
An Easy-to-Use Approach for
Practical Bus-Based System Design

Chung-Ho Chen, Member, IEEE Computer Society, and Feng-Fu Lin

AbstractÐWe present an easy-to-use model that addresses the practical issues in designing bus-based shared-memory

multiprocessor systems. The model relates the shared-bus width, bus cycle time, cache memory, the features of a program execution,

and the number of processors on a shared bus to a metric called request utilization. The request utilization is treated as the scaling

factor for the effective average waiting processors in computing the queuing delay cycles. Simulation study shows that the model

performs very well in estimating the shared bus response time. Using the model, a system designer can quickly decide the number of

the processors that a shared bus is able to support effectively, the size of the cache memory a system should use, and the bus cycle

time that the main memory system should provide. With the model, we show that the design favors caching the requests for a

contention-based medium instead of speeding up the transfers although the same performance can be respectively achieved by the

two techniques in a contention-free situation.

Index TermsÐBus-based shared-memory multiprocessor, memory system design, queuing delay model, system design.

æ

1 INTRODUCTION

ABUS-BASED shared-memory multiprocessor system (MP)
provides a low-cost solution for high performance

MIMD systems. The performance of an MP machine
depends on the hardware design as well as the features of
a program execution. There are different analysis techni-
ques and tools that are used to evaluate the design and
performance of an MP system under different system
models [1], [2], [3], [4], [5], [6], [7], [8], [9]. Simulation
techniques include multiple levels of detail in modeling of
an MP system [1], trace-driven simulation [2], [3], [4],
queuing model [5], mean value analysis [6], [7], and
simulation tools [8], [9].

While previous works studied various aspects of the

issues involved in achieving high performance, they did not

address the practical problem of how to put various

hardware parameters together for system design. That is,

given some representative parallel programs such as the
SPLASH-2 suite [10], how should a system designer decide

quickly the number of processors that the shared bus is able

to support effectively? How large is the cache memory that

the system should use? Or how wide and long are the bus

and bus cycle time to which the main memory system

should be connected? In a bus-based MP system, the bus

bandwidth ultimately limits the performance of the
machine. In this paper, we present an easy-to-use model,

from the view point of system design, to evaluate the design

and performance of shared-bus multiprocessor systems.

The model relates the shared-bus width, bus cycle time,

cache memory, the features of a program execution, and the

number of processors to a metric called request utilization.

The request utilization is treated as a scaling factor for the

effective average waiting processors to compute the queu-

ing delay in processor cycles. We verify this model by

detailed simulations using the SPLASH-2 parallel pro-

grams. For the average square error, the error value is less

than 5 percent in the discrepancy of queuing delays

between the results of the simulation and the results of

the proposed model. For most of the cases, the model

performs very well.
In a uniprocessor setting, it is possible to obtain the same

performance by trade-off among the main memory speed,

cache design, or data bus width. For the past, cache design

has received the greatest attention, but rarely were there

evaluations among these three features. In a bus-based

multiprocessor configuration, determining which combina-

tion of the hardware techniquesÐlarger caches, wider bus,

or faster memoryÐis more favorable from the view point of

performance is important. By using the model developed in

this paper, we show that, in theory, due to the generation of

less bus contention, a bus-based multiprocessor system

favors the usage of a larger cache rather than a wider shared

data bus or a faster shared-bus, although the same

performance can be obtained by trading these three factors

in a uniprocessor system. More generally, this study shows

that the design favors the caching of the requests for a

contention-based medium even though the same perfor-

mance can be achieved by either caching the requests or

speeding up the transfers in a contention-free situation.
The rest of this paper is organized as follows: In Section 2,

we give the notation and develop the design model. We

present the verification of the model in Section 3. Section 4

examines the trade-offs among cache memories, bus width,

and bus speed. Our conclusions are presented in Section 5.

780 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 8, AUGUST 1999

. C.-H. Chen is with the Department of Electronical Engineering, National
Cheng Kung University1, University Road, Tainun, Taiwan.
E-mail: chchen@mail.ncku.edu.tw.

. F.-F. Lin is with Great China Technology Inc., 3F, No. 29, Lane 114, Sec 3,
Chung Shan Rd., Chung-Ho City, Taipei Hsien, Taiwan.
E-mail: peterlin@gctitw.com.tw.

Manuscript received 14 Sept. 1998; revised 31 Jan. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 107396.

