

AN EFFICIENT VLSI ARCHITECTURE FOR EDGE FILTERING
IN H.264/AVC

Chung-Ming Chen Chung-Ho Chen

Department of Electrical Engineering & Department of Electrical Engineering &
Institute of Computer and Communication Engineering Institute of Computer and Communication Engineering

National Cheng Kung University National Cheng Kung University
Taiwan, R.O.C. Taiwan, R.O.C.

cmchen@casmail.ee.ncku.edu.tw chchen@mail.ncku.edu.tw

ABSTRACT
In this paper, we study and analyze the computational
complexity of H.264/AVC baseline profile decoder based
on SimpleScalar/ARM simulator. The simulation result
shows that the memory reference, the operations of
content activity check, and the edge filtering are known to
be very time consuming in the embedded system. In order
to reduce the memory reference and improve overall
system performance, we proposed a new efficient VLSI
architecture to accelerate the processing of deblocking
filter. The proposed architecture is called “Adaptive Edge
Filtering Operation (AEFO),” which could be embedded
in a platform-based architecture as a co-processor. As a
result, the performance of the embedded system using
AEFO is 1.66 times faster than software implementation.
Moreover, the number of total me mory references for
loading and storage is reduced by 34% and 36%
respectively.

KEY WORDS
Deblocking Filter, H.264/AVC, Video Coding

1. Introduction

Video compression is the critical component in today’s
multimedia systems. The limited transmission bandwidth
or storage capacity for applications such as DVD or
digital television, and internet video streaming stresses the
demand for higher video compression rates. To meet this
demand the new video coding standard Recommendation
H.264 of ITU-T [1] also known as International Standard
14496-10 or MPEG-4 Part 10 Advanced Video Coding
(AVC) of ISO/IEC[2] has been developed. It significantly
outperforms the previous one (H.263) [3] in bit-rate
reduction. The functional blocks of H.264/AVC, as well
as their features, are shown in Figure 1.

As previously studied [4], the most time consuming parts
of H.264/AVC decoder is deblocking filter. Therefore,
this paper focuses on adaptive deblocking filter to remove

coding artefacts around block edges. These blocking
artifacts can occur from both quantization of the
transform coefficients and block-based motion
compensation. In order to reduce the blocking artifacts,
the overlapped block motion compensation (OBMC) [5]
is adopted into H.263 standard. Unlike the OMBC in
H.263, H.264/AVC adopts an adaptive deblocking filter
[6] that has shown to be a more powerful tool in reducing
artifacts and in improving the video quality. Adaptive
deblocking filter can also be used in inter-picture
prediction to improve the ability to predict other picture
as well. Since it is within the motion compensation
prediction loop, the deblocking filter is often referred to
as an “in-loop filter.” As a result, the filter reduces the bit
rate typically by 5-10% while producing the same
objective quality as the non-filtered video [7]. A detailed
description of the adaptive deblocking filter can be found
in [6].

Figure 1: Block Diagram of H.264/AVC

The filter described in the H.264/AVC standard is highly
adaptive. Several parameters and thresholds, as well as
the pixel characteristics of the picture itself, control the
boundary strength of the filtering process. These issues
are also equally challenging during parallel processing
under DSP or SIMD architecture. Due to intensive
computations, dedicated hardware was developed for

493-056 118

kirk

acceleration in [8] and [9]. But these proposals did not
mention or embed the computation of boundary strength
(Bs), the table-derived operations, and the content activity
check operations in the VLSI architecture of edge filter.
In order to reduce the number of total conditional
processing operations and improve overall system
performance. We proposed a VLSI architecture that
embedded the computation of boundary strength (Bs), the
table-derived operations, and several conditional
processing such as the threshold value of Alpha and Beta
in the edge filtering unit. As a result, our proposed
architecture can outperform the software implementation
of H.264/AVC codec.

The organization of this paper is as follows: In Section 2,
the algorithm of the deblocking filter is explained. Section
3 analyzes the computational complexity of H.264/AVC
baseline decoder. Section 4 illustrates the block diagram
of the proposed architecture and functionality of each
module. Section 5 shows the simulation result. Finally,
conclusion is presented in Section 6.

