
Fault-Containment in Cache Memories for TMR
Redundant Processor Systems

Chung-Ho Chen, Member, IEEE Computer Society, and Arun K. Somani, Fellow, IEEE

AbstractÐCache data errors read by a processor may cause CPU control flow error and force the system to enter a CPU-cache

reintegration process in redundant processor systems. The reintegration process degrades the system performance and reliability. To

reduce the occurrences of such an event, we propose a real-time error recovery scheme that provides effective fault-containment for

data errors in cache memories. The scheme is based on cache data broadcasting of a dirty line after modification. It effectively exploits

the redundancy of a fault-tolerant system using hardware voting. The scheme recovers from erroneous cache data written by a

processor with full coverage. This error recovery feature remedies the insufficiency of error-correcting codes that are unable to prevent

such an error. In addition, more than 60 percent of cache lines are fully covered for recovery due to errors originated from the cache

itself, including unrecoverable ECC errors. The protocol can also be used to speedup the CPU-cache reintegration process for a

temporarily failed processor. The performance overhead of the protocol is to broadcast only 2-3 percent of the total memory

references.

Index TermsÐCaches, error detection and recovery, fault-containment, redundant systems, transient faults.

æ

1 INTRODUCTION

HIGHLY reliable real-time applications, such as life
critical missions, aircraft control, or transactional

processing, usually employ synchronized redundant sys-
tems that use voting to mask hardware failure. Such
systems require a failure probability to be less than 10ÿ9

for a 10-hour mission [1], [2]. To use voting, at least three
redundant processing elements must be used. Fig. 1 depicts
a typical TMR (triple modular redundancy) system using
redundant processors (or channels) and memory modules.
In this system, each memory operation is performed after a
majority of the processors agree on the operation. The bus
interface unit that implements the voting/synchronization
scheme detects the transient faults. If the system employs
no cache memory, the performance of the system suffers
because every memory cycle must go through the voting
process. The voting/synchronization mechanism and mem-
ory latency become bottlenecks, degrading the system
throughput and process response time [3], [4].

To remedy the performance loss, a private cache memory

can be used. In a system with cache memories, if the

memory cycle is a cache hit (except for the write-through

cycles), then there is no need to go through the voting

process. Without the voting delay and the long memory

latency, the performance improves. Introduction of caches,

however, increases the probability of fault occurrence and

the probability of latent faults. A fault in a processor or in a

cache memory may cause the processor execution state to

diverge from the majority computation sequence. The fault
may corrupt the cache memory or lead to an erroneous
internal CPU state. The fault could be permanent, inter-
mittent, or transient. Studies in [3], [9] showed that a large
fraction of errors detected are caused by transient faults.
The occurrence of transient faults can be 5 to 100 times that
of the permanent faults. An error may appear in a cache line
by a direct transient fault in the cache memory or because a
faulty processor writes incorrect data into the cache
memory, or both. A processor using the erroneous data
may run away from its normal course, for instance, taking a
different branch in the program. Fast and early recovery of
the erroneous cache data is crucial for the overall system
reliability. The transient restoration of erroneous cache data
is important for many reasons, as discussed below.

The early recovery of faulty data in a cache line can
prevent an error from propagating in the cache memory
due to subsequent executions. This real-time recovery
prevents a processor from losing the synchronization in a
TMR system due to the use of incorrect data. It reduces the
probability of corrupting the main memory if there is more
than one faulty processors. Reloading the corrupted main
memory and resynchronizing a temporarily failed proces-
sor are very expensive in real-time processing and often
need special mechanisms to speedup the process [3], [7]. In
addition to performance loss, the time required for global
memory reintegration becomes the major reliability bottle-
neck [7]. Resynchronization or reintegration can bring a
failed channel back to operation if the fault is transient. If
the early recovery for transient faults succeeds, the costly
resynchronization process for the CPU-cache or the global
memory is not required. A transient fault may disappear
before the resynchronization is finished, however, which
means the resynchronization process was done in vain and
the system wasted its computation time. To prevent the
processor from using erroneous cache data, an error-

386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

. C.-H. Chen is with the Department of Electronic Engineering, National
Yunlin University of Science and Technology, Touliu, R.O.C. on Taiwan.
E-mail: chen@el.yuntech.edu.tw.

. A.K. Somani is with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA 50011.
E-mail: arun@iastate.edu.

Manuscript received 28 Apr. 1997; revised 8 Dec. 1998.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 104959.

0018-9340/99/$10.00 ß 1999 IEEE

correcting code (ECC) can be employed in the cache
memory [10]. However, these ECC codes are only able to
handle a limited number of bit errors. Erroneous data
written by a processor can still corrupt the cache, even with
the protection of an ECC code. Clearly, an error recovery
scheme that is able to remedy the insufficiency of using
ECC codes will greatly improve the system reliability or
mean time between failures.

Many schemes have been proposed by several research-
ers using caches to assist error recovery [11], [12], [13], [15],
[14]. One of the distinctive differences among these
proposals is whether the error detection mechanism is
assumed to exist or not. In [11], a cache-based rollback
mechanism is proposed to recover a processor from
transient faults. The main memory and cache memory are
assumed to be reliable, so the processor can rollback to a
previous checkpoint state resident in the cache memory and
main memory. This method is modified for the shared

memory multiprocessor systems in [12], [13] by considering
the cache coherency schemes. In [14], error detection
capability is provided by the comparison of data from a
smaller shadow cache and from a normal cache. The
recovery of error upon detection is achieved by a rollback
based scheme. The Sequoia shared-bus system [16] uses
software-controlled cache flush and invalidation to achieve
rollback recovery. Compared with these rollback recovery
schemes, the cache reloading process in TMR systems is
used for the purpose of invalidating potentially corrupted
cache lines and putting all processors back in synchroniza-
tion.

