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ABSTRACT 
In this paper,  we study and analyze the memory reference 
of deblocking filter in H.264/AVC baseline decoder based 
on SimpleScalar/ARM simulator. In order to reduce the 
number of memory references and thus improve overall 
system performance in an embedded system, we propose 
an advanced filtering process order with an efficient VLSI 
architecture which simultaneously processes the 
horizontal filtering of vertical edge and vertical filtering 
of horizontal edge. As a result, the performance of the 
proposed scheme is 129% faster than the advanced 
architecture of a previous proposal. Moreover, the number 
of the total memory references is reduced by 78.75% and 
52.5% respectively compared to the basic and advanced 
architectures of the previous works. 
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1.  Introduction 
 
The H.264/AVC is the latest video coding standard in a 
series of such standards: H.261, MPEG-1, MPEG-2, 
H.263 [1], and MPEG4. It was approved by the ITU-T as 
Recommendation H.264 [2] and by ISO/IEC as MPEG-4 
part 10, Advance Video Coding (AVC) [3] in May 2003. 
The functional blocks of H.264/AVC, as well as their 
features, are shown in Figure 1.  
 
As shown in the previous study [4], the most time 
consuming portion of H.264/AVC video decoder is the 
deblocking filter. It can be separated into two sub-
functions: the computation of the “boundary strength” 
parameter, Bs for each 4-samples and the content-
dependent filtering process. Due to intensive 
computations, in [5] and [6] dedicated hardware was 
developed to accelerate only the content-dependent 
filtering process.  In this work, we present an advanced 
processing method with an efficient VLSI architecture 
which implements both the computation of boundary 

strength parameter and content-dependent filtering 
process. This new design significantly outperforms the 
previous proposals in [5] and [6]. 
 

 
Figure 1: Block Diagram of H.264/AVC 

 
The organization of this paper is as follows. In Section 2, 
the algorithm of the deblocking filter is explained. Section 
3 illustrates the block diagram of our previous proposed 
architectures in [7], [8] and an advanced processing order 
for this paper. Section 4 shows the simulation result. 
Finally, conclusion is presented in Section 5. 
 
 
2.  Algorithm of Deblocking Filter 
 
On the sample processing level, content of a set of sample 
and quantization parameter threshold can turn on/off the 
filtering for each individual sample. For example, as 
shown in Figure 2, whether the samples p0 and q0 as well 
as p1 and q1 are filtered is determined by using the 
quantization parameter (QP), dependent threshold 
Alpha(QP), and Beta(QP). Thus filtering of p0 and q0 
only takes place if the following content activity check is 
satisfied: 
1. Bs != 0  
2. |p0 - q0| < Alpha(QP)  
3. |p1 - p0|< Beta(QP) and |q1 - q0|  < Beta(QP). 
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Correspondingly, filtering of p1 or q1 takes place if the 
condition below is satisfied: 
 

   |p2-p0| < Beta(QP) or |q2-q0 |< Beta(QP). 
 

A detailed description of the adaptive deblocking filter 
can be found in [9] 

 
Figure 2: Samples Across a 4x4 Block 

 
 
3.  Architecture  
 
3.1 Edge Filter Operation 
 
The complexity of H.264/AVC deblocking filter is mainly 
based on two reasons. The first reason is the high adaptive 
filtering, which requires several conditional processing on 
each block edges and sample levels. As described in the 
previous section, the threshold value of Alpha and Beta, 
the table-derived operations, and edge filtering operations 
are known to be very time consuming. Therefore , we 
implemented an efficient VLSI architecture that includes 
content activity checks, the table -derived operations, and 
filter operations into edge filter unit to accelerate the 
horizontal and vertical filtering on the boundary of two 
adjacent basic 4x4 blocks as shown in Figure 3.  A 
detailed description of the edge filtering unit can be found 
in [7].  

