
IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 10, OCTOBER 1996 1089

Architectu ire Technique Trade-offs
Using Mean Memory Delay Time

Chung-Ho Chen and Arun K. Somani, Senior Member, /€E€

Abstract-Many architecture features are available for improving the performance of a cache-based system. These hardware
techniques include cache memories, processor stalling characteristics, memory cycle time, the external data bus width of a
processor, and pipelined memory system, etc. Each of these techniques affects the cost, design, and performance of a system. We
present a powerful approach to assess the performance trade-offs of these architecture techniques based on the equivalence of
mean memory delay time. For the same perf'ormance point, we demonstrate how each of these features can be traded off and
report the ranking of the achievable performance of using them.

index Terms-Bus width, cache hit ratio, memory cycle time, performance trade-off, pipelined memory, read-bypassing write buffer.

+
1 INTRODUCTION

RCHITECTURE techniques that affect memory latency are A the major factors that determine the performance of a
computing system. Using a larger cache memory is usually
suggested to increase the memory bandwidth [l]. Improving
the cache hit ratio reduces the mean memory delay time. In-
creasing the width of a processor external data bus increases
the performance of a cache-based system. Alternatively we
can say that increasing the data bus width reduces the mean
memory delay time for a given application. Other architec-
ture features such as read-bypassing, write buffers, and
pipelined memory systems also improve the performance by
reducing the mean memory delay time.

In a cache-based system, the mean memory delay time
(tme,,) can be represented by H R + (1 - HR) x t,,,, where HR
is the hit-ratio for the given cache and t,,,,, is the (main)
memory latency normalized with the cache hit cycle time. At
first glance, the representation of t,,, seems to be straight-
forward; however, many important architecture issues are
involved. Architecture features such as external data bus
width, pipelined structures, cache stalling features, or read-
bypassing write buffers affect the memory cycle time. Thus,
the effect of all these factors must be included in determining
the t,,,, for a given cache-based system. It has been chaotic
that one system using a wider data bus claims better per-
formance over a system using a larger cache or vice versa.
Each of these hardware features has performance trade-offs.
This paper presents a unified trade-off methodology to com-
pare the achievable performance improvement due to the use
of each of the architecture techniques that affect the mean
memory delay time. (An earlier version of this paper ap-

C.-H. Chen is with the Department of Electronic Engineering, National
Yunlin Institute of Techrrulogy, Taiwan, Republic of China.
E-mail: chen@el.yuntech.edu.tw.
A.K. Somani is with the Department of Computer Science and Engineeying
and the Department of Electrical Engineering, University of Washington,
Box 352500, Seattle, WA 98195. E-mail: arnn~shasta.ee.zuaskington.edu.

Manuscript received November 1994; revised November 1 YY5.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and Yeference I E E E C S Log Number C96151.

peared in the Proceedings of the 21st Annual International
Symposium on Computer Architecture, April 18-21, 1994,
Chicago.) The performance of an architecture feature is re-
lated to a common metric, the hit ratio, based on the equiva-
lence of mean memory delay time.

Our analysis shows the amount of hit ratio that yields
the same performance improvement as obtained by dou-
bling the data bus width. Caches with different types of
stalling features or memory design trade differently with
the data bus width. When we refer to a processor data bus,
we mean the external data bus of a processor. Our ap-
proach allows to study the impact of other architecture
features which affect the memory delay time and thus a
unified comparison of the architecture performance can be
done. For instance, we can rank the effectiveness of differ-
ent architecture techniques. Except for the pipelined mem-
ory system, to improve the performance of a system using
non-pipelined memories, doubling the data bus width is
the best choice. Using read-bypassing write buffers is the
second best choice, while the use of a cache that allows
cache access when a cache is filling due to a load miss is the
third best choice.

We also determine the cross-over point of the memory
cycle time where the use of a pipelined memory system is
most advantageous.' The memory cycle time when the per-
formance of a pipelined memory system surpasses that of
doubling the data bus width is not large at all, especially
when a large cache line is used. A pipelined memory sys-
tem or burst read memory system can trade a lot of hit ratio
(cache size) and should be seriously considered in the de-
sign of cache-based systems.