0018-9340/99/$10.00 ß 1999 IEEE

2 A NEW APPROACH

From the view point of system design, we need to consider
the architectural parameters that characterize a parallel
program and the corresponding hardware. These para-
meters are described in Table 1 and most of them are self-
explanatory. The bus cycle time �m refers to the cycle time
for a data transfer between the processor and the main
memory. �m is normalized with the CPU clock cycle time. In
this paper, the bus cycle time �m includes the bus
arbitration time, the address decoding time, and the
memory access time, but not the queuing delay cycles, if
any, in an MP system. In a circuit-switched bus system, the
bus cycle time is also the memory cycle time because the
shared bus is held by the master until the entire transaction
is completed. For instance, the block read/write of the IEEE
Futurebus [7], the shared bus in the Proteus system [9], and
the Tobus [11] all employ a circuit-switched protocol.

In a split transaction bus, the bus is released between a
request and its corresponding response. Hence, the latency
of a slave device is not included in the bus cycle time. The
bus cycle time �m for a split transaction bus includes the
request cycle time and the data transfer cycle time. The
Sequent Symmetry, Balance, and the SGI Challenge multi-
processors use the split transaction protocol [12], [13], [15].
Parameter R, �, and In relate to the shared-bus traffic
contributed by each processor. The width D refers to the
data bus width of a shared bus. In particular, the following
memory characteristics are used for this study.

1. For a read or a write miss, a whole cache line is
brought into the cache from the memory. All of the
memory references are assumed to be cacheable.

2. The cache memory uses a write-back policy for
handling write hits and write allocate for handling
write misses. When considering an MP system, the
popular MESI protocol is used for cache coherence.

For the analysis, we do not consider write-through
caches and noncacheable traffic. However, it should be easy
to extend our analysis for these two cases [16]. The
conventional cache hit ratio or miss ratio is not adequate
to measure the effect of shared memory references. It may
give misleading information in evaluating the shared-bus
capability. For instance, a write-back cache takes extra
memory cycles when a dirty block is replaced [14]. A write-

allocate cache produces read cycles when a write miss
occurs [15]. Thus, the cache hit (miss) ratio cannot easily be
converted to the number of memory references. To take
account of all bus traffic, we define

MC �
�1���R

D � In
Ce

; 0 �MC � 1 �1�

to be the average number of memory requests per cycle for
a processor. The parameter MC depends on the cache
memory used, the bus width, and the application. Note that
the parameter Ce is the number of cycles for the execution of
a particular application for a processor excluding the
request queuing cycles. In the following, we describe how
to use MC to obtain the maximum number of processors
that a shared bus is able to support effectively.

2.1 Bus Request Utilization

The bus utilization U for a single processor is represented as
follows.

U � �
�1���R

D � In��m
Ce

; �2�

that is,

U �MC�m �3�
replacing with MC defined previously. The numerator in (2)
is the cycles spent in bus operations, while the denominator
is the total execution cycles. In an MP system where k
processors are present, the shared-bus request utilization is
described by

UD � �m
Xk
i�1

MCi

 !
; 0 � UD � �m � k: �4�

The notation MCi associates with processor i. For the shared
bus to operate effectively, the limit of its request utilization
UD must be within 100 percent. That is,

�m
Xk
i�1

MCi

 !
� 1: �5�

The limit on UD � 1 provides an opportunity for each
request to be completed without waiting if the requests are
properly ordered without overlapping between each other.

CHEN AND LIN: AN EASY-TO-USE APPROACH FOR PRACTICAL BUS-BASED SYSTEM DESIGN 781

TABLE 1
Hardware and Program Execution Parameters

If this limit is violated, the bus may be overloaded, where
excessive queuing delay occurs. A system may operate at a
request utilization greater than one. The request utilization
is different from the bus utilization where its value is
always less than one. In theory, (5) is similar to the
utilization law, which states that the utilization of a
resource is equal to the product of the throughput of that
resource and the average service requirement of that
resource [17]. In (5), the bus cycle time is the service
requirement and the sum of the average memory requests
per cycle of processors is the throughput.

The shared-bus request utilization, or request utilization
for short, is determined by the bus cycle time �m, bus width
D, the number of processors k, the features of a program
execution, and the employed cache memories. Consider a
case where each processor with on-chip first level caches
produces an MC of 5 percent in a bus system designed with
�m � 5. Then, the maximum number of processors that the
shared bus is able to support effectively is four. For an MP
design, a system designer can estimate the MC with
simulations for the applications of interests by varying
cache size, organization, bus width, and the bus cycle time.
Then, the number of processors can be chosen to determine
if the request utilization is within the limit.

2.2 The Contention Model

In an MP system, the shared-bus contention from multiple
requests increases the CPU execution time. Traditionally,
researchers have modeled the shared-bus as a closed
queuing system and solved the problem with techniques
such as the MVA (mean value analysis) method. However,
there have been no positive reports on the accuracy of this
method applied in parallel programs such as the SPLASH-
2.1 For a bus-based MP application, the CPU execution time
of a processor is

EMP � Ce ÿ R�1� ��
D

� In
� �

�m

� �
� R�1� ��

D
� In

� �
Tk;

�6�
where Tk represents the average shared bus request

response time per bus access when k processors are present.

