
A Memory Efficient Architecture for Deblocking
Filter in H.264 Using Vertical Processing Order

Chung-Ming Chen ', Chung-Ho Chen 2
]Department ofElectrical Engineering, National Cheng Kung University

Taiwan, R. 0. C., cmchen@casmail. ee. ncku.edu. tw
2Departinent ofElectrical Engineering, National Cheng Kung University

Taiwan, R.O.C, chchen@mail.ncku.edu.tw

Abstract

In this paper, we study and analyze the memory reference of
deblocking filter in H.264/A VC baseline decoder based on
SimpleScalar/ARM simulator. The simulation result shows
that the memory reference is known to be very time
consuming in this new video coding standard. In order to
reduce the memory reference and thus improve overall system
performance, we propose a vertical processing order with
efficient VLSI architecture which simultaneously processes
the horizontal filtering ofvertical edge and vertical filtering
of horizontal edge. As a result, the memory performance of
the proposed architecture is improved by 4.4 times when
compared to software implementation. Moreover, the system
performance of our proposal is 129% faster than the
advanced architecture ofprevious proposal.

1. INTRODUCTION

The new video coding standard Recommendation H.264 of
ITU-T [1] also known as ISO/IEC 14496-10 or MPEG4 Part
10 Advanced Video Coding (AVC) [2], significantly
outperfonms the previous one (H.263) [3] in bit-rate reduction.
The functional blocks of H.264/AVC, as well as their features,
are shown in Fig. 1. Comparing the H.264/AVC video coding
tools like multiple reference frame, quarter per motion
compensation, deblocking filter or integer transform to the
tools of previous video coding standard, H.264/AVC brought
in the most algorithm discontinuities in the evolution of video
coding standards. At the same tirm, preliminary studies [4]
using software based on this new standard, suggest that H.264
offers up to 50% better compression than MPEG-2 and up to
30% better than H.263+ and MPEG-4 advanced simple
profile.

As our experiment result indicates, the operation of the
deblocking filter is the most time consuming parts of
H.264/AVC video decoder. The block-based structure of the
H.264/AVC architecture produces artifacts known as
blocking artifacts. These blocking artifacts can occur from
both quantization of the transform coefficients and block-
based motion compensation. In order to reduce the blocking
artifacts, the overlapped block motion compensation (OBMC)
[5] is adopted into H.263 standard. Unlike the CBMC in

H.263, H.264/AVC adopts an adaptive deblocking filter [6]
that has shown to be a more powerful tool in reducing
artifacts and in improving the video quality. As a result, the
filter reduces the bit rate typically by 5- 1 0/o while producing
the same objective quality as the non-filtered video [7].
Adaptive deblocking filter can also be used in inter-picture
prediction to improve the ability to predict other picture as
well. Since it is within the motion compensation prediction
loop, the deblocking filter is often referred to as an "in-loop
filter". A detailed description of the adaptive deblocking filter
can be found in [6].

LL i-

Fig. 1: Block Diagram of H.264/AVC

The filtering operations of H.264/AVC standard require more
instructions to process deblocking. Due to intensive
computations, in [8], [9], and [10] dedicated hardware was
developed for acceleration. However, the deblocking filter
described in the H.264/AVC standard is highly adaptive.
Several parameters and thresholds, as Aell as the content of
the picture itself, control the boundary strength of the filtering
process. These issues are also equally challenging during
parallel processing under DSP or SIMD computational
architecture. In order to reduce the conditional branch
operation, we include the content activity check, table-derived
operations and filtering operations into edge filtering unit to
accelerate the deblocking filtering of H.264/AVC video
coding. In addition, we propose an efficient VLSI architecture
to improve memory performance by 4.4 times when
compared to the software implementation [I]. The proposed

0-7803-9399-6/05/$20.00 K 2005 IEEE 361 ISSNIP 2005

architecture is called "Simultaneous Processing Architecture
(SPAY'. It uses a novel processing order to simultaneously
process the horizontal filtering of vertical edge and vertical
filtering of horizontal edge and adopts vertical processing
order instead of raster scan to improve overall system
performance. Hence, our architecture is able to significantly
reduce the power consumption in the embedded system.

The organization of this paper is as follows. In section 2, the
algorithm of the deblocking filter is explained. Section 3
illustrates the block diagram of our proposed architecture
using basic and vertical processing order. Section 4 shows the
simulation results. Finally, conclusion is presented in Section
5.