In verifying the methodology, we apply our approach to
determine the optimal line size and obtain the exact same
results as in Smith's work [Z] . We further show that the
trade-off methodology can be generalized for composite
cache hit ratio and is a powerful approach in evaluating the
performance of architecture techniques. The rest of the paper

1. The pipelined memory model considered in this paper is addressed in
Section 4.4.

001 8-9340/96$05.00 0 1 996 IEEE

mailto:transcom@computer.org

1090

D

L

a,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. IO, OCTOBER 1996

processor's external data bus width in bytes. D is a number
like 4, 8, 16, or 32.
cache line size in bytes.

memory cycle time per read/write memory cycle.

is organized as follows. We discuss related research in Sec-
tion 2. In Section 3, we give the notation and the hardware
characteristics under study. We develop the trade-off
methodology in Section 4. The trade-off analysis and verifi-
cation are presented in Section 5 and is generalized for
composite hit ratio system and burst read memories in Sec-
tion 6. This paper is concluded in Section 7.

4

2 RELATED RESEARCH
The design of a cache memory involves many issues such
as line fetch algorithm, replacement policy, write handling
protocol, split or unified cache, coherency, virtual or real
address tag, and blocking characteristics on a miss [31.
Cache line size is one of the critical parameters that affect
cache performance. Smith and Przybylski used the cache
miss ratio obtained from trace-driven simulations to study
the factors for choosing a cache line size [21, 141, 151. Their
criterion in selecting the best line size is to find the line size
which minimizes the mean memory delay per memory Yeference
or the mean read time. Mean memory delay time is not the
only factor that determines the performance, but it can
serve as a measure to evaluate the performance of archi-
tecture techniques that affect the memory request latency.

Alpert and Flynn showed that using a larger line size re-
duces the overhead of storing address tags and other cache
control information and thus leads to more a cost-effective
cache design 161. Chen and Baer examined the effectiveness
of using nonblocking caches, prefetching caches, and read
bypassing write buffers in reducing memory latency [9].
Since the design space for cache memories is so diverse, it is
very natural for a computer designer to focus on only a lim-
ited number of parameters and optimize a particular cache
implementation [lo]. From the system design point of view,
optimizing the design space around hit ratio may only result
in a little performance improvement, for instance, if the
memory latency is small. In addition to cache memories, ar-
chitectural features such as data bus width, memory latency,
pipelined memories, and how they are used may have sig-
nificant effects on the performance of a cache-based system.
Since each of the architecture techniques considered here
affects the mean memory delay time, the mean memory de-
lay time can be used to evaluate the performance of these
architecture techniques including cache design.

0 5 a< 1, the number of bytes of cache dirty lines which
are copied-back (flushed) for E instructions executed is
represented by a R.
stalling factor.

3 REPRESENTATION OF EXECUTION TIME

The relationships between the hardware architectural tech-
niques and the characteristics of programs are derived by
computing the CPU execution time considering various
techniques that affect memory latency. The notation of the
parameters is described in Table 1. These parameters spec-
ify the characteristics of an architecture feature, application,
and the relationship between them. An application here can
be a task, ii subroutine, or any phase of a computation.

The following baseline system model is used.
1) A IUSC processor is considered, which has an on-chip

write-back and write-allocate data cache and an instruc-
tion cache. The processor has a separate external ad-
dress bus and data bus.

For a cache miss, a whole line is brought into the
cache from the memory. All of the memory references
are first directed to the on-chip caches.
Both a nonload/store instruction and a load/store in-
struction that hits in the cache effectively take one cy-
cle (due to pipelining) for execution.
The memory system has the same memory cycle time
for read and write requests. This approximation of
memory model is only used for a baseline system
with a nonburst memory design. Therefore, it does
not apply to current design that uses burst memories;
nevertheless, this basic model provides a base for
comparing the effectiveness of higher performance
memory systems such as pipelined or burst memory
design with the cache systems.

E
R

I number of .nsiructions executed for an app ication.
I nJmber of dara bytes read in full 0,s width "pori misses for E
I instructions executed. R does not include instruction fetch.
I number of instruction bytes read in full bus width uDon R, '

(1

I misses for E instruct ons executed
I cache I ne flusn raiio for E instrLctions execurea Given

CHEN AND SOMANI: ARCHITECTURE TECHNIQUE TRADE-OFFS USING MEAN MEMORY DELAY TIME 1091

FS

For the stalling features addressed in the following, the
nonpipelined memory model is used. Table 2 lists the cache
stalling features that are considered in this study. Fig. 1
depicts the actual delays incur when various stalling fea-
tures are used. For a full-blocking cache, a processor waits
for the requested data until the entire cache line is brought
into the cache. This is full-stalling (F S) . In the full-stalling,
(LJD),B, cycles contributes to the execution time for each
cache miss. Therefore, the stalling factor is L / D as indicated
in Table 2.

full-stalling I I$+

Fig. 1. Cache stalling features and delays incurred.