2. The Algorithm of Deblocking Filter

For each luminance macroblock, the left-most edge of the
macroblock is filtered first, followed by the other three
internal vertical edges from left to right. Similarly, the top
edge of macroblock is filtered first, followed by the other
three internal horizontal edges from top to bottom.
Chrominance filtering follows a similar order in each
direction for each 8x8 chrominance macroblock as shown
in Figure 2.

Figure 2: Edge Filtering Order

On the sample processing level, content of samples and
quantization parameter threshold can turn on/off the
filtering for each individual boundary. For example,
Figure 3 illustrates the principle of the deblocking filter
using a one-dimensional visualization of a block edge in a
typical situation where the filter would be turn on.
Whether the samples p0 and q0 as well as p1 and q1 are
filtered is determined by using quantization parameter
(QP), dependent threshold Alpha(QP) and Beta(QP), and
content of a set of sample . Thus filtering of p0 and q0

only takes place if each of the following condition is
satisfied:

Bs != 0 (1)
|p0 - q0| < Alpha(QP) (2)
|p1 - p0| < Beta(QP) and |q1 - q0| < Beta(QP) (3)

Where the Beta(QP) is considerably smaller than
Alpha(QP). Accordingly, filtering of p1 or q1 will take
place if the corresponding condition below is satisfied:

|p2-p0| < Beta(QP) or |q2-q0| < Beta(QP) (4)

The dependency of Alpha and Beta on the quantizer, links
the strength of filtering to general quality of the
reconstructed picture prior to filtering. For s mall quantizer
values the thresholds both become zero, and filtering is
effectively turned off altogether.

Figure 3: Principle of Deblocking Filter

The basic idea is that if a relatively large absolute
difference between samples near a block edge is measured,
it is quite likely to be a blocking artifact and should
therefore be reduced. However, if the magnitude of that
difference is so large that it can no longer be explained by
the coarseness of the quantization used in the encoding,
the edge is more likely to reflect the actual behavior of the
source picture and should not be smoothed over.

3. Computation Complexity

One of the most important issues in computational
complexity of H.264/AVC decoder is the distribution of
time complexity among its major sub-function. In our
simulation result, as shown in Table 1, deblocking
filtering (36%) is the largest component, followed by
interpolation (22%), and bitstream parsing and entropy
decoding (13%), and inverse transfers and reconstruction
(13%).

119

Figure 4: The Filtering Operations

Table 1: The Computational Complexity of Decoder
Item Function Complexity

1. Deblocking Filtering 36%
2. Interpolation 22%
3. Entropy Coding 13%
4. Inverse Transfers and

Reconstruction
13%

As our experiment result indicates, the operation of the
deblocking filter, which is the most time consuming parts
of H.264/AVC decoder, can be separated into two major
sub-functions. The first sub-function is the computation of
the “Boundary Strength” (Bs) parameter for each edge
filter operation. The purpose of this computation is to

determine whether a block artifact may have been
produced across the boundary, and thus determine the
strength (Bs) of the filter to be used on the edge. A
Boundary Strength (Bs) is assigned an integer value from
0 to 4. A strongest filter (Bs=4) is used if one or both
sides of edges are intra coded and the boundary is a
macroblock boundary, whereas a value of 0 means no
filtering is applied on this specific edge. In the standard
mode of filtering which is applied for edges with Bs from
1 to 3, the value of Bs affects the maximum modification
of the sample values that can be caused by filtering. Table
2 shows how the value of Bs depends on the modes and
coding conditions of the two adjacent blocks. In the table,
conditions are evaluated from top to bottom, until one of
the conditions holds true, and the corresponding value is
assigned to Bs .

