
AN EFFICIENT ARCHITECTURE FOR DEBLOCKING FILTER IN
H.264/AVC VIDEO CODING

Chung-Ming Chen Chung-Ho Chen
Department of Electrical Engineering & Department of Electrical Engineering &

Institute of Computer and Communication Engineering Institute of Computer and Communication Engineering
National Cheng Kung University National Cheng Kung University

Taiwan, R.O.C. Taiwan, R.O.C.
cmchen@casmail.ee.ncku.edu.tw chchen@mail.ncku.edu.tw

ABSTRACT
In this paper, we propose an efficient architecture for the
adaptive deblocking filter in H.264/AVC video coding
standard. We use eight forwarding shift register arrays (of
which each contains 4×4 8-bit shift registers) with two
transposing operations and two filter units to support
simultaneous processing of the horizontal and vertical
filtering. The proposed architecture is called “Pipeline
Buffer Shift Register (PBSR).” As a result, the
performance of PBSR is 22.5% faster than the advanced
architecture of the previous proposal. Moreover, the
number of total memory references is reduced to 37% and
75% respectively compared to the basic and advanced
architectures of the previous proposals.

KEY WORDS
Deblocking Filter, H.264/AVC, Memory Reference,
Video Coding.

1. Introduction

The new video coding standard Recommendation H.264
of ITU-T [1] also known as International Standard 14496-
10 or MPEG-4 Part 10 Advanced Video Coding (AVC) of
ISO/IEC [2], significantly outperforms the previous ones
[3] in bit-rate reduction. The functional blocks of
H.264/AVC, as well as their features, are shown in Figure
1. Preliminary studies [4] using the software base of this
new standard, suggest that H.264 offers up to 50% better
compression than MPEG-2 and up to 30% better than
H.263+ and MPEG-4 advanced simple profile.

The block-based structure of the H.264/AVC architecture
produces artifacts known as blocking artifacts. These
blocking artifacts can be occurred both due to the
quantization of the transform coefficients and block-based
motion compensation. To reduce the blocking artifacts,
the overlapped block motion compensation (OBMC) [5]
is adopted into the H.263 standard [3]. Unlike the OBMC
in H.263, H.264/AVC uses an adaptive deblocking filter
[6] that has been shown to be a more powerful tool in

reducing artifacts and improving the video quality.
Adaptive deblocking filter can also be used in inter-
picture prediction to improve the ability to predict other
picture as well. Since it is within the motion
compensation prediction loop, the deblocking filter is
often referred to as an “in-loop filter”. As a result, the
filter reduces the bit rate typically by 5-10% while
producing the same objective quality as the non-filtered
video [7]. A detailed description of the adaptive
deblocking filter can be found in [6].

The filter described in the H.264/AVC standard is highly
adaptive. Several parameters and thresholds, as well as
the pixel characteristics of the picture itself, control the
boundary strength of the filtering process. These issues
are also equally challenging during parallel processing
under DSP or SIMD computational architectures. Due to
intensive computations, in [8] and [9] dedicated hardware
was developed for acceleration. And our proposed
architecture outperforms the previous proposals through
significant reduction in memory reference.

Figure 1: Block Diagram of H.264/AVC

The organization of this paper is as follows: In Section 2,
the algorithm used in the deblocking filter is explained.

478-064 177

mailto:cmchen@casmail.ee.ncku.edu.tw
mailto:chchen@mail.ncku.edu.tw
rodney

 Section 3 illustrates the block diagram of the proposed
architecture and functionality of each module. Section 4
shows the simulation results. Finally, conclusion is
presented in Section 5.

The dependency of α and β on the quantization parameter,
link the strength of filtering to general quality of the
reconstructed picture prior to filtering. For small
quantization values, the thresholds both become zero, and
filtering is effectively turned off altogether.

2. The Algorithm of Deblocking Filter

For each luminance macroblock, the left-most edge of the
macroblock (V1, V2, V3, and V4) is filtered first,
followed by the other three internal vertical edges from
left to right. Similarly, the top edge of macroblock (H17,
H18, H19, and H20) is filtered first, followed by the other
three internal horizontal edges from top to bottom.
Chrominance filtering follows a similar order in each
direction for each 8x8 chrominance macroblock as shown
in Figure 2 (“V” denotes a vertical edge and “1” the first
block cycles while “H” denotes a horizontal edge and
“17” the seventeenth block cycle).