2. ALGORITHM OFDEBLOCKINGFILTER

As ITU-T Recommendation [1], for each luminance
macroblock, the left-most edge of the macroblock (V1, V2,
V3, and V4) is filtered first, followed by the other three
internal vertical edges from left to right. Similarly, the top
edge of macroblock (H17, H18, H19, and H20) is filtered first,
followed by the other three internal horizontal edges from top
to bottom. Chrominance filtering follows a similar order in
each direction for each 8x8 chrominance macroblock as
shown in Fig. 2 ("V" denotes Vertical edge and "1" the first
block cycle, "H" denotes Horizontal edge and "17" the
seventeenth block cycle.)

r-;00i::t:
i VEs I

00 0:01A :

E cl ry

JC3f!

11 M0gID 000

WJC2

MJC4
JI : .1- __l_tit:!t::880 *IH45

r7=-OM--I _ C7 EUCB

CurrentMacroBlock I
L _ I -

Fig. 2: Processing Order of Standard

On the sample processing level, the quantization parameter,
threshold value of Alpha and Beta, and content of picture
itself can turn on or turn off the filtering for each individual
set of sample. For example, Fig. 3 illustrates the principle of
the deblocking filter using a one-dimensional visualization of
a block edge in a typical situation where the filter wuld be
turned on. Whether the samples p0 and qO as well as pl and
ql are filtered is determined by using quantization parameter
(QP), dependent threshold Alpha(QP), and Beta(QP). Thus

filtering ofp0 and qO only takes place if the following content
activity check is satisfied:

Bs!=O (1)
Ip° - qOl <Alpha(QP) (2)
lpl - pOI<Beta(QP) and lql - qOl <Beta(QP) (3)

Correspondingly, filtering of pl or ql takes place if the
condition below is satisfied:

Jp2-p0J <Beta(QP) or lq2-qO I<Beta(QP) (4)

The dependency ofAlpha and Beta on the quantizer, links the
strength of filtering to general quality of the reconstructed
picture prior to filtering. For small quantizer values, the
thresholds both become zero, and filtering is effectively
turned off altogether.

I t. Q

.~~~~~*..I itrn o.11 or qi. ak

the .rrig condonhefk

BhkckElde

Fig. 3: Principle ofDeblocking Filter

The basic idea is that if a relatively large absolute difference
between samples near a block edge is measured, it is quite
likely to be a blocking artefact and should therefore be
reduced. However, if the magnitude of that difference is so
large that it can no longer be explained by the coarseness of
the quantization used in the encoding, the edge is more likely
to reflect the actual behaviour of the source picture and
should not be smoothed over.

3. PROPOSED ARCHITECTURE

The key feature of our proposed architecture can be divided
into two major components, including the edge filtering unit
and a simultaneous processing engine that employs a novel
processing order to simultaneously process the horizontal
filtering of vertical edge and vertical filtering of horizontal
edge.

A. Edge Filter Operation
The complexity of the H.264/AVC Deblocking Filter is
mainly based on two reasons. The first reason is the high
adaptive filtering, which requires several conditional
processing on each block edges and sample levels. As

362

.1

I

described in the previous section, the threshold value of
Alpha and Beta, the table-derived operations, and edge
filtering operation are known to be very time consuming.
Therefore, we proposed an efficient VLSI architecture that
includes content activity checks, the table-derived operations,
and filter operations into edge filter unit to accelerate the
horizontal and vertical filtering on the boundary of two
adjacent basic 4x4 blocks ts shown in Fig. 4. A detailed
description of the edge filtering unit can be found in [11].

From Mmory Bus
Iol12,3

Memory BUS
Fig. 5: Proposed Architecture

Fig. 4: Edge Filtering Unit

B. Simultaneous Processing Architecture
Another reason for the high complexity is the small block size
employed for residual coding in the H.264/AVC video coding
algorithm. With the 4x4 blocks and a typical filter length of 2
samples in each direction, each sample in a picture must be
loaded/stored from/to memory 4 times; either to be modified
or to determine if the neighbouring samples will be modified.
In order to reduce the numbers of memory reference and
improve the overall system performance, we proposed an

efficient architecture, which can simultaneously processes the
horizontal filtering of vertical edge and vertical filtering of
horizontal edge as shown in Fig. 5. The proposed architecture
is called "Simultaneous Processing Architecture (SPAY'.