Equation (6) is a direct modification from the denominator

in (2). The first term in (6) is the total cycles minus the cycles

for bus operation without queuing delay. The second term

is the total bus cycles including queuing delay. The

response time Tk is the sum of the bus cycle time (�m)

and the queuing delay cycles. The response time depends

on the number of active processors, the characteristics of the

processor requests, the bus cycle time, and the cache

memories used. In a dynamic execution processor, a portion

of the total bus cycles designated by �R�1���D � In��m may be

hidden by out-of-order execution. If this is the case, the bus

cycles in (6) will only represent those cycles that do

contribute to the total execution cycles. Using the request

utilization (UD) directly, we propose a new model for

computing the queuing delay cycles.
First, we consider UD � 1 in a system with k processors.

In this case, the worst response time of the shared bus for a
request is delayed by kÿ 1 requests and delayed by �m
cycles from each of the kÿ 1 requests. Therefore, the worst
case response time is

�m � �kÿ 1��m � k�m: �7�
On the other hand, the best response time at UD � 1 is �m
when no other bus request is waiting ahead of the current
request. On average, at UD � 1, the average response time is

�m � 1

2
� kÿ 1

2
ÿ 1

� �� �
� kÿ 1

k
� 1� �m: �8�

The request on average sees �kÿ 1�=2 requests ahead (i.e.,

half of the requests) and delays �m=2 cycles on average for

the first waiting request and delays �m cycles for the rest of

the waiting requests. The total delay cycle is scaled by kÿ1
k at

UD � 1. This is to exclude the current requester itself from

the request utilization. For the general case of a given UD,

when a processor does a shared bus request, the average

response time of that request is

Tk � �m � 1

2
� kÿ 1

2
ÿ 1

� �� �
� kÿ 1

k
� UD � �m: �9�

Essentially, the request utilization scales the average wait-
ing cycles for each request. If UD > 1, then the request
utilization simply ªamplifiesº the average waiting cycles by
increasing the effective number of the waiting processors
(requests).

3 CONTENTION MODEL VALIDATION

We implement a shared memory simulator based on the
Augmint simulation system to verify the queuing delay
model. The Augmint is an event driven multiprocessor
simulator for Intel x86 architecture [18]. Our memory
simulator models the cache memory (direct-mapped with
write allocate for write misses), the MESI coherence
protocol, and the arbitration of the shared bus. The data
bus width is 8-bytes in length. For the baseline memory
latency (x1 model), it takes 13, 21, 37 CPU clocks in loading
a 32, 64, 128-byte cache line, respectively. The time to
replace a modified line takes the same CPU clocks. A write-
through cycle (invalidation) takes seven CPU cycles in the
x1 latency model. These memory cycles are converted to
the average bus cycle time per bus transfer (�m) according
to the percentage of references of each type when used in
the model. The simulator models the back-off and retry of a
reference that hits on a modified line in the other cache as
the real operation of the Pentium processor does. The
number of processors used are 2, 4, 8, 16, and 32. We use the
SPLASH-2 parallel programs as the benchmark. Table 2
provides the characterization of the SPLASH-2 programs
used in the simulation for a 32-processor configuration.

Table 3 depicts some typical MCs for the SPLASH-2
programs for a 32-processor configuration. The value is the

782 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 8, AUGUST 1999

1. In another effort, we also try the close queuing model and solve it with
the MVA method but only discover that the MVA method significantly
under estimates the queuing delay cycles.

average for each processor. Because of high hit ratio, the MC

is generally very low for these applications. The number of
invalidations (In) which is not shown in the table is
extremely low compared to the bus transfers for read/
write misses and replacement. In the simulator, the
instruction references are assumed to be cache hits and,
therefore, the MC in Table 3 only takes account of the data
cache miss traffic. For a chosen configuration, the model
uses the same amount of bus traffic obtained from the
simulation in determining the queuing cycles. Therefore,
the queuing cycles computed from the model and those
obtained from the simulation can be fairly compared on the
same basis, i.e., the same amount of bus traffic.

As observed from Table 3, the MCs of a system using
8KB caches are higher than that using 512KB caches, though
the 512KB caches result in more sharing (more In). The MC

of using an 8KB cache in each processor is about twice that
of using a 512KB cache. In Table 3, the first column also
shows the cache line size used.

3.1 Comparisons of Queuing Cycle Percentages

In this section, we present the percentage of the queuing
cycles obtained from the simulation as well as computed
with the model for each of the programs. The percentages of
queuing cycles obtained from the simulation are indicated
by the ª+º sign while the results computed with the model
are shown by the ªoº symbol in the figures. The percentage
of queuing cycles is based on the total program execution
time.