 
Figure 3: Edge Filtering Unit 

 
3.2 Simultaneous Processing Architecture  
 
Another reason for the high complexity is the small block 
size employed for residual coding in the H.264/AVC 
video coding algorithm. Each sample in a picture must be 

loaded/stored from/to memory 4 times; either to be 
modified or to determine if the neighboring samples will 
be modified. In order to reduce the numbers of memory 
reference and improve the overall system performance, 
we proposed another effic ient architecture, which can 
simultaneously processes the horizontal filtering of 
vertical edge and vertical filtering of horizontal edge as 
shown in Figure 4. The proposed architecture is called 
“Pipeline Buffer Shift Registers (PBSR)”.  
 
There are three major functions in our architecture [8]. 
The first component is the Shift Operation Array. There 
are eight forward ing shift register arrays in the 
architecture (for example, Array1, 2, 4, 5, 6, 7, 8, and 9). 
Each array contains four entries which contains 4 
processed samples. The shift direction is shown in Figure 
4. The second function of our proposed architecture is the 
transposing operation as shown in Figure 4. The Array3 
and Array10 latched the 4x4 block sample values that are 
transposed from Array 2 and Array9 respectively. And the 
final important functions are the horizontal and vertical 
filter units which are described in the previous subsection.  
 

 
 

Figure 4: Proposed Architecture 
 
3.3 Basic Data Flow 
 
In this subsection, the basic processing method using 
raster scan order for a picture  is shown in Figure 5. The 
data flow for basic processing order to process each 
macroblock is presented in Table 1. For a basic 4x4-block, 
it takes 13 block cycles (52 clock cycles) to process the 
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first block B1 and the number of total processing time for 
each macroblock is 32 block cycles (128 clock cycles). In 
the first 5 block cycles (the first 20 clock cycles), the 
blocks of E1, E2, E3, E4, and E5 are loaded from internal 
memory to PBSR’s Array6, Array5, Arrar4, Array3, and 
Array1 respectively and no filtering operations are 
performed. In the next 2 block cycles (the sixth and 
seventh block cycles), the horizontal filtering of vertical 
edge V1 and V2 are performed respectively. In the eighth 
block cycle, the PBSR architecture can simultaneously 
process horizontal filtering of vertical edge V3 (the 
boundary of block B1 and B2) and vertical filtering of 
horizontal edge H3 (the boundary of block E1 and B1). 
Block E1 is written to the internal memory in next block 
cycle (the ninth block cycle). In the thirteenth block cycle, 
the vertical filtering of horizontal edges H7 (the boundary 
of block B1 and B5) are performed. At this time, block 
B1 has finished 4 times filtering with the adjacent blocks 
(left block E5, right block B2, top block E1, and bottom 
block B5). Finally, PBSR writes block B1 to memory at 
the fourteenth block cycle. Therefore, the number of total 
block cycles required for a QCIF picture is 32x99=3168 
(12672 clock cycles). 
 

Table 1: Basic Data Flow in the PBSR 
State Block Cycle 
 5 6 7 8 9 10 11 12 
Array1 E5 B1 B2 B3 B4 E5 B5 B6 
Array2 E4 E5 B1 B2 B3 B4 E5 B5 
Array3 E4 E5 B1 B2 B3 B4 E5 B5 
Array4 E3 E4 E5 B1 B2 B3 B4 E5 
Array5 E2 E3 E4 E5 B1 B2 B3 B4 
Array6 E1 E2 E3 E4 E5 B1 B2 B3 
Array7  E1 E2 E3 E4 E5 B1 B2 
Array8   E1 E2 E3 E4 E5 B1 
Array9    E1 E2 E3 E4 E5 
Array10    E1 E2 E3 E4 E5 
MEM     E1 E2 E3 E4 
 

 
 

Figure 5: Basic                    Figure 6: Advanced 
Processing Order                    Processing Order 

 
3.4 Advanced Data Flow 
 
Based on our previous work, we present an improved 
processing order as shown in Figure 6. The vertical 

processing for a picture is in top-down order instead of 
raster scan order. The basic idea of using vertical 
processing is to buffer the initial blocks B13, B14, B15, 
and B16 in PBSR’s Array8, Array7, Array6, and Array5 
respectively as shown in Figure 7. When process a 
macroblock from M1 to M2, the PBSR with this advanced 
processing order does not need to load these initial blocks. 
And thus we can save 4 block cycles when process each 
macroblock, except for the macroblock at the bottom of a 
picture. As a result, the number of total block cycles to 
process a QCIF frame is 2021 (or 8084 clock cycles). 
Table 2 shows the data flow of the vertical processing 
order. 