In this paper, we develop a broadcasting protocol to
realize real-time restorations of erroneous cache data for
redundant TMR processor systems using hardware voting.
Because various error recovery and system reconfiguration
techniques are required to address system-wide issues [17],
we limit the scope of the paper to the issues of fault-
containment in cache memories. The proposed cache
protocol emphasizes the early detection of cache errors,
prevents the pollution of cache data, and thereby avoids
possible resynchronization. The key feature of our protocol
is to broadcast a modified dirty line to the hardware voter
the first time the line is read. This straightforward approach
detects and recovers a data cache error written previously
by a processor due to transient fault and provides fault-
containment. The scheme remedies the insufficiency of an
error-correcting code when faced with processor transient
faults in a TMR system. Moreover, errors generated by
cache transient faults may also be recovered. The scheme is
simple in implementation and tailored directly for TMR
redundant processor systems using hardware voters. In
summary, this paper presents a low-cost and effective real-
time error detection and recovery mechanism that:

. Allows the processor or the cache memory or both to
be liable for transient faults.

. Maintains cache data consistency in redundant
copies.

. Supports fault-containment by preventing a proces-
sor from continuing to work on erroneous data
written previously.

. Restores a polluted cache and avoids costly resyn-
chronization due to errors in the cache.

. Eliminates the cache flush overhead when resyn-
chronizing a processor-cache for reintegration.

The rest of this paper is organized as follows: We discuss a
cache error model in Section 2. We present the proposed
schemes in Section 3 and Section 4. Section 5 discusses the
use of the proposed scheme in a two-level cache system. In
Section 6, we present the results of protocol overhead and
cache line status distribution and usage. We conclude this
paper in Section 7.

2 MODEL OF CACHE ERRORS

In Fig. 2, we show an error handling model to characterize
the processor and cache behavior in a redundant system. In
this model, a system is normally in an error-free state R. An
error activation either in the processor or in the cache
memory is represented by state A. When the processor

CHEN AND SOMANI: FAULT-CONTAINMENT IN CACHE MEMORIES FOR TMR REDUNDANT PROCESSOR SYSTEMS 387

Fig. 1. A triplex fault-tolerant computer system.

Fig. 2. A cache error model for transient faults.

continues to execute the instructions, it may corrupt the
cache memory and the system enters the polluted state P . In
the error activated state A or the error polluted state P , the
error may be detected and recovered by some detection/
recovery mechanisms employed in the cache memory. In
this case, the system enters the error detected state, D. After
recovery in the detected state D, the system returns to state
R. The detection/recovery mechanisms must be able to
prevent the processor from working further with the
contaminated cache data.

If the system enters the polluted state P , the employed
detection/recovery mechanisms must be able to detect and
recover all of the errors gradually; otherwise, the system
may enter the temporarily failed state, F , where resynchro-
nization is required. The error detection and recovery
mechanism used by the cache memory or the processor
must be effective so that the detection rates, �1 and �2, are
high and the pollution rate, �, is as low as possible. To
achieve this goal, it is helpful to examine the types of errors
and their possible impacts on the execution of a processor.
Specifically, if a transient fault occurs in the processor or the
cache memory or both, the cache memory (assuming write-
back protocol) may be affected in the following ways:

. Type I: One or more bits change in a cache line. This
fault could happen in a dirty (modified) or in a clean
(unmodified) cache line. This error is latent until the
processor reads and uses the erroneous data.

. Type II: The processor writes computationally incor-
rect but valid data into a cache line. This may be
caused by the processor's internal transient faults or
by the transient faults on the processor-cache bus.

. Type III: The processor writes data using a bad
address to a cache line which is not supposed to be
written in a fault-free operation.

An erroneous cache line becomes a source of error which
is propagated further when the processor reads from that
line again. Three scenarios exist when errors are activated in
a processor during the execution.

1. The processor remains synchronized with other
redundant processors. In this case, the processor
performs computation as in normal operation but
generates incorrect results.

2. The processor may remain in synchronization for a
finite time, and the erroneous data may be propa-
gated into other cache lines.

3. The processor runs away. When the processor
performs computation on the faulty data or pro-
gram, this may cause a trap on some exception
conditions such as an illegal instruction or result
overflow. In another possible situation, the processor
may take an incorrect branch of the program. The
failed processor thus loses the synchronization and
is out of the voting process.

Besides the scenarios described when errors are acti-
vated in a processor during the execution, there is also the
possibility that the error does not affect the processor
operation, for instance, when the error is masked. In view of
these discussions, when the error occurs, it is desirable to
keep the processor synchronized as long as possible so that

the error correction is possible, and the pollution rate can be
reduced. The cache recovery can be performed without
invoking the resynchronization process. However, if a
resynchronization process is inevitable because a processor
has run away, the reintegration time should be minimized.
Both of these two metrics improve the system's mean time
between failures.

3 SINGLE LEVEL WRITE-THROUGH CACHES

For the system we consider, the bus interface unit that
supports the voting process and the main memory modules
are assumed to employ their own fault detection mechan-
isms and they remain fault free for cache recovery.

In a write-through cache, for each write operation, the
bus interface unit conducts a bit-by-bit comparison from the
outputs of all the redundant processors. A correct output is
determined and written to the main memory by a majority
vote. If a disagreement is detected, and the write operation
is a cache hit, to recover from the error, the processor must
be put in a hold state. A hold state prevents the processor
from initiating any further memory references; however,
the processor can continue its execution as long as it does
not request a read/write access. The correct data from the
voting process are then used to replace the erroneous cache
data. Since the system is synchronized, all processors are
required to enter the hold state whenever a write hit occurs.
The hold state is released when either the voting is
completed without detecting any error, or the faulty cache
data are replaced.