There are three major sub-functions in our proposed
architecture. The first component is the Shift Operation Array.
There are six forwarding shift register arrays in our proposed
architecture (for example, Arrayl, 3, 4, 5, 5 and 7). Each
array contains four entries which contains 4 processed
samples. The shift direction is shown in Fig. 5. The second
function in our proposed architecture is the transposing
operation as shown in Fig. 5. The Array2 and Array8- latch the
4x4 block sample values that are transposed from Array I and
Array7 respectively. The final important functions are the
horizontal and vertical filter units which are described in the
previous subsection.

C. A Novel Processing Order in a Macroblock
In a 16x16 samples macroblock, our architecture utilizes a
novel processing order, which allows the simultaneous
processing of horizontal and vertical filtefing as shown in Fig.
6. The processing order begins from V6 to V7 ("V" denotes
Vertical edge and "6" represents the sixth block cycle). And
then at the eighth block cycle, the vertical edge V8 and
horizontal edge H3 ("H" denotes Horizontal edge and '8"
represents the eighth block cycle) are simultaneously
processed with the horizontal and vertical filtering unit. Then
V9, H9 follows, so on and so forth.

r~ ~~IIBldI$05'i i:0 .Lt-llAt~~~~~IF*rnB 3B 2

Current MacroBlock

I-

0 0ltii 3C ! C2

777f0:0000__
C6 00:

00Ei C7 R-4E CO
W7-0:f00:0ES__ _

EEE T

Fig. 6: Proposed Processing Order

D. Basic Processing
In this subsection, the basic processing using raster scan order
for a picture is shown in Fig. 7. The data flow for the basic
processing order to process each macroblock is presented in

363

System Bus
f t

Table 1. For a basic 4x4-block, it takes 13 block cycles (52
clock cycles) to process the first block B I and the number of
total processing time for each macroblock is 32 block cycles
(128 clock cycles). In the first 5 block cycles (the first 20
clock cycles), the blocks of El, E2, E3, E4, and E5 are loaded
from the internal memory to SPA' s ArrayS, Array4, Arrar3,
Array2, and Arrayl respectively and no filtering operations
are performed. In the next 2 block cycles (the sixth and
seventh block cycle), the horizontal filtering of vertical edge
V6 and V7 are performed sequentially. At the eighth block
cycle, the proposed architecture SPA can simultaneously
process the horizontal filtering of vertical edge V8 (the
boundary of block B2 and B3) and the vertical filtering of
horizontal edge H- (the boundary of block El and B1), and
write the block El to the internal memory at the next block
cycle (the ninth block cycle). At the thirteenth block cycle,
the vertical filtering of horizontal edge H13 (the boundary of
block BI and B5) is performed. At this time, the block BI has
finished 4 times filtering with the adjacent blocks (left block
E5, right block B2, top block El, and bottom block B5).
Finally, SPA writes the block B1 to the internal memory at
the fourteenth block cycle. Therefore, the number of total
block cycles required for a QCIF picture is 32x99=3168
(12672 clock cycles).

4

...l13 .. =

11

Fig. 7: Basic Processing Order

TABLE 1: DATAFLOW OF BASIC PROCESSINGORDER
State Block Cycle

5 6 7 8 9 10 1 1 12
An-ayl E5 BI B2 B3 B4 E5 B5 B6
Array2 E4 E5 Bl B2 B3 B4 E5 B5
Array3 E3 E4 E5 BI B2 B3 B4 ES
Array4 |E2 E3 E4 E5 BI B2 B3 B4

El E2 E3 E4 E5 BI B2 B3
Array6 El E2 E3 E4 E.5 Bi B2

Array7 El E2 E3 E4 E5 BI
Ar8El E2 E3 E4 E5

MEM El E2 E3 E4

The vertical processing for a picture uses top-down order
instead ofraster scan order as shown in Fig. 8. The basic idea
of the vertical processing is to buffer the initial blocks B13,
B14, B15, and B16 in SPA's Array4, Array3, Array2, and
Arrayl respectively as shown n Fig. 9 and Table 2 When
processing the next macroblock M2, the SPA with vertical
processing order does not need to load these initial blocks.
And thus we can save 4 block cycles when processes each
macroblock, except for the macroblock at the bottom of a
picture. As a result, the number of the total block cycles to
process a QCIF frame is 2021 (equal to 8084 clock cycles).
Table 2 shows the data flow ofthe vertical processing order.

