

ALTERNATIVE PROCESSING ORDER WITH EFFICIENT ARCHITECTURE

FOR ADAPTIVE DEBLOCKING FILTER IN H.264/AVC

Chung-Ming Chen and Chung-Ho Chen Jian- Ping Zeng, Yu -Pin Chang, and Jing-Jou Tang
Department of Electrical Engin eering & Department of Electric Engineering

Institute of Computer and Communication Engineering Southern Taiwan University of Technology
National Cheng Kung University Taiwan, R.O.C.

 Taiwan, R.O.C. m9430107@webmail.stut.edu.tw
cmchen@casmail.ee.ncku.edu.tw ypchang@mail.stut.edu.tw

ABSTRACT
In this paper, we study and analyze the memory reference
of deblocking filter in H.264/AVC baseline decoder based
on SimpleScalar/ARM simulator. In order to reduce the
number of memory references and thus improve overall
system performance in an embedded system, we propose
an advanced filtering process order with an efficient VLSI
architecture which simultaneously processes the
horizontal filtering of vertical edge and vertical filtering
of horizontal edge. As a result, the performance of the
proposed scheme is 129% faster than the advanced
architecture of a previous proposal. Moreover, the number
of the total memory references is reduced by 78.75% and
52.5% respectively compared to the basic and advanced
architectures of the previous works.

KEY WORDS
Deblocking Filter, H.264/AVC, Video Coding.

1. Introduction

The H.264/AVC is the latest video coding standard in a
series of such standards: H.261, MPEG-1, MPEG-2,
H.263 [1], and MPEG4. It was approved by the ITU-T as
Recommendation H.264 [2] and by ISO/IEC as MPEG-4
part 10, Advance Video Coding (AVC) [3] in May 2003.
The functional blocks of H.264/AVC, as well as their
features, are shown in Figure 1.

As shown in the previous study [4], the most time
consuming portion of H.264/AVC video decoder is the
deblocking filter. It can be separated into two sub-
functions: the computation of the “boundary strength”
parameter, Bs for each 4-samples and the content-
dependent filtering process. Due to intensive
computations, in [5] and [6] dedicated hardware was
developed to accelerate only the content-dependent
filtering process. In this work, we present an advanced
processing method with an efficient VLSI architecture
which implements both the computation of boundary

strength parameter and content-dependent filtering
process. This new design significantly outperforms the
previous proposals in [5] and [6].

Figure 1: Block Diagram of H.264/AVC

The organization of this paper is as follows. In Section 2,
the algorithm of the deblocking filter is explained. Section
3 illustrates the block diagram of our previous proposed
architectures in [7], [8] and an advanced processing order
for this paper. Section 4 shows the simulation result.
Finally, conclusion is presented in Section 5.

2. Algorithm of Deblocking Filter

On the sample processing level, content of a set of sample
and quantization parameter threshold can turn on/off the
filtering for each individual sample. For example, as
shown in Figure 2, whether the samples p0 and q0 as well
as p1 and q1 are filtered is determined by using the
quantization parameter (QP), dependent threshold
Alpha(QP), and Beta(QP). Thus filtering of p0 and q0
only takes place if the following content activity check is
satisfied:
1. Bs != 0
2. |p0 - q0| < Alpha(QP)
3. |p1 - p0|< Beta(QP) and |q1 - q0| < Beta(QP).

496-089 184

kirk

Correspondingly, filtering of p1 or q1 takes place if the
condition below is satisfied:

 |p2-p0| < Beta(QP) or |q2-q0 |< Beta(QP).

A detailed description of the adaptive deblocking filter
can be found in [9]

Figure 2: Samples Across a 4x4 Block

3. Architecture

3.1 Edge Filter Operation

The complexity of H.264/AVC deblocking filter is mainly
based on two reasons. The first reason is the high adaptive
filtering, which requires several conditional processing on
each block edges and sample levels. As described in the
previous section, the threshold value of Alpha and Beta,
the table-derived operations, and edge filtering operations
are known to be very time consuming. Therefore , we
implemented an efficient VLSI architecture that includes
content activity checks, the table -derived operations, and
filter operations into edge filter unit to accelerate the
horizontal and vertical filtering on the boundary of two
adjacent basic 4x4 blocks as shown in Figure 3. A
detailed description of the edge filtering unit can be found
in [7].

Figure 3: Edge Filtering Unit

3.2 Simultaneous Processing Architecture

Another reason for the high complexity is the small block
size employed for residual coding in the H.264/AVC
video coding algorithm. Each sample in a picture must be

loaded/stored from/to memory 4 times; either to be
modified or to determine if the neighboring samples will
be modified. In order to reduce the numbers of memory
reference and improve the overall system performance,
we proposed another effic ient architecture, which can
simultaneously processes the horizontal filtering of
vertical edge and vertical filtering of horizontal edge as
shown in Figure 4. The proposed architecture is called
“Pipeline Buffer Shift Registers (PBSR)”.