Figure 3: Principle of Deblocking Filter

The basic idea is that if a relatively large absolute
difference between samples near a block boundary is
estimated, it is quite likely to be a blocking artifact and
should therefore be smoothed. However, if the amplitude
of that difference is so large that it can no longer be
explained an artifact produced by the quantization and
motion compensation, the edge is more likely to be the
actual behavior of the source picture and should not be
filtered.

Figure 2: Processing Order of Standard 3. Proposed Architecture
 On the sample processing level, sample value and
quantization parameter threshold can turn on/off the
filtering for each individual sample. For example, Figure
3 illustrates the principle of the deblocking filter using a
one-dimensional visualization of a block edge in a typical
situation where the filter would be turned on. Whether the
samples p0 and q0 as well as p1 and q1 are filtered is
determined by using the quantization parameter (QP),
dependent threshold α(QP), and β(QP). Thus filtering of
p0 and q0 only takes place if each of the following
condition is satisfied:

3.1 Edge Filtering Operation

The complexity of H.264/AVC deblocking filter is mainly
due to two reasons. The first one is the need of highly
adaptive filtering, which requires several conditional
processing on each block edges and sample levels. As the
described in the previous section, the threshold value of α
and β, the table-derived operations, and edge filtering
operation are known to be very time consuming. These
issues are also equally challenging during parallel
processing under DSP or SIMD computational
architectures. Therefore, we propose an efficient filtering
unit that combines these parameters into edge filter to
accelerate the horizontal and vertical filtering on the
boundary of two adjacent basic 4x4 blocks as shown in
Figure 4. The filtering operation is performed when
previous content activity check is satisfied. The filtering
operation can be divided into two modes. A special mode
of filtering that allows for stronger filtering is applied
when Bs is equal to 4 (Luma4 and Chroma4). The others
are standard mode of filtering with Bs parameter from 1

1. Bs != 0
2. |p0 - q0| <α(QP)
3. |p1 - p0|< β(QP) and |q1 - q0| < β(QP).

Where the β(QP) is considerably smaller than α(QP).
Hence, filtering of p1 or q1 take place if the
corresponding condition below is satisfied:

|p2-p0| < β(QP) or |q2-q0 |< β(QP)

178

to 3 (Luma3_1 and Chroma3_1). The chrominance is the
same as luminance.

Figure 4: Edge Filtering Architecture

Another reason for the high complexity is the small block
size employed for residual coding in the H.264/AVC
video coding algorithm. With the 4x4 blocks and a typical
filter length of 2 samples in each direction, each sample in
a picture must be loaded/stored from/to memory 4 times;
either to be modified or to determine if the neighboring
samples will be modified. In order to reduce the numbers
of memory reference and accelerate the overall system
performance, we propose another efficient architecture as
shown in Figure 5, which can perform simultaneous
processing of horizontal and vertical filtering and reduce
the number of access time of each block to one.

3.2 Alternative Processing Order

Our architecture utilizes an alternative processing order,
which allows the simultaneous processing of horizontal
and vertical filtering as shown in Figure 6. The processing
order begins from V1 to V2 (“V” denotes a vertical edge
and “1” the first block cycle). And then at the third block
cycle, the vertical edge V3 and horizontal edge H3 (“H”
denotes a horizontal edge and “3” the third block cycle)
are simultaneously processed. Then V4, H4 follows, so on
and so forth. This processing order enables concurrent
horizontal and vertical filtering to reduce memory access
by reusing data through forwarding in the PBSR arrays.

3.3 Components of the Proposed Architecture

There are three major functions in our proposed
architecture PBSR. The first component is the Shift
Operation Array. There are eight forwarding shift register
arrays in our proposed architecture (for example, Array1,
2, 4, 5, 6, 7, 8, and 9). Each array has four entries which
contain 4 processed samples. The shift direction is as
shown in Figure 5. The second function of our proposed
architecture is the transposing operation as shown in

Figure 5. The Array3 and Array10 latched the 4x4 block
sample values that are transposed from Array 2 and
Array9 respectively. And the final important functions are
the horizontal and vertical filter units. The operation of
these components is described in details below.

Figure 5: Proposed Architecture PBSR

Figure 6: Alternative Processing Order

Horizontal Filter Unit: The function of horizontal filter
is to filter the vertical edge across the boundary of the two
adjacent blocks. The detailed design of the edge filter is
based on [6]. The input parameters to this function are as
follows.