For error recovery purposes, the cache controller
responds not only to the caching requests from the
processor but also to the replacement requests from the
bus interface unit. To enforce the run-time detection and
recovery of the erroneous cache data, the processor may
suffer from a high performance penalty for using a write-
through cache since any following writes or reads are
blocked until the hold state is released. Besides, a cache
fault may still occur in the newly written data despite of the
recent verification. The processor may use the erroneous
data when it reads that data again. For these reasons, we
look for an alternative that uses a write-back cache to
interface with the voting bus. This is addressed in the
following section.

4 AN EFFECTIVE FAULT-CONTAINMENT SCHEME

FOR WRITE-BACK CACHES

In a write-back cache, the data are written into the cache to
reduce main memory traffic. A cache line is chosen to be
replaced using a predefined replacement policy when the
need occurs to make room for a read or a write miss. When
an error appears in a write-back cache, it may be
propagated to other cache lines by the read/write access
of the processor. This data error, if not recovered in time,
may eventually cause control flow errors as reported by the
results of a fault injection simulation [8]. A data error
written by a processor is detected only when the line is
flushed back to the main memory in a TMR system. At this
time, the bus interface unit will detect the error by majority
voting. However, a write hit in a write-back cache does not

388 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

invoke either the detection or the recovery procedure by the
voting hardware. To prevent a processor from using any
erroneous cache data, cache line verification and recovery
can be performed in a write cycle or in a read cycle. If it is
done on the write cycle, then every write hit even in the
same line has to be verified. The processor may be held too
long, losing the benefit of using a write-back cache.

Consider a scenario where a transient fault corrupts
cache line X at t1. The error stays in that line until it is read
again at t2 and, possibly, the error is propagated to the other
cache line, e.g., X1 at t3 by a write-hit. We propose a read-
first-dirty-broadcasting (RFDB) scheme to detect and recover
such an error. Fig. 3 illustrates the RFDB algorithm. The
RFDB algorithm requires each cache controller in the
redundant system to broadcast a dirty line after modifica-
tion to the bus voting unit when the line is read for the first
time. If an error is detected in a line, the erroneous line is
replaced by the majority result from voting. Therefore, the
processor is prevented from using the erroneous data. If no
error is detected, each of the redundant processors proceeds
using its own line. It is observed that, to reduce possible
frequent broadcasts resulting from a sequence of consecu-
tive reads and/or writes on a cache line, only the first read
on a dirty line after modification is broadcast.

The line state transition of a write-back cache (write
allocate for a write miss) with the RFDB protocol is shown
in Fig. 4. A read miss causes the line state to change from
the invalid state to State A after the completion of the line
fill process. Similarly, for a write miss, the line is first read
in and then the write is performed. The resultant state is
valid and dirty as shown in State B in Fig. 4. A read for a
line in State B causes the line to be broadcast and the state
transits from State B to State C. In other words, a cache line
is verified when 1) the cache line is fetched into cache from
the main memory as a result of a read miss, and 2) the cache
line is broadcast to the bus interface unit due to the first
read in state B.

We illustrate how the RFDB protocol provides fault-

containment and recovers an error appearing in a cache line

due to a transient fault in processor, processor-cache bus, or

cache memory. For the RFDB protocol to perform correctly,

the following conditions are required: 1) the majority voting

mechanism works, 2) the redundant processors remain in

synchronization.

Definition 1. The set of lines which are contaminated due to the

use of erroneous data in line L is denoted by CL.

CHEN AND SOMANI: FAULT-CONTAINMENT IN CACHE MEMORIES FOR TMR REDUNDANT PROCESSOR SYSTEMS 389

Fig. 3. The Read-First-Dirty-Broadcasting protocol for write-back caches.

Fig. 4. Line states for the RFDB protocol.

For instance, if a processor reads from an erroneous line
L and propagates errors to other cache lines, i.e.,
X1; X2; . . . ; Xj through write-hits, the contaminated set is
given by CL � fX1; X2; X3; . . .Xjg.
Theorem 1. Given that the error in line L is written with a

correct address by a processor, the contaminated set does not
exist. That is, jCLj = 0. The RFDB protocol provides 100
percent recovery coverage for this type of data errors.

Proof. For this type of data errors, the error source is the
faulty processor or the processor-cache bus. The error in
the dirty line L is recovered by the RFDB protocol when
the line is read again or when the line is replaced before
it is read. Thus, the RFDB protocol provides 100 percent
recovery coverage for this type of data errors. tu

Theorem 2. Associated with data line L, if jCLj 6� 0, then the
error source is the cache itself.

Proof. For an unmodified line, the reason is obvious. For a
modified line, a data error can only produce a nonzero
contaminated set if the error occurs after the read-first-
dirty-broadcasting is performed. Therefore, the error
source comes from the cache itself. tu

Theorem 3. The read-first-dirty-broadcasting protocol provides
fault-containment by preventing further propagation of errors
in CL to other cache lines.

Proof. With the RFDB protocol, since all lines in CL are
modified by the processor, the first read reference to any
of these lines results in the broadcasting of the line and,
therefore, the erroneous line is recovered by the majority
voting. The RFDB algorithm prevents further error
propagation and provides fault-containment. tu

Definition 2. RD�L� is the sequence representing the order of
lines read from CL for the first time. RD�L�i is the ith element
of RD�L�.

For example, if the sequence is X2; X5; . . . , then
RD�L�1 � X2, RD�L�2 � X5, and so on. The subsequent
consecutive reads on the same line are not part of the
RD�L�.
Definition 3. Let CRW�L�i denote the set of dirty lines which

are in CL flushed back to the main memory due to read miss or
write miss between reading cache line RD�L�i and RD�L�i�1.
Those lines in CL flushed before RD�L�1 is read are denoted by
CRW�L�0.

