wakeup distance for all of the wakeup
operations of the benchmark programs. The statistics are

116

B 65+ instructions

00 49-64 instructions

0 3348 instructions

B 17-32 instructions

O 1-16 instructions

ammp
!

Figure 2: Runtime distribution of the wakeup distances for a 4-wide 128-
entry processor.

based on a 4-wide processor with a 128-entry issue window
(the simulation environment for the experiment is presented
in the later section). Results are shown for seven of the
integer programs and nine of the floating point programs of
the SPEC2000 benchmark suite.

As observed, 96% of the wakeup distances are within the
range of 16 instructions on average. And less than 1% of the
wakeup operations come with the wakeup distances larger
than 32 instructions. The wakeup locality is due to the fact
that dependent instructions are often arranged in proximity to
improve the data transfer and register utilization. For the
integer benchmark programs, the wakeup distances between
two dependent instructions are shorter than those of the
floating point programs on average. This is because the
integer programs tend to have fewer global wvalue
communications and smaller subroutines.

B FExploring wakeup locality in wakeup logic

The observation on the wakeup locality motivates the
optimization of the wakeup logic. In this section, we present
an efficient wakeup design taking the advantage of wakeup
locality.

It is possible to take the advantage of using wakeup locality,
if only a few entries of the wakeup logic are searched during
the wakeup process. Conventional wakeup design handles the
wakeup operations with the wakeup distance up to the issue
window size. Due to the heavy load capacitance and
considerable circuit activities, this conventional design has
poor scalability and is inefficient both in terms of energy and
speed. Since most of the wakeup distances of wakeup
operations are short, it is not necessary to search all the
source tags in the wakeup logic during the wakeup process.

The proposed design limits the wakeup range for the
wakeup operations. This design employs multiple small
segments and the wakeup ranges of the segments are limited.
Each segment handles the wakeup operations only for the
result tags that are in its wakeup range. The basic idea of this
design is to reduce the load capacitance of tag driving and the
circuit activities of tag matching by matching the result tags
with the source tags only in short wakeup distance.

Figure 3 shows the example of the proposed wakeup design
that limits the wakeup range of the wakeup operations to 16-
31 instructions. Different from the conventional design,
multiple small CAM structures are employed for the range-
limited wakeup operation. The segments in this design are
classified into two types, full segment and reduced segment.
The reduced segments support the wakeup operations only

Tag 1 Tagw
<8> o <8>

—— —————

* o | o lesn [FCEECR
0[RdyL| [Tagl <5 EariRia iR TagR <5:] [Rdy R]o
. Reduced I Reduced .

: segment 01

(=E=0R|
[TagR <> [Rdy R]15

segment 01

OR=F=)
15[Rdy L[[Tag L <&

[P ==

_@E—-e 2 ——(=E=OR]|
16[Rdy L] [Tag L <5 e R<_t; TagR <5»] |Rdy R]16
Reduced Reduced

. segment 02 isegment 02 :
OR=Z = —CEOR
st[RdyL| [TagL <] Tag R <6 [Rdy Rjst
[]

OR=E=— =—=(CE=ORj—
RdyL| [Tagl <8> TagR <8>| |[RdyR
. Full <8> Full .

: segment PES segment .
ORE=— ~—(=2=PR
Rdy L[[TagL <& [TagR <6-[[Rdy R

Figure 3: An example of the proposed wakeup design for a 256-entry
issue window.

Table 1: Distance codes and corresponding wakeup ranges of the reduced
segments for a 256-entry issue window.

Segment SO S1 S2 S3 S15
Distance 0000, 0001,

codes 1111 000 0010 001 1
wakeup 0-15,

range 240-255 0-31 16-47 32-63 224-255

for the instructions having the wakeup distances in the
limited wakeup range. The full segment is used to handle the
wakeup operations for the instructions that are out of the
limited wakeup range.

The reduced segment each consists of 16 entries of the
CAM. Each entry is assigned an entry number in the
sequential order as that in the conventional design. To limit
the wakeup range of the reduced segment, the inputs for this
segment are limited to only the result tags that have the
values in the limited wakeup range of this segment.

The limited wakeup ranges for the reduced segments are
shown in Table 1. The wakeup range for each reduced
segment is selected to be the following 32 instructions: the 16
instructions whose result tag numbers are the same as the
entry numbers of the selected reduced segment, and the 16
preceding instructions whose result tag numbers are the 16
numbers before the first entry of this segment. For example,
the wakeup range of the first reduced segment shown in
Figure 3 is the numbers from 0 to 15, which are the same as
the entry numbers of the segment, and the numbers 240-255,
which are the 16 numbers before the first entry (entry 0) of
this segment.

