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ABSTRACT 
In this paper, we propose an efficient parallel architecture 
for the adaptive deblocking filter in H.264/AVC video 
coding standard. We use six forwarding shift register 
arrays (of which each contains 4×4 8-bit shift registers) 
with two transposing operations and two sets of filter 
operation (each set contains four edge filter operations) to 
support simultaneous processing of the horizontal and 
vertical filtering. The proposed architecture is called 
“Parallel Filtering Architecture (PFA).” As a result, the 
performance of PFA is 390% faster than the advanced 
architecture of the previous proposal. Moreover, the 
number of total memory references is reduced by 63% 
and 25% respectively compared to the basic and advanced 
architectures of the previous proposal. 
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1.  Introduction 
 
H.264/AVC [1] is the latest coding standard jointly 
developed by the Video Coding Experts Group (VCEG) 
of ITUT-T and the Moving Picture Experts Group 
(MPEG) of ISO/IEC. Comparing the H.264/AVC video 
coding tools like multiple reference frame, quarter per 
motion compensation, deblocking filter or integer 
transform to the tools of previous video coding standard, 
H.264/AVC brought in the most algorithm discontinuities 
in the evolution of video coding standards. It is 
significantly outperforms the previous ones in bit-rate 
reduction. The functional blocks of H.264/AVC, as well 
as their features, are shown in Figure 1. Previous studies 
[2] using the software base of this new standard, suggest 
that H.264 offers up to 50% better compression than 
MPEG-2 and up to 30% better than H.263+ [3] and 
MPEG-4 advanced simple profile. 
 
The block-based structure of the video coding architecture 
produces artifacts known as blocking artifacts. These 
blocking artifacts can occur from both quantization of the 

transform coefficients and block-based motion 
compensation. In order to reduce the blocking artifacts, 
the deblocking filter has been successfully applied in 
H.263+ and MPEG-4 part 2 implementations as a post-
processing filter. However this technique is non optimal 
as the reference frame used for the inter prediction has not 
been filtered. The blocking artifacts that appear in this 
reference frame result in less accurate prediction 
comparison between the current frame and reference 
frame. Consequently the coding efficient is reduced. In 
H.264/AVC, the deblocking filter is moved inside the 
motion-compensated loop to filter block edges resulting 
from the prediction and residual difference coding stages 
of the decoding process. As a result  from previous study 
[2], the adaptive deblocking filter reduces the bit rate 
typically by 5-10% while producing the same objective 
quality as the non-filtered video. Since it is within the 
motion compensation prediction loop, the deblocking 
filter is often referred to as an “in-loop filter”. A detailed 
description of the adaptive deblocking filter can be found 
in [4]. 
 

 
Figure 1: Block Diagram of H.264/AVC 

 
As shown in Figure 1, H.264/AVC uses an in-loop 
deblocking filter to reduce the blocking artifacts 
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introduced in the motion compensation loop. The 
deblocking filter is highly adaptive that adjusts its 
strength depending upon compression mode of a 
macroblock (Intra or Inter), the quantization parameter, 
motion vector, frame or field coding decision and the 
pixel values. This coding scheme is highly adaptive and is 
typically not suitable for DSP or SIMD computational 
architectures. Due to intensive computations, in [5] and [6] 
dedicated hardware was developed for acceleration.  Our 
proposed architecture outperforms the previous proposals 
through parallel processing and significant reduction in 
memory reference. 
 
The organization of this paper is as follows: In Section 2, 
the algorithm used in the deblocking filter is explained. 
Section 3 illustrates the block diagram of the proposed 
architecture and functionality of each module. Section 4 
shows the simulation results. Finally, conclusion is 
presented in Section 5. 
 