The results for the Barnes, Radix, and Ocean program are
given in Fig. 1, Fig. 2, and Fig. 3, respectively. In general, the
model predicts very close results to those of the simulation.

For these programs, we find that a larger discrepancy
between the simulation results and the model values occurs
when the shared bus is highly utilized. The model tends to
estimate more queuing cycles for the cases when more than
40 percent of the total execution time comes from the
queuing delay. However, with this amount of bus request
delay, the request utilization is usually more than 100 per-
cent. The values of the request utilization for each
configuration are given in Fig. 5. As expected, the
(8KB,128) cases have the highest request utilization among
those in consideration.

Fig. 4 gives the results for the Water-sp program. The
model over estimates the queuing delay by about 10 percent
in the system using 8KB caches as the processor number is
greater than eight. The reason for this is that most of the bus
requests are made with a timing biased in the less
contention situation. For the 512KB cache systems, the
model in general under estimates the delays. However, in
the 512KB cases, the percentage of the queuing delay cycles
is already quite small. The request utilization is less than 0.5
for the 512KB cases, as shown in Fig. 5d.

For the Water-nsq program, the model performs well in
most of the cases, as illustrated in Fig. 6. The results for the
FFT program are given in Fig. 7. For the (8KB, 128) case, the
model predicts accurately in most of the configurations. For
the other configurations, as the processor number is greater
than eight, the model under estimates the queuing cycles.
This is because the FFT program runs a significant number
of cycles that bias in the high contention side as compared
with the model using average. The request utilization for
the Water-nsq and the FFT program is shown in Fig. 9.

CHEN AND LIN: AN EASY-TO-USE APPROACH FOR PRACTICAL BUS-BASED SYSTEM DESIGN 783

TABLE 2
Featrues of Program Executions for a 32-Processor Configuration (512KB Cache, Line Size = 32 Bytes)

TABLE 3
MC for a 32-Processor Configuration with x1 Latency in Loading a Cache Line

The LU program has a very high hit ratio. This makes it
difficult to reach a point with a sufficient number of
memory references for the model to work well in average.
As shown in Table 3, the MC of the LU program is the
smallest among the programs we evaluated. The compar-
isons between the simulation and the model results are
presented in Fig. 8. Observe that the percentage of the
queuing cycles is quite small, especially for systems with
512KB caches. The corresponding request utilizations are
also quite small, as illustrated in Fig. 9.

Several common observations are obtained from the
above results. First, using a smaller cache, such as 8KB,
results in a higher percentage of queuing cycles than using a
larger cache, such as 512KB, although the latter tends to
have more sharing traffic. This is because the MC is higher
when using a smaller cache. Also, we note that using a line
size of 128 bytes in most of the configurations incurs more
queuing cycles than using a line size of 32 bytes. This high
delay cycle is due to the high request utilization.

Examining the queuing delays and the request untiliza-
tions, we can easily find that, when the request utilization is
less than 100 percent, the incurred queuing cycles are
generally less than 30 percent. A designer can use (4)
directly to determine the target request utilization by
varying the bus cycle time and the number of the processors
given a known MC . From a higher level point of view, the
application requirements are specified implicitly by the
average number of memory references per cycle (MC).
There is no need to know the exact value of parameter
R;Ce; �; and In.

3.2 Model Validation

In this section, we present the error values between the
simulation results and the results computed with the model
for the above applications. For the seven SPLASH-2

programs, first we show the average queuing delays from
the results of the simulation and the model. The result is
given in Fig. 10. The largest discrepancy between the
simulation and the model is about 9 percent in terms of
queuing cycle percentage for the (8KB, 128, x1) instance in a
32-processor configuration. Most of the other cases have
very close matches between the results of the simulation
and the model.

To examine whether the model is robust enough against
variations, we perform more simulations by varying the
memory latency, cache size, and line size. The average
queuing delays are presented in Fig. 11 and Fig. 12. The
memory latency used in Fig. 11 is increased to three times
those in the x1 model in Fig. 10. This memory latency when
used is indicated with x3 in the figures. Fig. 11 shows that
the model again performs very well in estimating the
queuing cycles. In Fig. 12, the results are given with the use
of a 32KB cache with different line sizes and memory
latency. The model is very accurate in estimating the
queuing delay cycles for these variations.