Table 2: The Filter Strength Bs
Bs Block Modes and Conditions
4 One of the blocks is Intra and the edge is a

macroblock edge
3 One of the blocks is Intra
2 One of the blocks have coded residuals
1 1. Difference of block motion >= 1luma

sample distance
2. Motion compensation from different

reference frames
0 Otherwise

The second important sub-function is the content activity
check and filtering operations as shown in Figure 3 and
Figure 4 respectively. In order to separate the true edge
and blocking artifact, the sample values across every edge
to be filtered are analyzed. As stated in Section 2, filtering
does not take place for edges with Bs equal to zero. For
edges with nonzero Bs values, a pair of quantization-
dependent parameters, referred to as Alpha and Beta, are
used in the content activity check that determines whether
each set of samples is filtered. Both table-derived
threshold Alpha and Beta are dependent on the average
quantization parameter (QP) employed over the edge, as
well as encoder selected offset values that can be used to
control the properties of the deblocking filter on the slice
level.

The filtering operations and the content activity checks
which require conditional processing on the block edge
and sample level, are known to be very time consuming
and are also equally challenging for parallel processing in
DSP or SIMD computing architecture. In order to reduce
the number of conditional operations and improve the
overall system performance, we submit herewith (see next
sections) a proposed VLSI architecture that includes
computation of boundary strength, table-derived
operations (threshold Alpha and Beta), and content
activity check in the edge filtering unit.

120

4. Proposed Architecture

In order to reduce the number of memory reference and
branch operations, and then improve overall system
performance, we proposed an efficient VLSI architecture
that embeds the computation of boundary strength, the
table-derived operations, content activity check, and
filtering operations in the edge filtering unit which is
called “Adaptive Edge Filtering Operation (AEFO)” as
shown in Figure 5. There are five major sub-functions in
our proposed VLSI architecture as described below.

Figure 5: Adaptive Edge Filtering Architecture

The Computation of Boundary Strength: The purpose of
this computation is to determine whether a block artifact
may have been produced across the boundary, and thus
determine the appropriate strength (Bs) of the filter to be
used on the edge. A detailed description of the
computation of boundary strength can be found in Section
3 or [6].

The Filtering Operation: The most important function of
deblocking filter is the filtering operation, which is
divided into two modes. A special mode of filtering that
allows for stronger filtering is applied when Bs is equal to
4. The others are standard mode of filtering with a Bs
parameter of 1 to 3 as shown in Figure 4.

Clipping Operation: The filtering operation would result
in too much low-pass filtering (blurring). A significant
part of the adaptive filter is obtained by limiting these
values. This process is called clipping. There are eight
clipping operations in our proposed architecture as shown
in Figure 4. A detailed description of the clipping
operation can be found in [1].

Content Activity Check Operation: Conditional branches
which are described below almost inevitably appear in the
inner most loops of the algorithm. The major content
activity checks (conditional branches) are listed below
and described in Section 2

Content Activity Check for p0 and q0
1. Bs != 0
2. |p0 - q0| < Alpha(QP)
3. |p1 - p0| < Beta(QP) and |q1 - q0| < Beta(QP).
Content Activity Check for p1 and q1
4. |p2-p0| < Beta(QP) or |q2-q0| < Beta(QP)

Table-derived Operations: In order to simultaneously
access Alpha, Beta, and Clip tables, and because most
values of these tables are zero, we used combinational
logic to implement Alpha, Beta and Clip tables instead of
using memory buffer. It can save most of the space of
memory buffer and improve overall system performance.

5. Result

The simulators used in this study are derived from the
SimpleScalar/ARM tool set [10], a suite of functional and
timing simulation tools for ARM ISA. The timing
simulator executes only user-level instructions,
performing a detailed timing simulation of an aggressive
4-way dynamically scheduled microprocessor with two
levels of instruction and data cache memory. Our baseline
simulation configuration models the Intel’s StrongARM
SA-110 processor. The hardware parameter is described
in Table 3 below.