 
2.  Algorithm of Deblocking Filter 
 
On the sample processing level, content of a set of sample 
and quantization parameter threshold can turn on/off the 
filtering for each individual sample. For exa mple as 
shown in Figure 2, whether the samples p0 and q0 as well 
as p1 and q1 are filtered is determined by using 
quantization parameter (QP), dependent threshold 
Alpha(QP), and Beta(QP). Thus filtering of p0 and q0 
only takes place if the following content activity check is 
satisfied: 
 
1. Bs != 0  
2. |p0 - q0| < Alpha(QP)  
3. |p1 - p0|< Beta(QP) and |q1 - q0|  < Beta(QP). 
 
Correspondingly, filtering of p1 or q1 takes place if the 
condition below is satisfied: 
 
|p2-p0| < Beta(QP) or |q2-q0 |< Beta(QP) 
 

 
Figure 2: Principle of Deblocking Filter 

3.  Architecture  
 
3.1 Edge Filter Operation 
 
One of the most time consuming operation of H.264/AVC 
deblocking filter is edge filtering operation. It employs 
highly adaptive filtering scheme, which requires several 
conditional processing on each block edges and sample 
levels. As described in the previous section, the threshold 
value of Alpha and Beta, the table-derived operations, and 
edge filtering operations are known to be very time 
consuming. Therefore , we implemented an efficient VLSI 
architecture that includes these content activity checks, 
the table-derived operations and filter operations into 
edge filter unit to accelerate the horizontal and vertical 
filtering on the boundary of two adjacent basic 4x4 blocks 
as shown in Figure 3. For parallel processing of each 4x4 
block at one clock cycle, the horizontal and vertical 
filtering unit each contain four edge filtering operations to 
improve the overall system performance. A detailed 
description of the edge filtering operation can be found in  
our previous proposed VLSI architecture [7]. 
 

 
Figure 3: Edge Filtering Unit 

 
3.2 Parallel Processing Architecture  
 
Another time consuming part of H.264/AVC is the small 
block size employed for residual coding in the 
H.264/AVC video coding algorithm. With the 4x4 blocks 
and a typical filter length of 2 samples in each direction, 
each sample in a picture must be loaded/stored from/to 
memory 4 times; either to be modified or to determine if  
the neighboring samples will be modified. In order to 
reduce the requirement of on-chip SRAM bandwidth and 
increase the throughput of the filter processing, we 
propose an efficient parallel processing scheme as shown 
in Figure 4, which can perform simultaneous processing 
of horizontal and vertical filtering and reduce the number 
of memory access of each 4x4 block to one.  
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Figure 4: Parallel Filtering Architecture 

 
3.3 Parallel Processing Order 
 
Our architecture utilizes an alternative processing order, 
which allows the simultaneous processing of horizontal 
and vertical filtering as shown in Figure 5. The processing 
order begins from V6 to V7 (“V” denotes a vertical edge 
and “6” the sixth cycle). And then at the eighth cycle, the 
vertical edge V8 and horizontal edge H8 (“H” denotes a 
horizontal edge and “8” the eighth cycle) are 
simultaneously processed. Then V9,  H9 follows, so on 
and so forth. This processing order enables concurrent 
horizontal and vertical filtering to reduce memory access 
by reusing data through forwarding in the PFA arrays. 
 

 
 

Figure 5:  Parallel Processing Order 
 

3.3 Components of Proposal Architecture 
 
There are three major functions in our proposed 
architecture PFA. The first comp onent is the Shift 

Operation Array (SOA). There are six forwarding shift 
register arrays in our proposed architecture (for example, 
Array1, 3, 4, 5, 6, and 7). Each array contains 16 
processed samples. The operation of SOA can shift a 
basic 4x4-block to next Array at a  time. The shift  
direction is  shown in Figure 4. The second function of our 
proposed architecture is the transposing operation as 
shown in Figure 4. The Array2 and Array8 latched the 
filtered samples that are transposed from Array1 and 
Array7 respectively. And the final important functions are 
the horizontal and vertical filtering units. Each contains 4 
edge filtering units which are  described in section 3.1. 
 