In addition to evaluating the errors in terms of the
average values of the applications, we also compute the
mean square of error values between the results of the
simulation and the model. The mean square of error value
is computed as follows:

Mean square error �
���������������������������������PN

i�1�Mi ÿ Si�2
q

N
; �10�

where Mi and Si are the result values of the model and the
simulation, respectively. As given in (10), with the mean
square error, each of the differences between the simulation
values and the model values, no matter if it is plus or
minus, contributes to the average error value. The mean
square errors and the errors using the average values of the

784 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 8, AUGUST 1999

Fig. 1. Barnes: ª+º indicates the result from simulation. ªoº indicates the result computed by the model.

applications are given in Tables 4 and 5 for all of the

configurations evaluated in this work. As observed from

Table 5, the largest error of average value is about 12.6

percent in queuing cycle percentage, while the correspond-

ing mean square error is 5 percent. All other configurations

show errors much less than this value. The error values

have indicated that the model in general has produced

satisfactory results in estimating the queuing delays.

4 BETTER CACHING, FASTER MEMORIES, OR

WIDER BUS?

In a uniprocessor setting, it is possible to trade-off among
the main memory speed, cache design, or data bus width to
obtain the same performance. In a multiprocessor config-
uration, the trade-off from the view point of performance
favors the design that produces less bus contention. Which
combination of these hardware techniques leads to the
desirable result? In this section, we answer this question by
developing a theoretical model. First, we define some

CHEN AND LIN: AN EASY-TO-USE APPROACH FOR PRACTICAL BUS-BASED SYSTEM DESIGN 785

Fig. 2. Radix: ª+º indicates the result from simulation. ªoº indicates the result computed by the model.

Fig. 3. Ocean: ª+º indicates the result from simulation. ªoº indicates the result computed by the model.

notations that represent part of the execution time cycles as

designated in Table 6.
We characterize the CPU execution cycles into non-

memory and memory reference cycles. They are repre-

sented by

Ce � Ei [Em ÿR
L

� �
ht [R�1� ��

D
� In

� �
�m; �11�

where the total execution cycle Ce is the union of three

major cycle counts, that is, from the total execution cycles

for nonmemory instructions, the cache hit cycles, and the

external memory reference cycles. These three cycle counts

may overlap with each other depending on the hardware
used, especially for current dynamic execution machines. In
(11), �Em ÿR=L�ht represents the cycles of load/store
instructions that hit in the data cache since R=L represents
the number of load/store instructions that cause cache
misses. If instruction fetching contributes to the execution
time, the effect is similar to increase R. For an in-order issue
and in-order completion scalar processor, the execution
time ES can be simply represented as

ES � Ei � Em ÿR
L

� �
ht � R�1� ��

D
� In

� �
�m: �12�

786 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 8, AUGUST 1999

Fig. 4. Water-sp: ª+º indicates the result from simulation. ª0º indicates the result computed by the model.

Fig. 5. Request utilization for 13 (37) CPU clocks in loading a 32-byte (128) cache line. (8KB, 128) = *, (8KB, 32) = o, (512KB, 128) = x,

(512KB, 32) = +. (a) BArnes, (b) Radix, (c) Ocean, (d) Water-sp.

In this case, we assume that the cache is full blocking and

there are no write buffers. Therefore, the miss and write-

back cycles all contribute to the execution time. If we

improve the system by using certain hardware mechanisms,

such as superscalar capability, nonblocking cache, by-

passing write buffers, or a combination of these, the net

effect scales the execution time ES with a speedup factor, sp.

In this system, the improved execution time is

EI � Ei� Em ÿR
L

� �
ht � R�1� ��

D
� In

� �
�m

� �
� sp;

�13�
where 0 < sp < 1. To focus on the trade-offs among caching,
bus width, and bus cycle time, we consider the cycle times
represented by (13) for a speed up factor of sp. In this way,
we isolate the effect of other architectural factors on the
execution time. In a uniprocessor system, one can design to
obtain the same performance (execution time) by using
either the combination of a larger cache (better caching)

CHEN AND LIN: AN EASY-TO-USE APPROACH FOR PRACTICAL BUS-BASED SYSTEM DESIGN 787

Fig. 6. Water-ns: ª+º indicates the result from simulation. ªoº indicates the result computed by the model.

Fig. 7. FFT. ª+º indicates the result from simulation. ªoº indicates the result computed by the model.

with a slower memory or the combination of a smaller

cache with a faster memory.
Suppose that we have two systems that have the same

execution time in a uniprocessor setting. The first is System I

that uses a larger cache and a slower memory, while the

second is System II that uses a smaller cache and a faster

memory. For System I, the larger cache results in a smaller

MC than System II. Let the execution time of System I be

represented by E1 as follows:

E1 � Ei1 � Em1 ÿR1

L

� �
ht � R1�1� �1�

D
� In1

� �
�m1

� �
� sp

�14�
and the execution time of System II be represented by E2

given by

E2 � Ei2 � Em2 ÿR2

L

� �
ht � R2�1� �2�

D
� In2

� �
�m2

� �
� sp:

�15�

788 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 8, AUGUST 1999

Fig. 8. Lu: ª+º indicates the result from simulation. ªoº indicates the result computed by the model.