Theorem 4. The RFDB protocol recovers the contaminated cache

lines when �i�Piÿ1
j�0 jCRW�L�jj� � jCLj.

Proof. After the line RD�L�i is read, there are i lines
recovered by the RFDB algorithm. At that time,Piÿ1

j�0 jCRW�L�jj lines are also recovered due to cache
flushing. Therefore, when �i�Piÿ1

j�0 jCRW�L�jj� � jCLj,
the error contaminated lines due to line L are recovered.
It is essential to note that those lines in CL do not further
propagate error as proved in Theorem 3. tu

4.1 On the RFDB Protocol

In the transient fault injection study for a 32-bit RISC
processor [8], Ohlsson et al. reported that about 60 percent

of the effective errors resulted in the data errors while 33
percent of the effective errors are control flow errors.
Ohlsson et al. called an error that causes a load or store
instruction to reference an incorrect address or causes a
store instruction to write incorrect data a data error. From
Ohlsson et al.'s report, we note that the data errors are the
major portion of the errors due to processor transient faults,
and it takes some time (about the order of 1,000 clock cycles)
for a portion of the data errors to generate control flow
errors. This experimental result indicates that 1) cache data
can be polluted by a processor, 2) real-time recovery and
fault-containment for cache errors will help prevent the
processor from entering control flow errors.

The RFDB protocol detects and recovers the incorrect
data written by a processor and prevents the possible
control flow errors which could have been caused due to
incorrect use of data. The coverage of recovery for this type
of errors is 100 percent using the RFDB protocol. This
feature can be used to remedy the insufficiency of using an
ECC code. On the other hand, when the erroneous data in
the dirty line are originated from the cache memory itself,
the RFDB protocol recovers the error when the processor
performs a read from the cache line due to the demand of
the program. The overall recovery coverage for this type of
cache data errors is about 60 percent for the set of the
programs we simulated, since around that amount of cache
lines are dirty (simulation results shown later.)

Moreover, when the majority of the processors perform
the read-first-dirty-broadcasting operation, if a processor
uses an incorrect load address accessing a different dirty
line which is modified previously, this error can be detected
and recovered by the RFDB protocol. An erroneous address,
if it is a cache hit, is very likely to access a dirty line which is
modified previously (in state B as shown in Fig. 4) instead
of a clean line, since more than 60 percent of the cache lines
are dirty and in state B. In this situation, the RFDB protocol
is further effective in helping to keep the processor in
synchronization. The data errors discussed here are beyond
the detection and recovery capability of using any ECC
code in a TMR system.

If the processor accesses a clean line with a bad address
while the majority of the processors perform the read-first-
dirty-broadcasting operation on a dirty line, or vice versa,
this error can be detected. In this case, the system can
determine to enter a fast cache resynchronization process
that is proposed in later section. If an error appears in a
clean line, the error may remain after the transient fault has
disappeared. The erroneous data in a clean line read by a
processor may not cause the processor to lose synchroniza-
tion directly or immediately as indicated by Ohlsson et al.'s
study. A control flow error may be caused by the secondary
errors which are written by the processor using the primary
erroneous data. The RFDB protocol recovers these second-
ary errors in the cache memory and may prevent the
processor from losing synchronization for this type of
errors. In a later section, we describe approaches to improve
the recovery performance for errors originated from clean
cache lines. Table 1 summarizes the error recovery
performance of the RFDB protocol discussed in this section.
The proposed protocol achieves full recovery coverage of

390 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

errors written from a faulty processor and, in addition, it
recovers 60 percent of errors originated from the cache
itself, and assists CPU-cache reintegration in run-time.

Adding the RFDB protocol into a normal cache system
does not complicate the voting design of the original TMR
system since a RFDB cycle can be easily distinguished from
a normal miss cycle by issuing a control signal from the
cache controller. Table 2 summarizes the actions to take
when the system is faced with various CPU data errors and
control flow errors seen from the voting interface. For
instance, if all of the three cache controllers output the
RFDB signal (3 RFDB in Table 2) and if one of the data
broadcast is different from the other two (1/3 inconsis-
tency), then this data error can be recovered by the voting
mechanism. The cases when a faulty processor has a read
hit/miss in the I-cache and other processors don't have a
similar symptom as those for the data errors are shown in
Table 2.

4.2 On the RFDB with ECC Codes

If an ECC code is used in the cache memory, it offers the
recovery capability up to its codeword limit. Beyond the
codeword limit, the processor may still use the incorrect
data. Systems using the SEC-DED code, for example, in the
main memory usually require software-assisted memory
scrubbing to minimize the probability of multiple-bit errors.

The contents of the memory are read, and rewritten back at
regular, predefined time intervals [17].

Memory scrubbing can also be used in the cache
memory. However, one of the major differences between
the main memory and the cache memory is that the data
inside the cache memory can be replaced at a rate much
faster than the main memory. This is because many data
items in the main memory are mapped onto the same
location in the cache memory. In our trace-driven simula-
tion for the SPEC programs, we observed that there are less
than 10 percent of cache data which can be classified as stale
for their residence in the cache memory. Thus, using
memory scrubbing in the cache memory is likely to be
much less effective than in the main memory.

On the other hand, the RFDB protocol recovers the
unrecoverable ECC errors up to 60 percent in coverage in
addition to detect and recover the incorrect data written by
a processor. These features make the RFDB protocol
attractive to be used with an ECC code in TMR processor
systems.