A II

4

9

Fig. 8: Vertical Processing Order

- ikSEM00000 IddNUi000:050 li:000Xt LE, [000 I00S 11[0
:0 ::EFIti000 t000000gE200$:;00 5ytE3 it 0i 0 40i_ ~ i_

_i
_ i ____

9

It00 L I B213~ ~_~~~~BFTi
l0060;72 V:l1l V1 1

Z7: :V:ii V1 1o

E::EEEWX:r 1 I
:EEi t:

EB3 !

3137 V

!DBiir

E3B4

EB1

bil2

I ~~~V23 V24

Ml

M2

E. Vertical Processing Fig. 9: Buffer Skill of Vertical Processing

364

I "TX j. 4 ff. I II

to

X0 CFPIB31 [741032fREh29FV91Hm
J-- _F

,.

TABLE 2: DATAFLOW OF VERTICAL PROCESSINGORDER
State Block-Fihteng ycl -

1 2 3 4 5 6 7 8
Arrayl E9 B17 B18 B19 B20 EIO B21 B22
Array2 B16 E9 B17 B18 B19 B20 EIO B21
An-ay3 B15 B16 E9 B17 B18 B19 B20 EIO
Array4 B14 B15 B16 E9 B17 B18 B19 B20
ArrayS B13 B14 B15 B16 E9 B17 B18 B19
Array6 B13 B14 B15 B16 E9 B17 B18
Array7 B13 B14 B15 B16 E9 B17
Array8 - B13 B14 B15 B16 E9
MEM B13 B14 Bl5 B16

TABLE 4: MEMORY REFERENCE PER MACROBLOCK
Author MEM Ref

JM9.2 [1] Software Implementation 768
Huang [8] Basic+Single-port SRAM 768
Huang [81 Advance+Dual-port SRAM 384
Huang [8] Basic+Two-port SRAM 768
Huang [8] Dual Arrays+Two-port SRAM 384

Basic Dual-port SRAM or 192
Processing Two Single port SRAM
Vertical Dual-port SRAM or 176

Processing Two Single port SRAM

4. RESULT

The simulators used in this study are derived from the
SimpleScalar/ARM tool set [12], a suite of functional and
timing simulation tools for ARM ISA. Our baseline
simulation configuration models the Intel' s StrongARM SA-
110 processor. The hardware parameter is described in Table
3 below.

TABLE 3: SIMULATORPARAMETER

Parameter Value
Fetch Queue size 4
Fetch Speed 1
Decode Width 1
Issue Width I

Commit Width 1
D-Cache 32-way, 32-byte lines, LRU,

1-cycle hit, total 16KB
I-Cache 32-way, 32-byte lines, LRU,

1-cycle hit, total 8KB
Memory Latency 12
Memory Width 4 bytes

A. Memory Performance
As the ITU-T Recommendation [1] and previous proposal [8]
and [9] suggest, an adaptive filtering shall be applied to all
4x4 block edges of a picture. Most of the 4x4 blocks need to
be filtered 4 times with the adjacent blocks (left, right, top,
and bottom), except for the macroblock at boundary of a
picture. Therefore, the number of total memory reference for
each macroblock, including read and write, is 4x4x2x16=5 12.
For a picture in a QCIF format, the number of total memory
accesses is 47392 (Assunt that the memory bus width is 32
bits).

In our proposed SPA architecture using basic and vertical
processing order, the memory performance is improved by 4
and 4.4 times respectively, when compared to software
implementation. Table 4 shows the comparison of various
architectures. Our SPA architecture using vertical processing
can save 78.75% and 2.5% of the memory bandwidth
respectively, when compared to the previous basic and
advanced proposals in [8]. Hence, our architecture is able to
significantly reduce power consumption in an embedded
system.

B. System Performance
As described in previous section, using vertical processing
order, the total filtering for one luma and two chroma
macroblocks takes 20x4=80 and (6x4=24)x2=48 cycles
respectively. As a result, the total filtering takes 128 cycles
for a luma and two chroma macroblocks. Our filtering scheme
takes less number of cycles when compared to 294 and 286
cycles of the architecture described in [8] and [10]. Table 5
shows the performance comparison of various architectures.
The cycle counts of loads and stores between the external and
internal memory are not calculated for a fair comparison.

TABLE 5: PROCESSING CYCLES PERMACROBLOCK
Author Architecture Cycles!