Fig. 9. Request utilization continued for 13 (37) CPU clocks in loading a 32-byte (128) cache line. (8KB, 128) = *, (8KB, 32) = o, (512KB, 128) = x,

(512KB, 32) = +. (a) Water-nsq, (b) FFT, (c) LU, (d) Average.

If E1 � E2, we can find design parameters such that MC2 >

MC1 and �m2 < �m1 with the conditions that Ei1 � Ei2 and

Em1 � Em2. These conditions ensure that the same applica-

tion is run for comparison. Examining E1 � E2, it is clear

that the equality is based on the memory delay time, which

is the sum of the cache hit and miss cycles.
In theory, given a design specified by fMC1; �m1g for

System I, we can determine a value of MC2 (or �m2) for

System II that uses �m2 (or MC2) such that the two systems

have the same execution time. Suppose that the average

number of memory reference per cycle for System I is 0.01

and the bus cycle time is 10 CPU clocks. For a uniprocessor

setting, the design parameters for System II that has the

same performance as System I are shown in Fig. 13a. The y

axis is the MC2, while the x axis is the bus cycles. Each �x; y�
coordinate indicated by the ªxº sign on the curve specifies

the design parameters for System II that has the same

performance as System I. Alternatively, the systems with

the MC and the bus cycle time specified by the ªxº points

have the same performance in a uniprocessor setting.
For the above example, the design parameter for System I

is located at (10, 0.01) designated with a circle in Fig. 13a. If

System II uses an MC of about 0.02, it means that the cache

used by System II is smaller than that of System I. To

CHEN AND LIN: AN EASY-TO-USE APPROACH FOR PRACTICAL BUS-BASED SYSTEM DESIGN 789

Fig. 10. This result shows the average queuing delays of the seven SPLASH-2 programs with x1 latency in loading a cache line.

Fig. 11. The result shows the average queuing delays of the seven SPLASH-2 programs with x3 latency in loading a cache line.

achieve the same performance, System II must use a faster

main memory system. The bus cycle time for System II in

this case is 5, which can be found on the left side of Fig. 13a.

On the other hand, if System II uses a larger cache than

System I, it can use a slower main memory for the same

performance. For this situation, the design parameters can

be found on the right side of the curve.
Fig. 13b illustrates the execution time if the correspond-

ing design parameters (in Fig. 13a) are used in a multi-

processor configuration. The execution time including

790 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 8, AUGUST 1999

Fig. 12. Using a 32-KB cache in each processor, the result shows the average queuing delays of the seven SPLASH-2 programs.

TABLE 4
Error of Average Value and Mean Square Value for Memory Latency Model x1

TABLE 5
Error of Average Value and Mean Square Value for Memory Latency Model x3

queuing delay is computed with (6) and normalized with
parameter Ce. Eight processors are used in this example.2

Observe that if System II is designed with the parameters on
the left side of the curve in Fig. 13a, System II will have a
higher execution time than System I. On the other hand, if
System II uses a design with the parameters on the right
side of the curve in Fig. 13a, System II will have a higher
performance than System I. This is due to the difference in
queuing overheads incurred in multiprocessor configura-
tions, as given in Fig. 13c. For instance, the queuing
overhead for System II that uses MC2 � 0:02 and �m2 � 5
is about 17.8 percent. This overhead is greater than System I,
which has about 17.3 percent, as given in Fig. 13c. If
System II uses a larger cache and a slower memory than
System I, then the queuing overhead of System II will be
smaller than System I. Observe that the difference of
queuing delays between the two systems increases as the
designs use parameters located on the two ends of the
curve.

The result here indicates that the better choice for a
shared-bus multiprocessor system is the one with a larger
cache (smaller MC). The reason that a slower memory and a
larger cache outperform the combination of a faster
memory and a smaller cache in an MP system is because
the first combination results in a lower bus request
utilization. Fig. 13d illustrates this evidence where the
request utilization for the combination of a smaller cache
and faster memory is higher than the combination of a
larger cache and a slower memory. Thus, we have the
following theorem.

Theorem 1. Given the same performance from the combination of
a faster memory and a smaller cache and the combination of a
slower memory and a larger cache in a uniprocessor setting,
the choice for higher performance in a shared data path MP
configuration is the combination that uses a slower memory
and a larger cache.

Proof. The reason for the above conclusion is due to the
lower bus request utilization for the combination that
uses a slower memory and a larger cache, as shown in
Fig. 13d. tu

Another scenario that has the same performance in a
uniprocessor setting is when the bus width is changed for a
given bus cycle time. For instance, suppose that a system
with a wider 128-bit data bus and a smaller cache and a
system with a 64-bit data bus and a larger cache have the

same performance in a uniprocessor system. The question
of which configuration is more favorable in an MP system
in terms of performance is answered in the following
theorem.