4.3 On RFDB with Cache Line Invalidation

Another way of preventing a processor from using the
erroneous data in a cache memory is to flush and invalidate
the cache memory at regular intervals. In a write-back
cache, cache flush can take considerable time to complete

CHEN AND SOMANI: FAULT-CONTAINMENT IN CACHE MEMORIES FOR TMR REDUNDANT PROCESSOR SYSTEMS 391

TABLE 1
Error Recovery Capability of Using the RFDB Protocol

TABLE 2
CPU Data Errors and Control Flow Errors for a TMR System

2 RFDB, 1 clean: Two cache controllers issue the RFDB cycle while one cache controller issues an internal access on a clean line.

because a large portion of cache lines are dirty. In order to
enhance the detection and recovery capability for the clean
cache lines and the dirty lines in state C as shown in Fig. 4,
we can explore the combination of clean line invalidation
and dirty line broadcasting. In this approach, the clean lines
are invalidated and the dirty lines are changed into state B.
With this scheme, there is no need for cache flushing during
invalidation because any erroneous dirty line is recovered
by the RFDB protocol before the processor uses it. Later, we
show that the number of cache lines which remain clean
and are occupied only once is only a small portion of the
total data cache lines used. Together, this reduces the
probability of error staying in the clean line which may be
referenced by a processor. Also, with a small number of
clean cache lines, invalidating the clean lines at, say, each
iteration of a flight control program causes insignificant
performance overhead.

4.4 A Cache-Based Resynchronization Process

When a transient fault occurs in a processor, it may
manifest itself as an error by corrupting the processor
internal states or altering the normal sequence of instruction
execution. This is a control flow error accounting for 30
percent of effective errors for a fault injection study on a
RISC processor according to Ohlsson et al.'s results [8]. The
damage to the control flow of a processor may cause the
processor to run away to an unknown state. In such cases,
the faulty processor may leave the synchronization from the
remaining redundant processors.

To bring the running away processor back to synchro-
nized operation, it is necessary to reintegrate the tempora-
rily failed processor (channel) with the healthy processors
(channels). Upon the detection of the failed channel (see
Table 2), a voted interrupt can be directed to all redundant
channels for invoking a recovery process. In recovery, the
processors need to flush the cache lines and invalidate the
cache memories since the faulty processor may have
corrupted the cache memory. If only one channel fails at a
time in a TMR system, flushing of caches from the healthy
channels produces correct output to the main memories by
majority voting. The recovery time can be relatively long if
the cache size is large.

To reduce this resynchronization latency, the RFDB
protocol can be used to speed up the process. The approach
to reduce the penalty of flushing all cache lines at a time is
to allow the processor to change all of the cache lines into
state B (ref. Fig. 4). Once all of the cache lines are in state B,
any cache line by a subsequent first read from the processor
is broadcast for verification using the RFDB protocol. The
corrupted cache can be gradually recovered while the
resynchronization cost is minimized. However, there may
be some extra cost for flushing the dirty lines which are
changed from the clean state when the dirty lines are
replaced. Nevertheless, this extra cost is small since the
number of clean lines is generally smaller than that of the
dirty lines in the data cache.

This RFDB-assisted CPU-cache reintegration approach
takes advantage of distributing the cache flush overhead
into the computation phases. This cache-based resynchro-
nization process requires very small overhead and can
always be used as the first attempt in reintegrating the
failed channel. For the process to be successful, the cache
tag memory for the associated faulty processor and the
main memory must be intact. If the cache-based resynchro-
nization is unsuccessful by the detection of the voting

392 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

Fig. 5. Number of broadcasts (32 Kbytes, write allocate cache, set-associativity = 2).

Fig. 6. Saving of write-hit memory cycles using the RFDB protocol (L =
16 bytes).

mechanism, the process of reloading the entire main
memory is required for the channel reintegration.

5 OTHER DESIGN CONSIDERATIONS

Many of the current processors have on-chip (L1) cache
memories. To reduce memory penalty due to the misses in
the L1 cache, an L2 cache can be used. The RFDB protocol
can also be used in a two-level cache system. In such a
configuration, for most of the cases, the L2 cache uses the
write-back mode while the L1 cache uses the write-through
mode. Also, the data in the L2 cache will be the super set of
those in the L1 cache. These assumptions are used when
applying the RFDB protocol in a two-level cache system.

5.1 RFDB in Two-Level Caches

For a two-level cache system, the RFDB protocol is applied
in both of the two caches. In the L1 cache, the cache uses a
state called ªwrittenº to implement the behavior of the
read-first-dirty-protocol in the write-through mode. The
written state is the ªvalid & dirtyº state in B or C, as shown
in Fig. 4. In fact, the same state transition in Fig. 4 is used for

the L1 write-through cache. The line being read in state B is
broadcast for verification and error correction. The perfor-
mance overhead of broadcasting the L1 cache lines will be
similar to that of the single level cache system we have
evaluated.

When incorrect data are written into both of the L1 and
L2 cache, the RFDB protocol in L1 will perform the recovery
as the processor requests the data. At the same time, the
voting result is also used to recover the same line in L2. If
the request is an L1 miss because that line is replaced, then
the RFDB protocol in L2 will perform the recovery. In either
case, the processor uses the correct data by the fault-
containment feature of the RFDB protocol. The recovery
coverage for this type of data errors is 100 percent.

In a two-level cache system, it is possible that the data in
the L1 and L2 cache may be incoherent because of cache
transient faults. For instance, the L1 cache has correct data,
whereas the data in L2 are corrupted. In this case, the
processor uses the correct one because of read hits on L1.
On the other hand, if the L1 has the incorrect data while the
L2 has the correct one, the error in L1 may be recovered by
the RFDB protocol as the case for a single level cache. The
error recovery performance of using the RFDB protocol in
both of the caches is illustrated as follows.

Definition 4. In both of the caches, the set of lines which are
contaminated due to the use of erroneous data in line L is
denoted by CL12. Line L can be either in the L1 cache or in the
L2 cache.