 
Figure 7:  Processing Order 

 
Table 2: Advanced Data Flow in the PBSR 

State Block Cycle 
 1 2 3 4 5 6 7 8 
Array1 E9 B17 B18 B19 B20 E10 B21 B22 
Array2 B16 E9 B17 B18 B19 B20 E10 B21 
Array3 B16 E9 B17 B18 B19 B20 E10 B21 
Array4 B15 B16 E9 B17 B18 B19 B20 E10 
Array5 B14 B15 B16 E9 B17 B18 B19 B20 
Array6 B13 B14 B15 B16 E9 B17 B18 B19 
Array7  B13 B14 B15 B16 E9 B17 B18 
Array8   B13 B14 B15 B16 E9 B17 
Array9    B13 B14 B15 B16 E9 
Array10    B13 B14 B15 B16 E9 
MEM     B13 B14 B15 B16 

 
 
4.  Result 
 
The simulator used in this study is  derived from the 
SimpleScalar/ARM tool set [10], a suite of functional and 
timing simulation tools for ARM ISA. Our baseline 
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simulation configuration models the Intel’s StrongARM 
SA-110 processor. 
 
4.1 Memory Reference 
 
Table 3 shows the comparison of various architectures for 
the number of memory references. Our architecture PBSR 
using the advanced processing order can save 78.75% and 
52.5% of the memory bandwidth respectively, when 
compared to the previous schemes in [5]. Hence, our 
architecture is able to significantly reduce power 
consumption in an embedded system. 
 

Table 3: Memory References per Macroblock 
Author Architecture MEM 

Ref 
JM9.2  [2] Software Implementation 768 
Huang [5] Basic + Single-port SRAM 768 
Huang [5] Advanced + Dual-port SRAM 384 
Huang [5] Basic + Two-port SRAM 768 
Huang [5] Dual Arrays + Two-port SRAM 384 

Basic 
PBSR 

Dual-port SRAM or  
Two Single port SRAM 

192 

Advanced 
PBSR 

Dual-port SRAM or  
Two Single port SRAM 

176 

 
4.2 Performance 
 
Using the advanced processing order, the total number of 
filtering cycles for one luma and two chroma macroblocks 
takes 20x4=80 and (6x4=24)x2=48 respectively. As a 
result, the filtering takes 128 cycles for a luma and two 
chroma macroblocks. Our filtering scheme takes less 
number of cycles when compared to 294 cycles of the 
architecture described in [5]. Table 4 shows the 
performance comparison of various architectures. 
 

Table 4: Memory Cycles per MB 
Author Architecture Cycles 

MB 
Huang [5] Basic + Single-port SRAM 558 
Huang [5] Advanced + Dual-port SRAM 494 
Huang [5] Basic + Two-port SRAM 462 
Huang [5] Dual Arrays + Two-port SRAM 294 

Basic 
PBSR 

Dual-port SRAM or 
Two Single port SRAM 

240 

Advanced 
PBSR 

Dual-port SRAM or 
Two Single port SRAM 

128 

 
 
5.  Conclusion 
 
In this paper, we study and analyze the memory reference 
of deblocking filter in H.264/AVC baseline decoder based 
on SimpleScalar/ARM simulator. In order to reduce the 
number of memory references, we propose an advanced 
processing order with an efficient VLSI architecture 
which simultaneously processes the horizontal filtering of 

vertical edge and vertical filtering of horizontal edge. 
Simulation results show that the processing capability of 
our proposed architecture is very appropriate for real-time 
deblocking of 1280x720 30Hz video operating at 
100MHz. According to the simulation results, this  design 
is a good option to use for the deblocking filter in an 
embedded system design with H.264/AVC coding 
systems . 
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