Theorem 2. If it is given that the performance from the
combination of a wider data path and a smaller cache is the
same as that achievable from the combination of a narrower
data path and a lager cache for the same bus cycle time in a
uniprocessor setting, the choice for higher performance in a
shared data path MP configuration is the combination that
uses a narrower data path and a larger cache.3

Proof. The system that uses a wider data path for a given
bus cycle is equivalent to using a faster memory instead
of the wider data path. Similarly, the system that uses a
narrower data path can be replaced with an equivalent
slower memory for the narrower data path. From
Theorem 1, the combination that uses a slower memory
(i.e., narrower data path) and a larger cache results in
lower bus request utilization. Therefore, the choice for
higher performance in a shared data path MP config-
uration is the combination that uses a narrower data path
and a larger cache. tu

From the above analysis, we conclude that the same
performance level can be achieved by trading among the
memory cycle time, the bus width, and the cache memory
size in a uniprocessor system, but the favorable choice for a
shared-bus multiprocessor system is the combination that
uses a larger cache. In other words, the combination of more
requests with a faster response results in a lower perfor-
mance than the combination of fewer requests and a slower
response. More generally, we can state the following result.

Theorem 3. Given the same performance in terms of total
number of cycles for either caching the requests or speeding up
the transfers in a contention-free situation, the design favors
caching the requests in a contention-based medium.

5 CONCLUSION

We have presented an analytical model for the design of
contention-based multiprocessor systems. The model re-
lates the shared-bus width, bus cycle time, cache memory,
the features of a program execution, and the number of
processors to a metric called request utilization. The model
of bus contention is verified with a detailed cycle-level
simulation using the SPLASH-2 parallel programs. The
mean square of error value is less than 5 percent between

CHEN AND LIN: AN EASY-TO-USE APPROACH FOR PRACTICAL BUS-BASED SYSTEM DESIGN 791

2. The replacement ratio � is assumed to be 0.5, which is a typical value
observed from the simulation of this study as well as from our early work
[19], [20]. The number of invalidations is very small, so we assume zero in
the computation.

3. In this paper, the cache size is chosen from 8KB to 512KB, and the
average bus cycle time ranges from one CPU clock cycle to 20 CPU clock
cycles. Note that all traffic in this study is assumed to be cacheable.

TABLE 6
Execution Time Parameters

the results of the model and the simulation. The model can
be used to assist the design of a bus-based MP system by
finding a satisfactory request utilization or bus response
time.

Using the model developed in this paper, we have
obtained the following specific results. First, given the same
performance in a uniprocessor system, a slower memory
and a larger cache outperform the combination of a faster
memory and a smaller cache in shared-bus multiprocessor
systems. Similarly, given the same performance in a
uniprocessor system, the combination of a larger cache
with a narrower shared bus has a better performance than
the combination of a smaller cache and a wider shared bus.
More generally, this work has shown that, given the same
performance in terms of total cycle count for either caching
the requests or speeding up the transfers in a contention-
free situation, the design favors caching the requests for a
contention-based medium. In this work, we have studied
the system design for a representative suite of parallel
programs. An MP system involves the use of many other
applications. A designer can use the approach presented
here to evaluate the design so that the system can best meet
the need of these applications.

ACKNOWLEDGMENTS

We thank Prof. Arun Somani for reading and comment-
ing on an early draft of this paper. Also, thanks to the
anonymous referees who provided helpful inputs to
improve the work. This work was supported in part by
the funding of NSC85-2213-E-224-021, Taiwan, Republic
of China.

REFERENCES

[1] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta, ªComplete
Computer System Simulation: The SimOS Approach,º IEEE
Parallel and Distributed Technology, pp. 34-43, Winter 1995.

[2] C.A. Prete, G. Prina, and L. Ricciardi, ªA Trace-Driven Simulator
for Performance Evaluation of Cache-Based Multiprocessor
System,º IEEE Trans. Parallel and Distributed Systems, vol. 6. no. 9,
pp. 915-929, Sept. 1995.

[3] D. Thiebaut, J.L. Wolf, and H.S. Stone, ªSynthetic Traces for Trace-
Driven Simulation of the Cache Memories,º IEEE Trans. Compu-
ters, vol. 41, no. 4, pp. 388-410, Apr. 1992.

[4] R. Giorgi, C.A. Prete, G. Prina, and L. Ricciardi, ªA Hybrid
Approach to Trace Generation for Performance Evaluation of
Shared-Bus Multiprocessor,º Proc. 22nd EUROMICRO, pp. 207-
214, 2-5 Sept. 1996.