Corollary 1. Given that the error in line L is written with a
correct address by the processor, jCL12j = 0 and the RFDB
protocol provides 100 percent recovery coverage for this type of
data errors.

Proof. See Theorem 1. tu
Corollary 2. If the data error line L is in a modified state and
jCL12j 6� 0, or the data error line is in an unmodified state,
then the error source is the cache itself.

Proof. See Theorem 2. tu
Definition 5. R�L12� is the sequence representing the order of

lines read from CL12 for the first time. R�L12�i is the ith
element of R�L12�.

CHEN AND SOMANI: FAULT-CONTAINMENT IN CACHE MEMORIES FOR TMR REDUNDANT PROCESSOR SYSTEMS 393

Fig. 7. Saving of write-hit memory cycles using the RFDB protocol (L =
16 bytes, subblock size = 8 bytes).

Fig. 8. Cache line usage for the SPEC programs (L = 16 bytes, write
allocate cache, set-associativity = 2).

Fig. 9. Cache line state distribution (L = 16 bytes, write allocate cache,
set-associativity = 2).

Definition 6. Let CR�L1�i denote those L1 cache lines which are
in the written state, belong to the CL12, and are replaced due to
a read miss or a write miss between reading cache line R�L12�i
and R�L12�i�1.

Definition 7. Let CR�L2�i denote those L2 cache lines which are
in the dirty state, belong to the CL12, and are flushed back due
to a read miss or a write miss between reading cache line
R�L12�i and R�L12�i�1.

Theorem 5. The RFDB protocol provides fault-containment and
r e c o v e r s t h e c o n t a m i n a t e d c a c h e l i n e s w h e n
�i�Piÿ1

j�0�jCR�L1�jj � jCR�L2�jj�� � jCL12j.
Proof. There are i lines recovered by the RFDB algorithm

employed in both of the caches after the line R�L12�i is

read. At that time,
Piÿ1

j�0 jCR�L1�jj lines in L1 are

recovered due to replacement and
Piÿ1

j�0 jCR�L2�jj lines

in L2 are recovered due to copy back. Thus, when

�i�Piÿ1
j�0�jCR�L1�jj � jCR�L2�jj�� � jCL12j, the error

contaminated lines due to line L are recovered. tu
From the above, we have illustrated how the RFDB

protocol can be easily applied in a two-level cache system
and maintain the same fault-containment capability as used
in a single write-back cache system.

6 Protocol Overhead Evaluation

We evaluated the performance overhead of the RFDB
protocol with trace-driven simulations. The programs used
include the SPEC92 benchmark and several flight control
programs. The flight control programs implement iterative
operations that usually have multiple nested loops. The
programs generate traces on a DECstation 5000 (R3000
MIPS CPU) with the pixie facility. The cache memory
simulated is a split data and instruction cache organization.
The data cache implements the write-back policy with
write-allocate mode for handling write misses. The cache

line replacement uses the LRU (least recently used) policy.
In addition to simulating various cache line sizes, we also
evaluated the case where a cache line is implemented using
subblocks. A write modified bit or a dirty bit is used for
each subblock in a line. Our experiment evaluated two
aspects of the RFDB protocol. On the performance over-
head, we examined the number of broadcasts, and the
number of write-hit memory cycles in a write-through
cache that can be saved by using the RFDB protocol in a
write-back cache. On the effectiveness, we examined the
percentage of clean lines and dirty lines and the state
distribution of cache lines. The results are used to address
the effectiveness of various fault-containment schemes for
cache data errors, as discussed in Section 4. The simulation
results are obtained for the first 100 million instructions
executed.

6.1 SPEC92 Programs

The performance overhead paid to achieve the error
recovery capabilities mentioned in Table 1 is to broadcast
about 2 percent of the total number of memory references.
Fig. 5 illustrates this result. For performance overhead, this
is equivalent to increasing the miss ratio by 2 percent.

The saving of write-hit memory cycles is illustrated in
Fig. 6 for a line size of 16 bytes. The comparison is made
between the number of write-hits and the number of read-
first-dirty-broadcasts since, in a write-through cache, each
write-hit is also a memory cycle. The simulation results
indicate that using the RFDB protocol in a write-back cache
for error detection and recovery significantly reduces the
number of write-hit memory cycles as required with a
write-through cache. For most of the cases simulated, the
ratio of write-hits to broadcasts is much larger than two.
Thus, more than 50 percent of the write-hit memory cycles
(ratio WHÿBC

WH , where WH is the number of write-hits and
BC is the number of broadcasts) in a write-through cache
are eliminated in a write-back cache using the RFDB
protocol.

To further reduce the cost of broadcasting an entire cache
line, we studied the RFDB protocol on a subblock basis. The
advantage of broadcasting a subblock is that the voting
latency can be reduced. The broadcasting frequency is
reduced if the first read is done on a clean subblock while

394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

TABLE 3
Data Cache Performance Statistics

for the Flight Control Programs

S u b b l o c k s i z e = 4 b y t e s , s e t - a s s o c i a t i v i t y = 2 ,
WH � number of write hits, BC � number of broadcasts.

Fig. 10. Cache line usage for the flight control programs (L = 4 bytes,
write allocate cache, set-associativity = 2).

any of the other subblocks in the same cache line is

modified by a write. However, first-reads on the modified

subblocks in the same cache line may increase the frequency

of broadcasts. Both of these two cases are observed from the

simulation. Fig. 7 illustrates the saving of write-hit memory

cycles for the RFDB protocol with subblock broadcasting.