There are three major functions in our architecture [8].
The first component is the Shift Operation Array. There
are eight forward ing shift register arrays in the
architecture (for example, Array1, 2, 4, 5, 6, 7, 8, and 9).
Each array contains four entries which contains 4
processed samples. The shift direction is shown in Figure
4. The second function of our proposed architecture is the
transposing operation as shown in Figure 4. The Array3
and Array10 latched the 4x4 block sample values that are
transposed from Array 2 and Array9 respectively. And the
final important functions are the horizontal and vertical
filter units which are described in the previous subsection.

Figure 4: Proposed Architecture

3.3 Basic Data Flow

In this subsection, the basic processing method using
raster scan order for a picture is shown in Figure 5. The
data flow for basic processing order to process each
macroblock is presented in Table 1. For a basic 4x4-block,
it takes 13 block cycles (52 clock cycles) to process the

185

first block B1 and the number of total processing time for
each macroblock is 32 block cycles (128 clock cycles). In
the first 5 block cycles (the first 20 clock cycles), the
blocks of E1, E2, E3, E4, and E5 are loaded from internal
memory to PBSR’s Array6, Array5, Arrar4, Array3, and
Array1 respectively and no filtering operations are
performed. In the next 2 block cycles (the sixth and
seventh block cycles), the horizontal filtering of vertical
edge V1 and V2 are performed respectively. In the eighth
block cycle, the PBSR architecture can simultaneously
process horizontal filtering of vertical edge V3 (the
boundary of block B1 and B2) and vertical filtering of
horizontal edge H3 (the boundary of block E1 and B1).
Block E1 is written to the internal memory in next block
cycle (the ninth block cycle). In the thirteenth block cycle,
the vertical filtering of horizontal edges H7 (the boundary
of block B1 and B5) are performed. At this time, block
B1 has finished 4 times filtering with the adjacent blocks
(left block E5, right block B2, top block E1, and bottom
block B5). Finally, PBSR writes block B1 to memory at
the fourteenth block cycle. Therefore, the number of total
block cycles required for a QCIF picture is 32x99=3168
(12672 clock cycles).

Table 1: Basic Data Flow in the PBSR
State Block Cycle
 5 6 7 8 9 10 11 12
Array1 E5 B1 B2 B3 B4 E5 B5 B6
Array2 E4 E5 B1 B2 B3 B4 E5 B5
Array3 E4 E5 B1 B2 B3 B4 E5 B5
Array4 E3 E4 E5 B1 B2 B3 B4 E5
Array5 E2 E3 E4 E5 B1 B2 B3 B4
Array6 E1 E2 E3 E4 E5 B1 B2 B3
Array7 E1 E2 E3 E4 E5 B1 B2
Array8 E1 E2 E3 E4 E5 B1
Array9 E1 E2 E3 E4 E5
Array10 E1 E2 E3 E4 E5
MEM E1 E2 E3 E4

Figure 5: Basic Figure 6: Advanced
Processing Order Processing Order

3.4 Advanced Data Flow

Based on our previous work, we present an improved
processing order as shown in Figure 6. The vertical

processing for a picture is in top-down order instead of
raster scan order. The basic idea of using vertical
processing is to buffer the initial blocks B13, B14, B15,
and B16 in PBSR’s Array8, Array7, Array6, and Array5
respectively as shown in Figure 7. When process a
macroblock from M1 to M2, the PBSR with this advanced
processing order does not need to load these initial blocks.
And thus we can save 4 block cycles when process each
macroblock, except for the macroblock at the bottom of a
picture. As a result, the number of total block cycles to
process a QCIF frame is 2021 (or 8084 clock cycles).
Table 2 shows the data flow of the vertical processing
order.

Figure 7: Processing Order

Table 2: Advanced Data Flow in the PBSR

State Block Cycle
 1 2 3 4 5 6 7 8
Array1 E9 B17 B18 B19 B20 E10 B21 B22
Array2 B16 E9 B17 B18 B19 B20 E10 B21
Array3 B16 E9 B17 B18 B19 B20 E10 B21
Array4 B15 B16 E9 B17 B18 B19 B20 E10
Array5 B14 B15 B16 E9 B17 B18 B19 B20
Array6 B13 B14 B15 B16 E9 B17 B18 B19
Array7 B13 B14 B15 B16 E9 B17 B18
Array8 B13 B14 B15 B16 E9 B17
Array9 B13 B14 B15 B16 E9
Array10 B13 B14 B15 B16 E9
MEM B13 B14 B15 B16

4. Result

The simulator used in this study is derived from the
SimpleScalar/ARM tool set [10], a suite of functional and
timing simulation tools for ARM ISA. Our baseline

186

simulation configuration models the Intel’s StrongARM
SA-110 processor.