[5] B.L. Bodnar and A.C. Liu, ªModeling and Performance Analysis
of Single-Bus Tightly-Coupled Multiprocessors,º IEEE Trans.
Computers, vol. 38, no. 3, pp. 464-470, Mar. 1989.

[6] M.K. Vernon, E.D. Lazowska, and J. Zahorian, ªAn Accurate and
Efficient Performance Analysis Techniques for Multiprocessor
Snooping Cache-Consistency Protocols,º Proc. 15th Int'l Symp.
Computer Architecture, pp. 308-315, May 1988.

[7] M.C. Chiang and G.S. Sohi, ªEvaluating Design Choices for
Shared Bus Multiprocessors in a Throughput-Oriented Environ-
ment,º IEEE Trans. Computers, vol. 41, no. 3, pp. 297-317, Mar.
1992.

[8] M.A. Holliday and M.K. Vernon, ªExact Performance Estimates
for Multiprocessor Memory and Bus Interference,º IEEE Trans.
Computers, vol. 36, no. 1, pp. 76-85, Jan. 1987.

[9] A.K. Somani, C.M. Wittenbrink, R.M. Haralick, L.G. Shaprio, J.N.
Hwang, C.H. Chen, R. Johnson, and K. Copper, ªProteus System
Architecture and Organization,º Proc. Fifth Int'l Parallel Processing
Symp., pp. 287-294, 1991.

[10] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, ªThe
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,º Proc. 22nd Int'l Symp. Computer Architecture, pp. 24-
36, June 1995.

[11] K. Sakamura, R. Sano, and K. Honma, ªIntroducing Tobus, the
System Bus in the TRON Architecture,º IEEE Micro, pp. 47-59,
Apr. 1988.

[12] T. Lovett and S. Thakkar, ªThe Symmetry Multiprocessor
System,º Proc. Int'l Conf. Parallel Processing, pp. 303-310, 1988.

792 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 8, AUGUST 1999

Fig. 13. Performance metrics of multiprocessor configurations given the same performance in a uniprocessor setting. (MC1 � 0:01 and �m1 � 10 for

System I. The number of processors = 8, L = 32 bytes, D = 8 bytes, �1 � �2 � 0:5, In1 � In2 � 0.)

[13] S. Thakkar, P. Gifford, and G. Fielland, ªThe Balance Multi-
processor System,º IEEE Micro, Feb. 1988.

[14] A.J. Smith, ªCache Memories,º ACM Computer Surveys, vol. 14,
pp. 473-530, Sept. 1982.

[15] J.L. Hennessy and D.A. Patterson, Computer Architecture, A
Quantitative Approach, second ed. Morgan Kaufmann, 1996.

[16] C.-H. Chen, ªExploring the Design Space of Cache Memories, Bus
Width, and Burst Transfer Memory Systems,º J. Chinese Inst. of
Engineers, vol. 21, no. 3, pp. 269-282, 1998.

[17] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik,
Quantitative System Performance: Computer System Analysis Using
Queuing Networks Models. Prentice Hall, 1984.

[18] A. Sharma, N.-T. Nguyen, and J. Torrellas, ªAugmintÐA Multi-
processor Simulation Environment for Intel x86 Architectures,º
CRD Technical Report 1463, Univ. of Illinois at Urbana-Cham-
paign, 1995.

[19] C.-H. Chen and A.K. Somani, ªA Unified Architectural Tradeoff
Methodology,º Proc. 21st Int'l Symp. Computer Architecture, pp. 348-
357, Apr. 1994.

[20] C.-H. Chen and A.K. Somani, ªArchitecture Technique Trade-Offs
Using Mean Memory Delay Time,º IEEE Trans. Computers, vol. 45,
no. 10, pp. 1,089-1,100, Oct. 1996.

Chung-Ho Chen received his MSEE degree
from the University of Missouri-Rolla in 1989 and
the PhD degree in electrical engineering from
the University of Washington, Seattle, in 1993.
He was with the Department of Electronic
Engineering, National Yunlin University of
Science and Technology from August 1993 to
July 1999. He is currently an associate professor
with the Department of Electrical Engineering,
National Cheng Kung University. His research

interests include parallel computer architecture, VLSI systems, data
communication, and distributed computer systems. Dr. Chen is a
member of the IEEE Computer Society.

Feng-Fu Lin received his MS degree in electro-
nics and information engineering from the
National Yunlin Institute of Technology in 1996.
He is currently with the R&D Department of the
Great China Technology Inc., Taiwan.

CHEN AND LIN: AN EASY-TO-USE APPROACH FOR PRACTICAL BUS-BASED SYSTEM DESIGN 793

