

 PARALLEL PROCESSING FOR DEBLOCKING FILTER
IN H.264/AVC

Chung-Ming Chen Chung-Ho Chen

Department of Electrical Engineering & Department of Electrical Engineering &
Institute of Computer and Communication Engineering Institute of Computer and Communication Engineering

National Cheng Kung University National Cheng Kung University
Taiwan, R.O.C. Taiwan, R.O.C.

cmchen@casmail.ee.ncku.edu.tw chchen@mail.ncku.edu.tw

ABSTRACT
In this paper, we propose an efficient parallel architecture
for the adaptive deblocking filter in H.264/AVC video
coding standard. We use six forwarding shift register
arrays (of which each contains 4×4 8-bit shift registers)
with two transposing operations and two sets of filter
operation (each set contains four edge filter operations) to
support simultaneous processing of the horizontal and
vertical filtering. The proposed architecture is called
“Parallel Filtering Architecture (PFA).” As a result, the
performance of PFA is 390% faster than the advanced
architecture of the previous proposal. Moreover, the
number of total memory references is reduced by 63%
and 25% respectively compared to the basic and advanced
architectures of the previous proposal.

KEY WORDS
Deblocking Filter, H.264/AVC, Video Coding.

1. Introduction

H.264/AVC [1] is the latest coding standard jointly
developed by the Video Coding Experts Group (VCEG)
of ITUT-T and the Moving Picture Experts Group
(MPEG) of ISO/IEC. Comparing the H.264/AVC video
coding tools like multiple reference frame, quarter per
motion compensation, deblocking filter or integer
transform to the tools of previous video coding standard,
H.264/AVC brought in the most algorithm discontinuities
in the evolution of video coding standards. It is
significantly outperforms the previous ones in bit-rate
reduction. The functional blocks of H.264/AVC, as well
as their features, are shown in Figure 1. Previous studies
[2] using the software base of this new standard, suggest
that H.264 offers up to 50% better compression than
MPEG-2 and up to 30% better than H.263+ [3] and
MPEG-4 advanced simple profile.

The block-based structure of the video coding architecture
produces artifacts known as blocking artifacts. These
blocking artifacts can occur from both quantization of the

transform coefficients and block-based motion
compensation. In order to reduce the blocking artifacts,
the deblocking filter has been successfully applied in
H.263+ and MPEG-4 part 2 implementations as a post-
processing filter. However this technique is non optimal
as the reference frame used for the inter prediction has not
been filtered. The blocking artifacts that appear in this
reference frame result in less accurate prediction
comparison between the current frame and reference
frame. Consequently the coding efficient is reduced. In
H.264/AVC, the deblocking filter is moved inside the
motion-compensated loop to filter block edges resulting
from the prediction and residual difference coding stages
of the decoding process. As a result from previous study
[2], the adaptive deblocking filter reduces the bit rate
typically by 5-10% while producing the same objective
quality as the non-filtered video. Since it is within the
motion compensation prediction loop, the deblocking
filter is often referred to as an “in-loop filter”. A detailed
description of the adaptive deblocking filter can be found
in [4].

Figure 1: Block Diagram of H.264/AVC

As shown in Figure 1, H.264/AVC uses an in-loop
deblocking filter to reduce the blocking artifacts

496-134 188

kirk

introduced in the motion compensation loop. The
deblocking filter is highly adaptive that adjusts its
strength depending upon compression mode of a
macroblock (Intra or Inter), the quantization parameter,
motion vector, frame or field coding decision and the
pixel values. This coding scheme is highly adaptive and is
typically not suitable for DSP or SIMD computational
architectures. Due to intensive computations, in [5] and [6]
dedicated hardware was developed for acceleration. Our
proposed architecture outperforms the previous proposals
through parallel processing and significant reduction in
memory reference.

The organization of this paper is as follows: In Section 2,
the algorithm used in the deblocking filter is explained.
Section 3 illustrates the block diagram of the proposed
architecture and functionality of each module. Section 4
shows the simulation results. Finally, conclusion is
presented in Section 5.