In this way, the wakeup range for the instruction in the first
entry of the reduced segment is the 16 preceding instructions
before this instruction, and by analogy, the wakeup range for
the instruction in the last entry is the 31 preceding
instructions before this instruction.

Since the wakeup ranges of the reduced segments are
limited, the bit length of the inputs (result tags) and the bit

117

length of the source tags can be reduced. In the example of
Figure 3, the least significant 5 bits of the 8-bit result tags are
used as inputs for the reduced segments and the source tag
fields in the reduced segment store only the 5 low-order bits
of the source tags.

In addition to the reduced segments, a full segment, shown
in the bottom of Figure 3, is employed to handle the wakeup
operations for the instructions with the wakeup distances out
of the range supported by the reduced segments. The full
segment is a small segment of the conventional wakeup logic
that handles the wakeup operations without the constraint on
wakeup range. Since only 4% of the wakeup distances of the
dynamic instructions are out of the limited range, a 16-entry
full segment can handle the wakeup operations for the out-of-
range instructions well. More discussion about the trade-off
between the performance and the entry quantities of the full
segment will be presented in next section.

The access to the proposed wakeup design is a little
different from the access to a conventional design. After
rename, the instruction is allocated a destination tag (entry
number) to index the issue window for writing into. This
destination tag is also used to select a reduced segment and
allocate an entry from the selected segment for writing the
source tag into.

The source tag of the instruction with the wakeup distance
in the wakeup range of the allocated segment is inserted into
the allocated reduced segment. On the other hand, the source
tag of the instruction with a wakeup distance out of the range
of the allocated segment is inserted into the full segment.

It is easy to determine whether the wakeup distance is out
of range or not by checking the most significant bits (distance
code) of the source tag. For example, the most significant
three or four bits of the source tag are matched with the
distance code(s) shown in Table 1 according to the allocated
segment. If it is a match, the wakeup distance of this source
tag is in the wakeup range of the allocated reduced segment
and then the least significant 5 bits of this source tag are
inserted into the allocated entry. If the wakeup distance is out
of the range, the source tag is inserted into the full segment.

During the wakeup process, the result tag is always used
as input for the full segment; however, the result tag is only
used as input for the reduced segments that have the same
distance codes the same as the result tag.

Compared to the conventional design, the proposed design
has three major advantages: smaller load capacitance on the
tag bus, shorter length of the source tag fields in the reduced
segments, and fewer match activities during the wakeup
process. These factors significantly improve the power
consumption and wakeup latency of the scheduler. Another
advantage of this design is the excellent scalability. No matter
what the issue window size is, the number of the activated
segments remains the same during the wakeup process.

IV. EXPERIMENTAL EVALUATION AND ANALY SIS

This section presents the experimental methodology and
discusses the results of latency, power, and performance for
the proposed optimization and previous designs.

Table 2: Processor configurations

4-wide 8-wide
Out-of- 4-wide fetch/issue/commit, 8-wide fetch/issue/commit,
order 128 RUU, 64 LSQ. 256 RUU, 128 LSQ.
Execution
Functional 41ALU, 1 IMUL, 2 FALU, 1 8 IALU, 2 IMUL, 4 FALU, 2
units FMUL, 2 LSU. FMUL, 4LSU.
L1 I-cache 4-way, 64KB, 32-byte line, 2-cycle latency.
L1 D-cache | 4-way, 64KB, 32-byte line, 2-cycle latency.
L2 cache 4-way, 512KB, 64-byte line, 10-cycle latency.
TLB 4-way, 128-entry, 4KB page size.
Memory 64-bit wide, 75 cycle latency, 4-cycle burst.
Branch Combination of bimodal (2k entries) and 2-level global predictor (2k
predictor entries, 8-bit history), 1024-entry chooser, 1024-entry (4-way) BTB,
16-entry RAS (return address stack), 8-cycle penalty.

A Experimental methodology

The power consumption and IPC results of the evaluated
designs were obtained through architectural simulation,
which was conducted by using Wattch [26] and SimpleScalar
[27] toolsets. These execution-driven simulators simulate a
superscalar processor with two-level caches, branch
predictors, dynamic scheduler, and et al. by performing cycle
by cycle instruction-level simulation, including execution
down any speculative path until a branch misprediction is
detected.

Table 2 lists the architectural parameters for the 4-wide and
8-wide superscalar processors. In Wattch, the CAM cell of
the evaluated designs was based on the CAM model in [1].
The other configurations for the Wattch include 1GHz clock
frequency, 1.8V voltage, and 0.18um technology process.