Table 3: Simulator Parameter
Parameter Value

Fetch Queue size 4
Fetch Speed 1
Decode Width 1
Issue Width 1
Commit Width 1
D-Cache 32-way, 32-byte lines, LRU,

1-cycle hit, total 16KB
I-Cache 32-way, 32-byte lines, LRU,

1-cycle hit, total 8KB
Memory Latency 12
Memory Width 4 bytes

Table 4: The Performance Comparison
Item Software

based
AEFO Embedded

Platform
Reduce

by
Inst. 128640967 75123050 42%
Load 30443106 20180448 34%
Store 16098837 10295823 36%
Branch 14324486 7901023 49%
Cycles 220929397 132532824 40%

121

The simulation results are shown in Table 4. The
performance of embedding AEFO as a co-processor is
1.66 times faster than the software implementation.
Moreover, the number of total memory references for
load and store is reduced by 34% and 36% respectively.

We implemented the proposed architecture by Verilog
HDL and synthesized the design using TSMC 0.18um
Artisan CMOS cell library using Synopsys Design
Compiler with critical path constraint set to 5 ns
(200MHz). The synthesized gate count is shown in Table
5.

Table 5: The Area of Adaptive Edge Filter
Item Function Gate count

1. Alpha Table derived 137
2. Beta Table derived 87
3. CLIP Table 66
4. Luma4 1372
5. Chroma4 247
6. Luma and Chroma 811
7. Conditional Circuit 1104
8. Computation of

Boundary Strength
1752

Total Edge Filter 5576

6. Conclusion

In this paper, we proposed an efficient VLSI architecture
to accelerate the deblocking filter of H.264/AVC video
coding and use Verilog HDL to implement it . The major
idea is to reduce the number of conditional operations
through embedded the computation of boundary strength,
the table-derived operations, content activity check, and
filtering operations in edge filter unit. Simulation results
show that the processing capability of the proposed
architecture AEFO is very appropriate for real-t ime
deblocking of high-definition television (HDTV,
720x1280 pixels/frame, 60 frames/s video signals) video
operating at 150MHz. According to the simulation results,
our design is a good choice of deblocking filter for the
platform-based design under H.264/AVC coding systems.

Acknowledg ements

The work in this paper is in part supported by the
National Science Council, Taiwan ROC, under NSC 93-
2220-E-006-004. In addition, the authors thanks Elan
Microelectronics Co rp. (Fabless Semiconductor Corp.).
for support in VLSI design flow and simulation
environment.

References

[1] ITU-T Recommendation H.264, Advanced video
coding for generic audiovisual services, 2003.

[2] ISO/IEC 14496–10:2003, Coding of Audiovisual
Objects— Part 10: Advanced Video Coding , 2003.

[3] ITU-T Recommend H.263, Video Coding for Low Bit
Rate Communication, 1998.

[4] Jorn Ostermann, Jan Bormans, Peter List, Detlev
Marpe, Matthias Narroschke, Fernando Pereira, Thomas
Stockhammer, and Thomas Wedi, Video Coding with
H.264/AVC: Tools, Performance, and Complexity, IEEE
Circuit and Systems Magazine, 2004, 7-28.

[5] M.I T. Orchard and G.J. Sullivan, Overlapped Bock
Motion Compensation: An Estimation-Theoretic
Approach, IEEE Transactions on Image Processing, 1994,
693-699.

[6] Peter List, Anthony Joch, Jani Lainema, Gisle
Bjøntegaard, and Marta Karczewicz, Adaptive
Deblocking Filter, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 13, 2003, 614-619.

[7] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro,
H.264/AVC baseline profile decoder complexity analysis,
IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, 2003, 715–727.

[8] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh, Tu-Chih
Wang, Te-Hao Chang, and Liang-Gee Chen, Architecture
Design for De-blocking Filter in H.264/JVT/AVC. Proc. IEEE
Conf. on Multimedia and Expo, 2003, 693-696.

[9] Miao Sima, Yuanhua Zhou, and Wei Zhang, An
Efficient Architecture for Adaptive Deblock filter of
H.264/AVC Video Coding, IEEE Transactions on
Consumer Electronics, Vol. 50, 2004, 292-296.

[10] Douglas C. Burger and Todd M. Austin, The
SimpleScalar Tool Set, Version 2.0. University of
Wisconsin, Madison Tech. Report. 1997.

122