The subblock size is 8 bytes in this study.
The subblock protocol may increase or decrease the

write-hit to broadcast ratio, depending on how good the

program can fit in the cache. On an average, more than 50

percent of the write-hit memory cycles required in a write-

through cache are exempted in a write-back cache using the

RFDB protocol. Because a whole cache line is usually two or

four times the size of a subblock, the voting latency of a

subblock based RFDB scheme is much smaller than that of a

full line-based broadcasting.
We examined how many cache lines are dirty and how

much data may stay in clean cache lines which are only

occupied once during the execution of a program. We

recorded the number of dirty lines and clean lines which are

never replaced for every 100 instructions executed. The

average numbers of line usage obtained for simulating the

first 10 million instructions are shown in Fig. 8. It is possible

to examine the status of each cache line for each instruction

executed; however, the simulation time is very long for

large caches.
We observed that most of the programs exhibit either a

high percentage of dirty lines and/or a lower percentage of

clean lines that are never replaced. The SPEC programs, on

an average, have more than 60 percent of the cache lines

that are dirty for the 8KB cache while more than 70 percent

of the cache lines are dirty when the cache size is larger than

32 Kbytes (ref. Fig. 8). With a large portion of cache lines

being in dirty state, considerable cache flush overhead is

saved using the approach which combines clean line

invalidation and the RFDB protocol. Most notably, the

percentage of the clean lines which are never replaced after

they are brought into the cache is very small (less than 5

percent). Thus, the probability of erroneous data resident in

a clean cache line which is only occupied once is minimized

by the execution of the program itself. In general, a larger

cache has a higher percentage of dirty lines.
The distribution of cache line state is shown in Fig. 9. As

observed, about 60 percent of the cache lines are in state B.

This result shows that any data error that originated from

these cache lines themselves can be fully recovered by the

RFDB protocol. For the programs we simulated, caches of

128KB and 256KB have very close hit ratio. This is why we

only examined the cache size from 8KB to 128KB. We expect

that the results should be similar with large caches above

256KB.

6.2 Flight Control Programs

Because most of the flight control programs are small in
size, and all of them are iterative, we use a cache size of one
Kbytes for the study. For such a cache size, the working set
of these iterative programs fits into the cache very well.
Table 3 lists the results of the write-hit to broadcast ratio for
different line sizes. The write-hit to read broadcast ratios are
generally smaller than those of the SPEC programs. This is
because these control programs tend to fit into the cache
memory very well, even for a small cache.

The line usage and state distribution obtained for the
flight control programs are shown in Fig. 10. There are
about 60 percent of the cache lines, which are used (valid),
modified by the processor. The flight control programs have
a higher percentage of clean lines which are never replaced.
This is due to the iterative nature of the programs.

To further ensure the integrity of data in clean lines and
the dirty lines in state C, we explore the approach by
invalidating the clean lines and, at the same time, changing
the dirty lines into state B. For the flight control programs,
this can be done by invalidating the clean lines at the end of
each iteration of a program so that any erroneous data are
not carried over to the next iteration. One can expect that
the performance overhead from the invalidation on clean
lines is not significant because of the high percentage of
dirty lines. We computed the extra time per iteration due to
the invalidation by using the average number of clean lines
multiplied by the difference of the read miss cycle time and
the read hit cycle time. The extra miss cost due to
invalidating the clean lines increases about 2 percent on
an average in the execution time using the cycle time
parameters in Table 4.

The recovery performance of the RFDB protocol and
various recovery schemes are summarized in Table 5.
Considering the processor and cache transient faults and
judging from the results of cache line usage, it appears that
the most robust cache error recovery scheme is an ECC-
based RFDB protocol that provides both memory protection
and fault-containment.

7 Conclusion

An effective design for the real-time error detection and
recovery in fault-tolerant computing systems is crucial to
the system's reliability. Traditionally, an ECC code and
memory scrubbing are used to provide cache data recovery
and fault-containment. However, such schemes do not
possess the recovery capability for any CPU data errors, the
majority of CPU errors shown by a previous transient fault
injection study. Therefore, in a TMR system, an effective
cache error recovery mechanism has to emphasize the
recovering of data errors resultant from processor transient

CHEN AND SOMANI: FAULT-CONTAINMENT IN CACHE MEMORIES FOR TMR REDUNDANT PROCESSOR SYSTEMS 395

TABLE 4
Cycle Time (CT) Parameters

faults, since the majority of cache lines are modified by a
processor.

The RFDB protocol provides fault-containment in a
cache memory and prevents the possible control flow errors
which could have been caused due to incorrect use of data.
The recovery coverage for the errors written with correct
addresses is 100 percent using the RFDB protocol. This
fault-containment feature is best used to remedy the
insufficiency of using any ECC-based schemes in the cache
memories of a TMR system. In addition, the RFDB protocol
is able to recover errors from a bad read access on a
modified cache line. The performance overhead of the
RFDB protocol is very small, only adding about 2-3 percent
of the total memory references for broadcasts. The simula-
tion results also indicate that most of the programs
exhibited either a high percentage of dirty lines or only a
small percentage of clean lines that are never replaced.
About 60 percent of the data errors originated from the
cache itself can be recovered by the RFDB protocol.

The RFDB protocol can be easily applied in a two-level
cache system and provides the same fault-containment

capability as in a single level cache. In some situations, a
control flow error may cause a processor to leave the
synchronization operation eventually. Speedup on the
CPU-cache reintegration becomes important. The RFDB
protocol reduces this reintegration overhead by first
restoring the cache memory in the computation phase of
the application task. Because the RFDB protocol introduces
only a small performance overhead, the protocol, when
used with an ECC-based scheme, is a very compelling CPU-
cache data error recovery scheme for redundant processor
systems.

ACKNOWLEDGMENTS

This work was supported in part by the funding of NSC-84-
2213-E-224-007, Taiwan, Republic of China. This paper is an
updated version of the paper previously appeared in the
Proceeding of the 24th International Symposium on Fault-
Tolerant Computing [18].