3.4 Data Flow 
 
In this subsection, the basic processing order for a 
macroblock is shown in Figure  5. The data flow of the 
proposed architecture PFA for each macroblock is 
presented in Table 1. Assuming the memory data bus is 
128-bit width. Therefore the proposed architecture PFA is 
able to filter one block at a time. For a basic 4x4-block, it 
takes 13 cycles to process the first block B1 and the 
number of total processing time for each macroblock is 32 
cycles. In the first 5 cycles, the blocks of E1, E2, E3, E4, 
and E5 are loaded from internal memory to PFA’s Array5, 
Array4, Arrar3, Array2, and Array1 respectively and no 
filtering operations are performed. In the next two cycles 
(the sixth and seventh cycles), the horizontal filtering of 
vertical edge V6 and V7 are performed respectively. In 
the eighth cycle, the proposed architecture PFA can 
simultaneously process horizontal filtering of vertical 
edge V8 (the boundary of block B1 and B2) and vertical 
filtering of horizontal edge H8 (the boundary of block E1 
and B1) and write the block E1 to internal memory in 
next cycle (the ninth cycle). In the thirteenth cycle, the 
vertical filtering of horizontal edges H13 (the boundary of 
lock B1 and B5) are performed. At this time, the block B1 
has been filtered 4 times with the boundaries of block E5, 
B2, E1, and B5.  Finally, PFA writes the block B1 to 
memory at the fourteenth cycle. As a result, the number of 
cycles to process a macroblock is 32. Therefore, the 
number of total block cycles required for a QCIF picture 
is 32x99=3168. 
 

Table 1: Data Flow in the PFA 
State Cycles 

 5 6 7 8 9 10 11 12 
Array1 E5 B1 B2 B3 B4 E5 B5 B6 
Array2 E4 E5 B1 B2 B3 B4 E5 B5 
Array3 E3 E4 E5 B1 B2 B3 B4 E5 
Array4 E2 E3 E4 E5 B1 B2 B3 B4 
Array5 E1 E2 E3 E4 E5 B1 B2 B3 
Array6  E1 E2 E3 E4 E5 B1 B2 
Array7   E1 E2 E3 E4 E5 B1 
Array8    E1 E2 E3 E4 E5 
MEM     E1 E2 E3 E4 
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4.  Result 
 
As described in the previous section, the key feature of 
our proposed architecture is the utilization of the Pipeline 
Filtering Architecture (PFA) to reduce memory references 
and simultaneously process the horizontal and vertical 
filtering. As a result, the number of total memory 
reference for a luminance macroblock is reduced to 192. 
It is clear that the number of memory references is 
reduced by 63% of the software version. In other words, 
the memory performance of our scheme increases 3 times 
when compared to software implementation. Table 2 
shows the comparisons of memories (Luminance only) 
with the previous proposals in [5]. Our architecture can 
save more than 63% of the memory bandwidth compared 
to the basic of the previous schemes. Hence, our 
architecture is able to significantly reduce power 
consumption. 
 

Table 2: Memory References per Macroblock  
Author Architecture MEM 

Ref 
Huang[5] Basic+Single -port SRAM 512 
Huang[5] Advanced+Dual-port SRAM 256 
Huang[5] Basic+Two-port SRAM 512 
Huang[5] Dual Arrays+Two-port SRAM 256 

PFA Dual-port SRAM or  
Two Single port SRAM 

192 

 
As described in previous section, the number of cycles for 
filtering each luma macroblock takes 32 cycles. Therefore, 
the number of total cycles for filtering one luma and two 
chroma macroblocks takes 32 and (6+8)x2 = 28 cycles 
respectively. As a result, the total filtering takes 60 cycles 
for a luma and two chroma macroblocks. Our filtering 
scheme takes less number of cycles when compared to 
294 cycles of the architecture described in [5]. Table 3 
illustrates the cycle count required for each different 
implementation. 
 

Table 3: Memory Cycles per Macroblock  
Author Architecture MEM 

Ref 
Huang[5] Basic+Single -port SRAM 558 
Huang[5] Advanced+Dual-port SRAM 494 
Huang[5] Basic+Two-port SRAM 462 
Huang[5] Dual Arrays+Two-port SRAM 294 

PFA Dual-port SRAM or 
Two Single port SRAM 

60 

 
 
5.  Conclusion 
 
In this paper, we propose a parallel architecture with 
novel processing scheme to accelerate the operations of 
deblocking filter for H.264/AVC video coding and 
implement it in Verilog HDL. Key features include a 

novel processing scheme to reduce the bandwidth of 
memory system and two sets of parallel edge filtering unit 
to speed up the overall system performance.  As a result, 
the PFA can be used in a high performance system which 
only requires a simple bus interface for the integration 
into video SoC platforms that support a wide range of 
applications such as video telephony, video conferencing, 
video streaming, digital video authoring, delivery of high-
definition of DVD content, highest quality video for 
digital cinema, and many others. 
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