179

Parameter Interface: Parameters used in adaptive
deblocking filtering are transmitted from memory to the
horizontal and vertical filter respectively. These
parameters include boundary strength (Bs) and average
quantization parameter (QP) for edge level adaptive,
OffsetA and OffsetB for slice level adaptive.

z A set of samples which denoted q0, q1, q2, and q3
are transferred from the memory bus.

z Another set of samples which denoted p0, p1, p2,
and p3 are shifted from the fourth entry of Array1
which has just completed the first horizontal
filtering.

z Other input values are filtering parameter, such as

boundary strength (Bs), quantization parameter
(QP), α, and β offset (Offset A and Offset B).

Control Unit: The control unit has two major functions.
The first is that it exactly controls the data flow. The other
provides correct parameters to the horizontal and vertical
filter. With horizontal filtering, each basic 4x4 block needs to be

filtered two times across the vertical edge of the left and
right boundary of the current basic 4x4-block. Similarly,
the first reference denoted q samples (which are
transmitted from the memory bus) and the second
reference denoted p samples (which are shifted from the
fourth entry of Array1) as shown in Figure 5.

3.4 Data Flow

The data flow of the proposed architecture is shown in
Table 1. Initially, assume that the blocks of E1, E2, E3,
E4, and E5 are processed in Array6, Array5, Array4,
Array3, and Array1 respectively. In the first block-
filtering cycle (1 block-filtering cycle = 4 clock cycles),
the sample values of current 4x4-block B1 are transmitted
from memory to PBSR and filtered with block E5 by the
horizontal filter. In next block-filtering cycle, the current
block B1 is filtered with B2 by the horizontal filter. In the
third block-filtering cycle, the proposed architecture
PBSR can simultaneously process horizontal filtering of
vertical edge V3 (the boundary of block B1 and B2) and
vertical filtering of horizontal edge H3 (the boundary of
block E1 and B1). In the eighth block-filtering cycle, the
vertical filtering of horizontal edges (boundary of bock
B1 and B5) are performed as shown in Figure 8. Finally,
PBSR writes the block B1 to memory at the ninth block-
filtering cycle.

Vertical Filter Unit: The function of vertical filter is to
filter the horizontal edge across the boundary of two
adjacent blocks. The input parameters of vertical filter
unit are the same as horizontal filter unit, except for the q
samples which are shifted from Array3 and the p samples
which are shifted from Array8.

The Transposed Unit: Those filtered samples of Array2
are transposed and latched into Array3 at the fourth cycle
of the block cycles as shown in Figure 7. The function of
Array10 is the same as Array3 except it latches the
filtered samples from Arrar9.

Table 1: Data Flow in the PBSR

State Block-Filtering Cycle
 0 1 2 3 4 5 6 7
Array1 E5 B1 B2 B3 B4 E5 B5 B6
Array2 E4 E5 B1 B2 B3 B4 E5 B5
Array3 E4 E5 B1 B2 B3 B4 E5 B5
Array4 E3 E4 E5 B1 B2 B3 B4 E5
Array5 E2 E3 E4 E5 B1 B2 B3 B4
Array6 E1 E2 E3 E4 E5 B1 B2 B3
Array7 E1 E2 E3 E4 E5 B1 B2
Array8 E1 E2 E3 E4 E5 B1
Array9 E1 E2 E3 E4 E5
Array10 E1 E2 E3 E4 E5
MEM E1 E2 E3 E4

 Figure 7: Transposing Figure 8: Current Block B1
4. Result Operation Processing Order

4.1 Memory Reference Memory Interface: There are two 32-bit memory data

buses for the proposed architecture. One data bus is used
to input unfiltered samples from memory to PBSR. The
other is used to output filtered samples from PBSR to
memory.

As ITU-T recommendation [1], an adaptive filtering shall
be applied to all 4x4 block edges of a picture, except for
the edges at the boundary of the picture. Therefore, most
of 4x4 blocks need to be filtered 4 times with the adjacent

180

blocks (left, right, top, and bottom as shown in Figure 8).
As a result, the number of total memory reference for a
luminance macroblock, including read and write, is
4x4x2x16=512. For a picture in QCIF format, the number
of total memory accesses is 49408 (Assuming the
memory bus width is 32 bits).