396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

TABLE 5
Features of Various Error Recovery Protocols in a TMR Redundant Processor System

REFERENCES

[1] A.L. Hopkins Jr., T.B. Smith, and J.H. Lala, ªFTMP-A Highly
Reliable Fault-Tolerant Multiprocessor for Aircraft,º Proc. IEEE,
vol. 66, no. 10, pp. 1,221-1,239, Oct. 1978.

[2] J.H. Wensley et al. ªSIFT: Design and Analysis of a Fault-
Tolerant Computer for Aircraft Control,º Proc. IEEE, vol. 66,
no. 10, pp. 1,240-1,255, Oct. 1978.

[3] S.J. Adams, ª Hardware Assisted Recovery from Transient Errors
in Redundant Processing Systems,º Proc. 19th Symp. Fault-Tolerant
Computing, pp. 512-519, 1989.

[4] R.E. Harper and B.P. Butler, ªRapid Recovery from Transient
Faults in the Fault-Tolerant Processor with Fault-Tolerant Shared
Memory,º Proc. IEEE/AIAA/NASA Ninth Digital Avionics Systems
Conf., pp. 355-359, 1990.

[5] D.P. Siewiorek and R.S. Swarz, Reliable Computer Systems, second
ed. Digital Press, 1992.

[6] D. Jewett, ªIntegrity S2: A Fault-Tolerant Unix Platform,º Proc.
21st Int'l Symp. Fault-Tolerant Computing, June 1991.

[7] K.K. Goswami, R.K. Iyer, and L. Young, ªDEPEND: A Simulation-
Based Environment for System Level Dependability Analysis,º
IEEE Trans. Computers, vol. 46, no. 1, pp. 60-74, Jan. 1997.

[8] J. Ohlsson, M. Rimen, and U. Gunneflo, ªA Study of the Effects of
Transient Fault Injection into a 32-bit RISC with Built-in Watch-
dog,º Proc. 22nd Symp. Fault-Tolerant Computing, pp. 316-325, 1992.

[9] X. Castillo, S.R. Mcconnel, and D.P. Siewiorek, ªDerivation and
Calibration of a Transient Error Reliability Model,º IEEE Trans.
Computers, vol. 31, no. 7, pp. 658-671, July 1982.

[10] C.L. Chen and M.Y. Hsiao, ªError-Correcting Codes for Semi-
conductor Memory Applications: A State-of-the-Art Review,º IBM
J. Research and Development, vol. 28, no. 2, Mar. 1984.

[11] D.B. Hunt and P.N. Marinos, ªA General Purpose Cache-Aided
Rollback Error Recovery (CARER) Technique,º Proc. 17th Symp.
Fault-Tolerant Computing, pp. 170-175, 1987.

[12] R.E. Ahmed, R. Frazier, and P.N. Marinos, ªCache-Aided Rollback
Error Recovery Algorithms for Shared-Memory Multiprocessor
Systems,º Proc. 20th Symp. Fault-Tolerant Computing, pp. 82-88,
1990.

[13] K. Wu, W.K. Fuchs, and J.H. Patel, ªError Recovery in Shared
Memory Multiprocessors Using Private Caches,º IEEE Trans.
Parallel and Distributed Systems, vol. 1, no. 2, pp. 231-240, Apr. 1990.

[14] A.K. Somani and S. Kim, ªTransient Fault Detection in Cache
Memories by Employing a Small Shadow Cache,º Proc. Sixth Ann.
Int'l Symp. Dependable Computing for Critical Applications (DCCA-6),
Mar. 1997.

[15] M. Banatre and P. Joubert, ªCache Management in a Tightly
Coupled Fault Tolerant Multiprocessor,º Proc. 20th Symp. Fault-
Tolerant Computing, pp. 89-96, 1990.

[16] P.A. Bernstein, ªSequoia: A Fault-Tolerant Tightly Coupled
Multiprocessor for Transaction Processing,º Computer, vol. 21,
no. 2, pp. 37-45, Feb. 1988.

[17] J. Sosnowski, ªTransient Fault Tolerance in Digital Systems,º IEEE
Micro, pp. 24-35, Feb. 1994.

[18] C.-H. Chen and A.K. Somani, ªA Cache Protocol for Error
Detection and Recovery in Fault-Tolerant Computing Systems,º
Proc. 24th Symp. Fault-Tolerant Computing, pp. 278-287, 1994.

Chung-Ho Chen received his MSEE degree
from the University of Missouri-Rolla and his
PhD degree in electrical engineering from the
University of Washington, Seattle, in 1989 and
1993, respectively. He has been an associate
professor with the National Yunlin University of
Science and Technology in Taiwan since 1993.
His research works are in the field of computer
architecture, data network switches, and parallel
processing systems.

Arun K. Somani earned his MSEE and PhD
degrees in electrical engineering from McGill
University, Montreal, Canada, in 1983 and 1985,
respectively. He is currently the David C.
Nicholas Professor of Electrical and Computer
Engineering at Iowa State University. He worked
as a scientific officer for the government of India,
New Delhi, from 1974 to 1982 and as a faculty
member of electrical engineering and computer
science and engineering at the University of

Washington, Seattle, from 1985 to 1997 (as a full professor from 1995-
1997). Professor Somani's research interests are in the area of fault-
tolerant computing, computer interconnection networks, optical network-
ing, computer architecture, and parallel computer systems. He has
taught courses in these areas and published more than 140 technical
papers. He was elected a fellow of IEEE for his contribution to the theory
and application of computer networks. He has served on several
program committees of various conferences in his research areas and
was the general chair of IEEE FTCS-97.

CHEN AND SOMANI: FAULT-CONTAINMENT IN CACHE MEMORIES FOR TMR REDUNDANT PROCESSOR SYSTEMS 397