2. Algorithm of Deblocking Filter

On the sample processing level, content of a set of sample
and quantization parameter threshold can turn on/off the
filtering for each individual sample. For exa mple as
shown in Figure 2, whether the samples p0 and q0 as well
as p1 and q1 are filtered is determined by using
quantization parameter (QP), dependent threshold
Alpha(QP), and Beta(QP). Thus filtering of p0 and q0
only takes place if the following content activity check is
satisfied:

1. Bs != 0
2. |p0 - q0| < Alpha(QP)
3. |p1 - p0|< Beta(QP) and |q1 - q0| < Beta(QP).

Correspondingly, filtering of p1 or q1 takes place if the
condition below is satisfied:

|p2-p0| < Beta(QP) or |q2-q0 |< Beta(QP)

Figure 2: Principle of Deblocking Filter

3. Architecture

3.1 Edge Filter Operation

One of the most time consuming operation of H.264/AVC
deblocking filter is edge filtering operation. It employs
highly adaptive filtering scheme, which requires several
conditional processing on each block edges and sample
levels. As described in the previous section, the threshold
value of Alpha and Beta, the table-derived operations, and
edge filtering operations are known to be very time
consuming. Therefore , we implemented an efficient VLSI
architecture that includes these content activity checks,
the table-derived operations and filter operations into
edge filter unit to accelerate the horizontal and vertical
filtering on the boundary of two adjacent basic 4x4 blocks
as shown in Figure 3. For parallel processing of each 4x4
block at one clock cycle, the horizontal and vertical
filtering unit each contain four edge filtering operations to
improve the overall system performance. A detailed
description of the edge filtering operation can be found in
our previous proposed VLSI architecture [7].

Figure 3: Edge Filtering Unit

3.2 Parallel Processing Architecture

Another time consuming part of H.264/AVC is the small
block size employed for residual coding in the
H.264/AVC video coding algorithm. With the 4x4 blocks
and a typical filter length of 2 samples in each direction,
each sample in a picture must be loaded/stored from/to
memory 4 times; either to be modified or to determine if
the neighboring samples will be modified. In order to
reduce the requirement of on-chip SRAM bandwidth and
increase the throughput of the filter processing, we
propose an efficient parallel processing scheme as shown
in Figure 4, which can perform simultaneous processing
of horizontal and vertical filtering and reduce the number
of memory access of each 4x4 block to one.

189

Figure 4: Parallel Filtering Architecture

3.3 Parallel Processing Order

Our architecture utilizes an alternative processing order,
which allows the simultaneous processing of horizontal
and vertical filtering as shown in Figure 5. The processing
order begins from V6 to V7 (“V” denotes a vertical edge
and “6” the sixth cycle). And then at the eighth cycle, the
vertical edge V8 and horizontal edge H8 (“H” denotes a
horizontal edge and “8” the eighth cycle) are
simultaneously processed. Then V9, H9 follows, so on
and so forth. This processing order enables concurrent
horizontal and vertical filtering to reduce memory access
by reusing data through forwarding in the PFA arrays.

Figure 5: Parallel Processing Order

3.3 Components of Proposal Architecture

There are three major functions in our proposed
architecture PFA. The first comp onent is the Shift

Operation Array (SOA). There are six forwarding shift
register arrays in our proposed architecture (for example,
Array1, 3, 4, 5, 6, and 7). Each array contains 16
processed samples. The operation of SOA can shift a
basic 4x4-block to next Array at a time. The shift
direction is shown in Figure 4. The second function of our
proposed architecture is the transposing operation as
shown in Figure 4. The Array2 and Array8 latched the
filtered samples that are transposed from Array1 and
Array7 respectively. And the final important functions are
the horizontal and vertical filtering units. Each contains 4
edge filtering units which are described in section 3.1.

3.4 Data Flow

In this subsection, the basic processing order for a
macroblock is shown in Figure 5. The data flow of the
proposed architecture PFA for each macroblock is
presented in Table 1. Assuming the memory data bus is
128-bit width. Therefore the proposed architecture PFA is
able to filter one block at a time. For a basic 4x4-block, it
takes 13 cycles to process the first block B1 and the
number of total processing time for each macroblock is 32
cycles. In the first 5 cycles, the blocks of E1, E2, E3, E4,
and E5 are loaded from internal memory to PFA’s Array5,
Array4, Arrar3, Array2, and Array1 respectively and no
filtering operations are performed. In the next two cycles
(the sixth and seventh cycles), the horizontal filtering of
vertical edge V6 and V7 are performed respectively. In
the eighth cycle, the proposed architecture PFA can
simultaneously process horizontal filtering of vertical
edge V8 (the boundary of block B1 and B2) and vertical
filtering of horizontal edge H8 (the boundary of block E1
and B1) and write the block E1 to internal memory in
next cycle (the ninth cycle). In the thirteenth cycle, the
vertical filtering of horizontal edges H13 (the boundary of
lock B1 and B5) are performed. At this time, the block B1
has been filtered 4 times with the boundaries of block E5,
B2, E1, and B5. Finally, PFA writes the block B1 to
memory at the fourteenth cycle. As a result, the number of
cycles to process a macroblock is 32. Therefore, the
number of total block cycles required for a QCIF picture
is 32x99=3168.