I -I

I BL I bus-locked I 1 I 4 I I
I I I BNL I bus-not-locked I 1 I 4 I I
I - I

In a cache-bus-locked feature, for a miss cycle, the cache
first requests the missed data from the memory. As soon as
the requested data arrive, the processor continues execu-
tion. This feature is the ”out-of-oder” fetch property as in-
troduced in 1131. The cache fetches the rest of the line and
the cache bus remains locked up. If any load/store occurs
during this period, that load/store is stalled until the line is
completely fetched. We call this stalling feature bus-locked
(BL) . The minimum value of the stalling factor $ due to BL
stalling is one where no subsequent cache access occurs
while the cache bus is locked up; however, the maximum
value could still be up to L I D .

To reduce the stalling delay, an alternative is to allow the
processor to access other cache lines, and the cache bus is
not locked up. This stalling feature is bus-not-locked (BNL).
In such a case, for a second access on the line being fetched
currently, the processor may be stalled for a variable period
depending on the implementation. We consider three pos-
sible scenarios dnd assume that a line is filled using multi-
ple bus transfers. In scenario E”,, the processor is stalled
by the second access for the entire duration until the line is
completely fetched even though the second access was re-
questing data which were just brought in. In scenario BNL,,
the processor is stalled only if the second access happens to
be on that part of the line which has not been yet fetched. If

stalling occurs, the processor is delayed for the time until
the entire line is fetched completely. In scenario BNL,, a
stall occurs only if the data have not been yet fetched. Oth-
erwise, an access can be satisfied by a partially filled line.
The value of $ for different cases of the BNL feature can
vary between 1 and L I D as indicated in Table 2.

A cache may be designed with the nonblocking (NB)
feature, that is, the processor is allowed to access all cache
lines while the cache is filling a missing line. The execution
of a processor may be stalled by a nonblocking cache as
well if the data being fetched need to be used 191. The
minimum possible stalling factor for the NB feature is zero
where no subsequent instruction uses an operand being
loaded by a previous cache miss process. The NB, or the BL,
or the BNL, is partial-stalling (P S) in contrast to the full-
stalling feature. Parameter $ which quantifies the perform-
ance of various cache implementations also affects the
mean memory delay time in a cache-based system.

3.2 Execution Time for the Baseline System
Two elements contribute to the CPU execution time. First,
the time includes the instruction fetching cycles from the
memory due to instruction cache misses. Instruction caches
with full-blocking feature can be found in most of the cur-
rent processors. However, since most of the instructions are
resident in the instruction cache and the execution is pipe-
lined, the time consumed for the instruction fetching is
relatively small, especially for processors which have two
buses to access two large instruction and data caches, re-
spectively [12]. The dominating part of the CPU execution
time is the time to execute the instructions. For a RISC
processor, the execution time X is represented by the fol-
lowing expressions:

The (E - Am) accounts for the time the program spent in
executing the non-load/store instructions and the
load/store instructions that are hits in the data cache.
Load/store instructions that miss in the cache stall the exe-
cution of the processor by f ($ p m) cycles. For instance,
when loading R bytes of data, a full-blocking cache stalls
the execution of the CPU by + P m cycles with @ = i. When
no write buffers are provided, the flushes stall the CPU by
(%)Dm cycles. With advanced technology, techniques such
as cache line prefetching, or register preloading can be used
to hide or reduce the penalty of some read misses [81. In
these cases, R represents the memory references whose
miss penalty cannot be hidden. Or alternatively, p, can be
scaled down to represent the average miss penalty.

3.3 Effect of Instruction Cache Misses

cution time can be represented by +$pm where $ has a
minimum of one. Due to instruction pipelining, the in-
struction hit cycles are overlapped with the execution time
X in (1). When instruction cache hit ratio is high, the CPU
execution time will be dominated by the X. In a multipro-
gramming case, a higher instruction miss ratio is expected.