MB
Huang [81 Basic+Single-port SRAM 558
Huang [8] Advance+Dual-port SRAM 494
Huang [8] Basic+Two-port SRAM 462
Huang [8] Dual Arnays+Two-port SRAM 294
Sheng [10] 2-D Deblocking Filter 286

Basic Dual-port SRAM or 240
Processing Two Single port SRAM
Vertical Dual-port SRAM or 128

Processing Two Single port SRAM

C. Implementation
We implemented the SPA architecture by Verilog HDL and
synthesized the design using TSMC 0.18um Artisan CMOS
cell library using Synopsys Design Compiler with critical
path constraint set to 5 ns (200MHz). The synthesized gate
count is shown in Table 6 and Table 7.

TABLE 6: THE AREA OF EDGE FILTERING UNIT
Item Function Gate count

1. Alpha Table derived 137
2. Beta Table derived 87
3. CLIP Table 66
4. Luma4 Filtering Operation 1372
5. Chroma4 Filtering Operation 247
6. Standard Filtering for Luma and Chroma 811
7. Content Activity Check 1104

Total Edge Filter Unit 3824

TABLE 7: THE AREA OF SPA ARCHITECTURE
Item Function Gate count

I . Horizontal Filtering Unit 3824
2. Vertical Filtering t 3824
3. SPA Processing Circuit 10778

Total SPA Architecture 18426

365

5. CONCLUSION

In this paper, we propose an efficient VLSI architecture to
accelerate the operations of deblocking filter for H.264/AVC
video coding. The major idea is to reduce the number of
memory references through the simultaneous processing
architecture SPA using vertical processing order. As a result,
the SPA can be used in a high performance system which
only requires a simple bus interface for the integration into
video SoC platforms that support a wide range of applications
such as video telephone, video conferencing, video streaming,
digital video authoring, and many others.

IEEE International Conference on Image Processing
(ICIP'04), Vol.1, 24-27, pp. 665-668, Oct 2004.

[11] Chung-Ming Chen, Chung-Ho Chen, "An Efficient
VLSI Architecture of Edge Filtering in H.264/AVC",
IASTED International Conf. on CSS, 2005.

[12] Douglas C. Burger and Todd M. Austin, The
SimpleScalar Tool Set, Version 2.0, University of
Wisconsin, Madison Tech. Report. 1997.

ACKNOWLEDGEMENT

The work in this paper is in part supported by the National
Science Council, Taiwan ROC, under NSC 93-2220-E-006-
004.

REFERENCES

[1] ITU-T Recommendation H.264, Advanced video
codingfor generic audiovisual services, 2003.

[2] ISO/IEC 14496-10:2003, Coding of Audiovisual
Objects-Part 10: Advanced Video Coding, 2003.

[3] ITU-T Recommend H.263, Video Codingfor Low Bit
Rate Communication, 1998.

[4] Join Ostermann, Jan Bormans, Peter List, Detlev
Marpe, Matthias Narroschke, Fernando Pereira,
Thomas Stockhammer, and Thomas Wedi, "Video
Coding with H.264/AVC: Tools, Performance, and
Complexity", IEEE Circuit and Systems Magazine,
pp. 7-28, 2004.

[5] M.I T. Orchard and G.J. Sullivan, "Overlapped Bock
Motion Compensation: An Estimation-Theoretic
Approach", IEEE Transactions on Image Processing,
pp. 693-699, 1994.

[6] Peter List, Anthony Joch, Jani Lainema, Gisle
Bj0ntegaard, and Marta Karczewicz, "Adaptive
Deblocking Filter", IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 13, pp.614-
619, 2003.

[7] M. Horowitz, A. Joch, F. Kossentini, and A.
Hallapuro, "H.264/AVC baseline profile decoder
complexity analysis ", IEEE Transactions on Circuits
and Systemsfor Video Technology, Vol. 13, 715-727,
2003.

[8] Yu -Wen Huang, To-Wei Chen, Bing-Yu Hsieh, Tu-
Chih Wang, Te-Hao Chang, and Liang-Gee Chen,
"Architecture Design for De -blocking Filter in
H.264/JVT/AVC", Proc. IEEE Conf. on Multimedia
and Expo, pp. 693-696, 2003.

[9] Miao Sima, Yuanhua Zhou, and Wei Zhang, 'An
Efficient Architecture for Adaptive Deblock filter of
H.264/AVC Video Coding", IEEE Transactions on
Consumer Electronics, Vol. 50, pp. 292-296, 2004.

[10] Bin Sheng, Wen Gao and Di Wu, "An Implemented
Architecture of Deblocking Filter for H.264/AVC",

366