4.1 Memory Reference

Table 3 shows the comparison of various architectures for
the number of memory references. Our architecture PBSR
using the advanced processing order can save 78.75% and
52.5% of the memory bandwidth respectively, when
compared to the previous schemes in [5]. Hence, our
architecture is able to significantly reduce power
consumption in an embedded system.

Table 3: Memory References per Macroblock
Author Architecture MEM

Ref
JM9.2 [2] Software Implementation 768
Huang [5] Basic + Single-port SRAM 768
Huang [5] Advanced + Dual-port SRAM 384
Huang [5] Basic + Two-port SRAM 768
Huang [5] Dual Arrays + Two-port SRAM 384

Basic
PBSR

Dual-port SRAM or
Two Single port SRAM

192

Advanced
PBSR

Dual-port SRAM or
Two Single port SRAM

176

4.2 Performance

Using the advanced processing order, the total number of
filtering cycles for one luma and two chroma macroblocks
takes 20x4=80 and (6x4=24)x2=48 respectively. As a
result, the filtering takes 128 cycles for a luma and two
chroma macroblocks. Our filtering scheme takes less
number of cycles when compared to 294 cycles of the
architecture described in [5]. Table 4 shows the
performance comparison of various architectures.

Table 4: Memory Cycles per MB
Author Architecture Cycles

MB
Huang [5] Basic + Single-port SRAM 558
Huang [5] Advanced + Dual-port SRAM 494
Huang [5] Basic + Two-port SRAM 462
Huang [5] Dual Arrays + Two-port SRAM 294

Basic
PBSR

Dual-port SRAM or
Two Single port SRAM

240

Advanced
PBSR

Dual-port SRAM or
Two Single port SRAM

128

5. Conclusion

In this paper, we study and analyze the memory reference
of deblocking filter in H.264/AVC baseline decoder based
on SimpleScalar/ARM simulator. In order to reduce the
number of memory references, we propose an advanced
processing order with an efficient VLSI architecture
which simultaneously processes the horizontal filtering of

vertical edge and vertical filtering of horizontal edge.
Simulation results show that the processing capability of
our proposed architecture is very appropriate for real-time
deblocking of 1280x720 30Hz video operating at
100MHz. According to the simulation results, this design
is a good option to use for the deblocking filter in an
embedded system design with H.264/AVC coding
systems .

Acknowledgements

The work in this paper is in part supported by the
National Science Council, Taiwan ROC, under NSC 93-
2220-E-006-004. In addition, the authors thank Elan
Microelectronics CORP (Fabless Semiconductor Corp.).
for support in VLSI design flow and simulation
environment.

References

[1] ITU-T Recommend H.263, Video Coding for Low Bit
Rate Communication, 1998.
[2] ITU-T Recommendation H.264, Advanced video
coding for generic audiovisual services, 2003.
[3] ISO/IEC 14496–10:2003, Coding of Audiovisual
Objects— Part 10: Advanced Video Coding, 2003.
[4] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro,
H.264/AVC baseline profile decoder complexity analysis,
IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, 2003, 715–727.
[5] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh, Tu-
Chih Wang, Te-Hao Chang, and Liang-Gee Chen,
“Architecture Design for De-blocking Filter in
H.264/JVT/AVC,” Proc. IEEE Conf. on Multimedia and
Expo, 2003, 693-696.
[6] Miao Sima, Yuanhua Zhou, and Wei Zhang, “An
Efficient Architecture for Adaptive Deblock filter of
H.264/AVC Video Coding,” IEEE Transactions on
Consumer Electronics, Vol. 50, 2004, 292-296.
[7] Chung-Ming Chen, Chung-Ho Chen, “An Efficient
VLSI Architecture for Edge Filtering in H.264/AVC,”
IASTED CSS, 2005.
[8] Chung-Ming Chen, Chung-Ho Chen, “An Efficient
Architecture for Deblocking Filter in H.264/AVC Video
Coding,” IASTED CIGM, 2005.
[9] Peter List, Anthony Joch, Jani Lainema, Gisle
Bjøntegaard, and Marta Karczewicz, Adaptive
Deblocking Filter, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 13, 2003, 614-619.
[10] Douglas C. Burger and Todd M. Austin, The
SimpleScalar Tool Set, Version 2.0. University of
Wisconsin, Madison Tech. Report. 1997.

187