Table 1: Data Flow in the PFA
State Cycles

 5 6 7 8 9 10 11 12
Array1 E5 B1 B2 B3 B4 E5 B5 B6
Array2 E4 E5 B1 B2 B3 B4 E5 B5
Array3 E3 E4 E5 B1 B2 B3 B4 E5
Array4 E2 E3 E4 E5 B1 B2 B3 B4
Array5 E1 E2 E3 E4 E5 B1 B2 B3
Array6 E1 E2 E3 E4 E5 B1 B2
Array7 E1 E2 E3 E4 E5 B1
Array8 E1 E2 E3 E4 E5
MEM E1 E2 E3 E4

190

4. Result

As described in the previous section, the key feature of
our proposed architecture is the utilization of the Pipeline
Filtering Architecture (PFA) to reduce memory references
and simultaneously process the horizontal and vertical
filtering. As a result, the number of total memory
reference for a luminance macroblock is reduced to 192.
It is clear that the number of memory references is
reduced by 63% of the software version. In other words,
the memory performance of our scheme increases 3 times
when compared to software implementation. Table 2
shows the comparisons of memories (Luminance only)
with the previous proposals in [5]. Our architecture can
save more than 63% of the memory bandwidth compared
to the basic of the previous schemes. Hence, our
architecture is able to significantly reduce power
consumption.

Table 2: Memory References per Macroblock
Author Architecture MEM

Ref
Huang[5] Basic+Single -port SRAM 512
Huang[5] Advanced+Dual-port SRAM 256
Huang[5] Basic+Two-port SRAM 512
Huang[5] Dual Arrays+Two-port SRAM 256

PFA Dual-port SRAM or
Two Single port SRAM

192

As described in previous section, the number of cycles for
filtering each luma macroblock takes 32 cycles. Therefore,
the number of total cycles for filtering one luma and two
chroma macroblocks takes 32 and (6+8)x2 = 28 cycles
respectively. As a result, the total filtering takes 60 cycles
for a luma and two chroma macroblocks. Our filtering
scheme takes less number of cycles when compared to
294 cycles of the architecture described in [5]. Table 3
illustrates the cycle count required for each different
implementation.

Table 3: Memory Cycles per Macroblock
Author Architecture MEM

Ref
Huang[5] Basic+Single -port SRAM 558
Huang[5] Advanced+Dual-port SRAM 494
Huang[5] Basic+Two-port SRAM 462
Huang[5] Dual Arrays+Two-port SRAM 294

PFA Dual-port SRAM or
Two Single port SRAM

60

5. Conclusion

In this paper, we propose a parallel architecture with
novel processing scheme to accelerate the operations of
deblocking filter for H.264/AVC video coding and
implement it in Verilog HDL. Key features include a

novel processing scheme to reduce the bandwidth of
memory system and two sets of parallel edge filtering unit
to speed up the overall system performance. As a result,
the PFA can be used in a high performance system which
only requires a simple bus interface for the integration
into video SoC platforms that support a wide range of
applications such as video telephony, video conferencing,
video streaming, digital video authoring, delivery of high-
definition of DVD content, highest quality video for
digital cinema, and many others.

Acknowledgements

The work in this paper is in part supported by the
National Science Council, Taiwan ROC, under NSC 93-
2220-E-006-004. In addition, the authors thank Elan
Microelectronics Corp. (Fabless Semiconductor Corp.).
for support in VLSI design flow and simulation
environment.

References

[1] ITU-T Recommendation H.264, Advanced video
coding for generic audiovisual services, 2003.
[2] Jorn Ostermann, Jan Bormans, Peter List, Detlev
Marpe, Matthias Narroschke, Fernando Pereira, Thomas
Stockhammer, and Thomas Wedi, Video Coding with
H.264/AVC: Tools, Performance, and Complexity, IEEE
Circuit and Systems Magazine, 2004, 7-28.
[3] ITU-T Recommend H.263, Video Coding for Low Bit
Rate Communication, 1998.
[4] Peter List, Anthony Joch, Jani Lainema, Gisle
Bjøntegaard, and Marta Karczewicz, Adaptive
Deblocking Filter, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 13, 2003, 614-619.
[5] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh, Tu-
Chih Wang, Te-Hao Chang, and Liang-Gee Chen,
Architecture Design for De -blocking Filter in
H.264/JVT/AVC. Proc. IEEE Conf. on Multimedia and
Expo, 2003, 693-696.
[6] Miao Sima, Yuanhua Zhou, and Wei Zhang, An
Efficient Architecture for Adaptive Deblock filter of
H.264/AVC Video Coding, IEEE Transactions on
Consumer Electronics, Vol. 50, 2004, 292-296.
[7] Chung-Ming Chen, Chung-Ho Chen, “An Efficient
VLSI Architecture for Edge Filtering in H.264/AVC,”
IASTED CSS, 2005.

191