The simulation results were collected from 7 integer and 9
floating point programs of the SPEC2000 benchmark suite.
All the selected benchmark programs were compiled with full
optimization (-O4). The test input set was used for the
benchmark programs. The programs were fast-forwarded the
first 0.5 billion instructions and the following 5 billion
instructions were simulated.

To understand the effects on the wakeup delay, the circuit
characteristics of the evaluated designs must be examined.
The circuit models were extended from the one proposed by
Ernst and Austin [10] and the timing results for the evaluated
designs were extracted by using the Avant! Hspice tool
Finally, the CMOS transistors and wires were all conformed
to the parameters of the TSMC 0.18um process.

B. Performance comparison

Figure 4 presents the IPCs of the 4-wide and 8-wide
processors that employ different wakeup logics. These results
are normalized to the IPC of the baseline processor, which
employs the conventional wakeup logic. The first bars show
that the performances of the gated-off designs are the same as
that of the conventional processor. The gated-off design only
gates off the ready and empty entries of the CAM structures.
This design changes no architectural configurations; thus the
IPC result is the same as that of the conventional processor.

The second and third bars show the IPC drops due to the
tag elimination design and sequential wakeup design. The tag

118

" (O Gated-off O Tag climination® Seq wakeup® WL+0 entry-Fscg® WL+ Sentry-Fseg O WL+ I Gentry Fseg M Wltage issue

95%1

m
S N N RN PO O |
I T T T T T 1
I T T T T T 1
I T T T T T 1
I T T T T T 1
: Y S v

™
°

[O Gated-off [Tag elimination M Seq wakep 0 WL]

=3

Power consumption (W)
= o
=___|

i : x 2> > > & & g G b} j} 2 8 £ 2 2 g -1 4 & 2 &
PR . R S T S C g F P § & &% & 8 & 5 & & =5 ¥ a
& S L L A e y‘?“ & & &S g é 8 § & g & E R E g
" [[D Gatedoff O Tag climination® Seq wakeup® WL+DentryFseg WL+S entry Fseg O WL+ 16 entry- Foe 10 [B Comvertional O Gated-off 0 Tag elmination W Seq wakeup H WL
1009
8
95% H H H H L H Lo L HE H H i H %
£ sov H L H H L H L L H L H H I H 2 4
= 2
B 8s% L L L L L L H H L L L L L E
3
£ 80% H H H H H H - - H H H H H § 4
2 75% | | | | | | | | || | | L || | | | | | | | | | | 5
. E
70% H H H H H H H H H H H H H g 2
65% H - H H = - - = = - H — -
0 o
o g g g o 3 i B o 5} o
o $ & & & & L & & > > & <&] o o 5 & g g o} % b} g 2 i 8 g 5
LA S G A A A A A ToE R R 1 4 s E P % &) & %
E hd s

Figure 4: The normalized performance of the evaluated designs for the
4-wide (upper part) and 8-wide (lower part) processors.

elimination design, configured as 32 two-tag stations, 64 one-
tag stations, and 32 zero-tag stations for the 4-wide processor
and twice the stations for the 8-wide processor, loses 3-5% of
IPC due to the issue policy and capacity conflicts. Since the
quantity of entry is sufficient in the 8-wide configuration, the
capacity conflicts occur less frequently. On the other hand,
the TPC drop due to the sequential wakeup design is measured
to be 6-11%. Obviously, waking instructions up in two
sequential cycles induces non-negligible performance
degradation.

There is almost no performance degradation due to the
proposed wakeup locality (WL) design. The IPC loss is
measured to be only 0.2-0.9% for the 8-wide processor and
no IPC loss for the 4-wide processor as shown in the fifth and
sixth bars. The slight IPC drop for the 4-wide processor
comes from the extra dispatch stall when the full segment has
no more available entry for the out-of-range instruction.

The fourth bars show the performance for the proposed
design without the full segment. Although only 4% of the
dynamic instructions are out of the wakeup range, the
dispatch stalls due to these instructions induce 6-14% IPC
drop. We can see that the 16-entry full segment is enough for
avoiding this significant performance degradation for the 4-
wide and 8-wide processors.

In addition, the last bars show the performance of the
wakeup locality design with the oldest-first issue policy. The
performance is the same as that of the WL design without
aged-issue policy. In the wakeup locality design, since
instructions are dispatched into the reduced and full segments,
the instruction order can not be kept easily as that in the
conventional design. During the instruction issue process, the
proposed design can not do the oldest-first issue. The
instructions in the reduced segments are assigned higher
priority than those in the full segment. Although the
instructions lost their program order, they are still in their age
order in the reduced segments. Based on the position (entry
number), the instructions in the reduced segments can be
issued in the aged-issue policy. The performance of the WL
design with the two-priority issue policy, shown in the fifth
bars, is as good as that of the WL design with the oldest-first
issue policy.