As described in the previous section, the key feature of
our proposed architecture is the utilization of the Pipeline
Buffer Shift Register (PBSR) to reduce memory
references and simultaneously process the horizontal and
vertical filtering. As a result, the number of total memory
reference for a luminance macroblock is reduced to 192.
It is clear that the number of memory references is
reduced to 37% of the software version. In other words,
the memory performance of our scheme increases 3 times
when compared to software implementation. Table 2
shows the comparisons of memories (Luminance only)
with the previous proposals in [8]. Our architecture can
save more than 63% of the memory bandwidth compared
to the basic of the previous schemes. Hence, our
architecture is able to significantly reduce power
consumption.

Table 2: Memory Reference per Macroblock
Author Architecture MEM Ref

[8] Basic+Single-port SRAM 512
[8] Advance+Dual-port SRAM 256
[8] Basic+Two-port SRAM 512
[8] Dual Arrays+Two-port SRAM 256

PBSR Dual-port SRAM or
Two Single port SRAM

192

4.2 Performance

The first set of samples for luma/chroma macroblock is
completed in 32/24 clock cycles and written into the
memory at the next cycle. The next set of samples will
complete filtering and be written into the memory one
cycle at a time. Therefore, the total number of cycles for
filtering one luma and two chroma macroblocks takes
32+96 = 128 and (24+32)x2 = 112 cycles respectively. As
a result, the total filtering takes 240 cycles for a luma and
two chroma macroblocks. Our filtering scheme takes less
number of cycles when compared to 294 cycles of the
architecture described in [8]. Table 3 illustrates the cycle
count required for each different implementation.

Table 3: Memory Cycles per MB
Author Architecture Cycles/MB

[8] Basic+Single-port SRAM 558
[8] Advance+Dual-port SRAM 494
[8] Basic+Two-port SRAM 462
[8] Dual Arrays+Two-port SRAM 294

PBSR Dual-port SRAM or
Two Single port SRAM

240

5. Conclusion

In this paper, we propose an efficient architecture to
accelerate the operations of deblocking filter for
H.264/AVC video coding and implement it in Verilog
HDL. The major idea is to reduce the number of memory
references through the PBSR approach and
simultaneously perform horizontal and vertical filtering.
Simulation results show that the processing capability of
the proposed architecture is very appropriate for real-time
deblocking of 1280x720 30Hz video operating at 50-
100MHz. According to the simulation results, our design
is a good choice of deblocking filter for the platform-
based design under H.264/AVC coding systems.

6. Acknowledgement

The work in this paper is in part supported by the
National Science Council, Taiwan ROC, under NSC 93-
2220-E-006-004. In addition, the authors thank Elan
Microelectronics CORP. for support in VLSI design flow
and simulation environment.

References

[1] ITU-T Recommendation H.264, Advanced video
coding for generic audiovisual services, 2003.
[2] ISO/IEC 14496–10:2003, Coding of Audiovisual
Objects—Part 10: Advanced Video Coding, 2003.
[3] ITU-T Recommend H.263, Video Coding for Low Bit
Rate Communication, 1998.
[4] Jorn Ostermann, Jan Bormans, Peter List, Detlev
Marpe, Matthias Narroschke, Fernando Pereira, Thomas
Stockhammer, and Thomas Wedi, Video Coding with
H.264/AVC: Tools, Performance, and Complexity, IEEE
Circuit and Systems Magazine, 2004, 7-28.
[5] M.I T. Orchard and G.J. Sullivan, Overlapped Bock
Motion Compensation: An Estimation-Theoretic
Approach, IEEE Transactions on Image Processing, 1994,
693-699.
[6] Peter List, Anthony Joch, Jani Lainema, Gisle
Bjøntegaard, and Marta Karczewicz, Adaptive
Deblocking Filter, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 13, 2003, 614-619.
[7] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro,
H.264/AVC baseline profile decoder complexity analysis,
IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, 2003, 715–727.
[8] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh, Tu-
Chih Wang, Te-Hao Chang, and Liang-Gee Chen,
Architecture Design for De-blocking Filter in
H.264/JVT/AVC. Proc. IEEE Conf. on Multimedia and Expo,
2003, 693-696.
[9] Miao Sima, Yuanhua Zhou, and Wei Zhang, An
Efficient Architecture for Adaptive Deblock filter of
H.264/AVC Video Coding, IEEE Transactions on
Consumer Electronics, Vol. 50, 2004, 292-296.

181

	ABSTRACT
	KEY WORDS