Figure 5: Power consumption of the evaluated designs for the 4-wide
(upper part) and 8-wide (lower part) processors.

Interestingly, the wakeup locality design slightly out-
performs than the baseline processor in some benchmark
programs. This is because some instructions on the miss-
predicted paths may be stalled in this design; thus these
misprediction recoveries are avoided.

To summarize, the proposed design has a better
performance than the tag elimination design and sequential
wakeup design. Although the wakeup range is limited to 16
instructions, the WL design achieves almost no performance
degradation due to the employment of the full segment.
Besides, the employed two-priority issue policy can achieve
the same performance of the aged-issue policy.

C. Power consumption

Figure 5 presents the power consumption for the wakeup
logics in the 4-wide and 8-wide processors. The power
consumption of the conventional design, shown at the left
most bars, is found to be much higher than others. This is due
to the heavy load capacitance and the surplus activities of the
monolithic CAM structure. The gated-off design reduces 28-
29% power consumption of the conventional design by gating
the ready and empty entries from tag matching. Due to the
inherent nature of the CAM structure, the power consumption
of the gated-off design is still high as shown in the second
bars.

The power consumption of the tag elimination and
sequential wakeup designs are shown in the third and fourth
bars. The configuration of the tag eclimination design is
equivalent to half of the entries of the conventional design;
thus this design saves 44-47% power consumption of the
conventional design. In contrast, although the sequential
wakeup design wakes up instructions in two phases, this
design still drives two monolithic CAM structures as the
conventional design does. The sequential wakeup design
improves no power consumption of the conventional design.

The power consumption of the proposed WL design is
shown in the last bars. It is measured to be only 24-35% that
of the conventional design. This excellent energy saving
comes from the limitation of the wakeup range. Most
needless tag driving and tag matching are avoided; thus this
design is highly efficient in terms of energy usage.

119

B corvertional M Gated-off M Tagelimination B Seq wakeup IWL‘ ‘ B convertional B Gated-off M Tag elimination B Seq wakeup BWL

035 16

03 14

12

Wakeup delay (us)

4-wide B-wide

Figure 6: Wakeup latencies of different wakeup approaches (ns).

D. Wakeup latency

Figure 6 shows the wakeup latencies of the evaluated
wakeup designs for the 4-wide and 8-wide processors. The
wakeup latencies of the conventional design and gated-off
design are presented in the first two bars. Since the gated-off
scheme only gates the match lines in the empty and ready
entries from activities that does not affect the critical path of
the wakeup operation, the wakeup latency of the gated-off
design is the same as that in the conventional design.

The tag climination design has an equivalent half of the
CAM structure to that of the conventional design for the
wakeup operation. The wakeup latency of this design is
measured to be 43-56 % that of the conventional design. As
for the sequential wakeup design, this design only avoids
driving the driver transistors of the second CAM structure in
the first wakeup cycle. The improvement of wakeup latency
is measured only 0.5% for the 4-wide processor.

The proposed wakeup locality design performs much faster
than other designs. This advantage comes from that only
necessary segments are activated during the wakeup process.
The proposed designs is measured to be 44-78% faster than
the conventional design and 50% faster than the tag
elimination design for the 8-wide processor. We can see that
the proposed design suits for a sophisticated scheduler in
terms of the wakeup speed.

V. CONCLUSION

In this paper, we present the concept of wakeup locality in
which most of the wakeup distances between two data
dependent instructions are found to be short. Based on this,
an effective wakeup design is proposed to improve the
wakeup delay, power requirement, and scalability of the
dynamic scheduler. The proposed wakeup locality design
limits the wakeup range of the wakeup operations and
activates only the necessary segments during the wakeup
process. This design significantly improves 44-78% of the
wakeup delay and saves 65-76% power consumption
compared to the conventional wakeup logic without the
performance degradation. Besides, the proposed design is
excellent in scalability because the number of the activated
segments during the wakeup process remains the same
regardless of the issue window size. In conclusion, the
proposed wakeup design removes the limiting factor from the
dynamic scheduler and enables the processor to employ a
more sophisticated scheduler for improving performance.

ACKNOWLEDGMENT

The work in this paper is in part supported by the National
Science Council, Taiwan R.O.C., under NSC 94-2220-E-006-
004.

REFERENCES

[1] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Quantifying the
Complexity of Superscalar Processors,” University of Wisconsin-
Madison, Tech. Rep. CS-1328, May 1997.

[2] K. Wilcox and S. Manne. “Alpha processors: A history of power issues
and a look to the future,” Cool Chips Tutorial, 32nd Annu. Int. Symp.
Microarchitecture, Nov. 1999.

[3] M. S. Hrishikesh, N. P. Jouppi, and K. I. Farkas, “The optimal useful
logic depth per pipeline stages is 6-8 FO4,” in Proc. ISCA, May 2002,
pp. 14-24.

[4] D. Folegnani and A. Gonzalez, “Energy-Effective Issue Logic”, in Proc.
ISCA, Jul. 2001, pp. 230-239.

[5] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing Power
Requirements of Instruction Scheduling Through Dynamic Allocation
of Multiple Datapath Resources,” in Proc. MICRO, Dec. 2001, pp. 90-
101.

[6] J. Abella and A. Gonzalez, “Power-Aware Adaptive Issue Queue and
Register File,” in Proc. Int. Conf. High-Performance Computing
(HiPC), Dec. 2003.

[7] David H. Albonesi. “Dynamic IPC/Clock Rate Optimization,” in Proc.
ISCA, June 1998, pp. 282-292.

[8] A. Buyuktosunoglu et al., ”A Circuit Level Implementation of an
Adaptive Issue Queue for Poweraware microprocessors,” in Proc
GLVSLSIL Mar. 2001, pp. 73-83.

[9] S. Dropsho et al., “Integrating Adaptive On- Chip Storage Structures
for Reduced Dynamic Power,” in Proc. Parallel Architectures and
Compilation Techniques, Sep. 2002, pp. 141-152.

[10] D. Ernst and T. M. Austin, “Efficient dynamic scheduling through tag
elimination,” in Proc. ISCA, May 2002, pp. 37-46.

[11] I. Kim and M. H. Lipasti, “Half-Price Architecture,” in Proc. ISCA, Jun.
2003, pp. 28-38.

[12] A.R. Lebeck et al., “A Large, Fast Instruction Window for Tolerating
Cache Misses,” in Proc. ISCA, May 2002, pp. 59-70.

[13] B. Fields, S. Rubin, and R. Bodik, “Focusing Processor Policies via
Critical-Path Prediction,” in Proc. ISCA, Jul. 2001, pp. 74-85.

[14] E. Brekelbaum et al., “Hierarchical Scheduling Windows,” in Proc.
MICRO, Nov. 2002, pp. 27-36.

[15] M. Goshima et al., “A High-Speed Dynamic Instruction Scheduling
Scheme for Superscalar Processors,” in Proc. MICRO, Dec. 2001, pp.
225-236.

[16] D. S. Henry et al, “Circuits for Wide-Window Superscalar
Processors,” in Proc. ISCA, Jun. 2000, pp. 236-247.

[17] K.-S. Hsiao and C.-H. Chen, "An Efficient Wakeup Design for Energy
Reduction in High-Performance Superscalar Processors," in Int. Con.
Computing Frontiers (CF), May 2005. pp. 353-360.

[18] D. V. Ponomarev et al., “Energy-Efficient Issue Queue Design,” in
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 11, pp. 789-800, Oct. 2003.

[19] M. Huang, J. Renau, and J. Torrellas, “Energy-Efficient Hybrid
Wakeup Logic,” in Proc. ISLPED, Aug. 2002, pp. 196-201.

[20] R. Canal and A. Gonzalez, “A Low-Complexity Issue Logic,” in Proc.
ICS, May 2000, pp. 327-335

[21] R. Canal and A. Gonzalez, “Reducing the Complexity of the Issue

Logic,” in Proc. ICS, Jun. 2001, pp. 312-320.

S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective

superscalar processors,” in Proc. ISCA, Jun. 1997, pp. 206-218.

[23] P. Michaud and A. Seznec, “Data-flow prescheduling for large

instruction windows in out-of-order processors,” in Proc. HPCA, Jan.

2001, pp. 27-36.

S. E. Raasch, N. L. Binkert, and S. K. Reinhardt, “A Scalable

Instruction Queue Design Using Dependence Chains,” in Proc. ISCA,

May 2002, pp. 318-329.

[25] D. Emst, A. Hamel, and T. Austin, “Cyclone: A Broadcast-Free
Dynamic Instruction Scheduler with Selective Replay,” in Proc. ISCA,
Jun. 2003, pp. 253-262.

[26] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. ISCA,
Jun. 2000, pp. 83-94.

[27] D. Burger and T. M. Austin,”The SimpleScalar tool set, version 2.0,”
University of Wisconsin-Madison, Tech. Rep. CS-1342, Jun. 1997.

[22]

[24]

120