The instruction cache misses contributing to tlic CPU exe-
R

1092 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. I O , OCTOBER 1996

In this case, the miss portion cannot be neglected in the
CPU execution time, and +$Dm should be added to (1). In
either case, the CPU execution time is always represented
in the same form as in (1).

R

4 DERIVATION OF PERFORMANCE EQUIVALENT
POINT

When comparing the performance trade-offs for different
architecture features, we improve the system with each ar-
chitecture feature and measure the performance improve-
ment. This performance enhancement can be achieved by
doubling the data bus width, or changing from a full-
stalling cache to a partial-stalling one, or providing the
read-bypassing write buffers, or using a pipelined or burst
read memory system. For the same performance (mean
memory delay time), the original system must use either a
larger cache or must use a more powerful architecture fea-
ture. Hence, a relationship between the difference of hit
ratio for the two systems and the performance-improving
technique used exists at the same performance equivalent
point while the application and other architecture features
remain unchanged. In the following, we derive the per-
formance trade-offs between hit ratio and various archi-
tecture features by establishing a performance equivalent
point.

4.1 Data Bus Width versus Cache Hit Ratio
To begin, we consider the trade-off between cache hit ratio
and data bus width for the baseline model where the non-
pipelined memory cycle time is used and no write buffers are
provided. The following two expressions denote the execu-
tion time of using data bus width D and 2 0 , respectively.

Here {R’, d , @’I and {R, a, @} are parameters for the sys-
tem using data bus width 2 0 and D, respectively. The
maximum value of $‘ is L / 2 D assuming that L 2 2 0 . To de-
termine data bus width and cache hit ratio trading, we let
X D = X,, so that the two cases using data bus width D and
2 0 , respectively, have the same execution time. (Shortly we
will show that this equality is in fact based on the equiva-
lence of mean memory delay time.) In the two systems, the
number of instructions (E) executed, the cache line size, the
memory cycle time, and the stalling feature are all the same.
Solving X , = X2D, yields

Let Ah = s&. The miss ratio M R , of the data cache for the
case of D width is given by

1
(5)

1, M R
1 - Ln, +A, - X ’

We use the hit (miss) ratio in the D width system as a
base, namely, given a hit (miss) ratio for the D width sys-
tem. To achieve the same performance, the 2 0 width sys-
tem could afford a lower hit ratio than the hit ratio in the D
width system. Equivalently, the 2 0 width system can use a
smaller cache to have the same performance. Since the same
application is considered, therefore A, + A, = A; + A;.
Only some load/store instructions that hit in the cache of
the D width system become misses in the cache of the 2 0
width system due to a smaller cache size so that they result
in the same performance.

Let M R z (HR,) be the miss (hit) ratio associated with the
2 0 width system and = r1, where A; = then

Let HR, be the hit ratio associated with the D width system.
Between the two systems, the difference of hit ratios equals
the difference of miss ratios. Then the cache hit ratio that
trades the performance of a D-byte width is

r - 1
s + l HR, - HR, = MR, - MR, = ~ (7)

where s = (from A,? = SA,) and Y = 5 (from

Ain = Y a m) . Equation (7) is only valid for the physical sys-

tem where HR, 2 0. Row one of Table 3 lists the execution
time for the 2 0 width system, ratio Y, and stalling factors
for which full stalling caches are considered.

TABLE 3

(WRITE ALLOCATE)
RATIO OF DATA CACHE MISSES (R) AND STALLING FACTORS

Metric

Doubling
bus

Partial
stalling

(B L , B N L)

Write
buffers

Pipelined
memory

parameters

Q = $, 4’: from simulation

CHEN AND SOMANI: ARCHITECTURE TECHNIQUE TRADE-OFFS USING MEAN MEMORY DELAY TIME 1093

THEOREM 1. The kit ratio to bus width performance trade-off is
based on the equivalence of mean memory delay time and is
independent of the non-memory reference' instructions suck
as multiple cycle floating point operations.

PROOF. With Ah + A, = A; + A;, (the total number of data

memory references) and XD = X Z D , we obtain

where NLs is the number of the nonload/store in-
structions and 4 = L / D , 4 = L / 2 D are used as an ex-
ample. Since A, = E - + - N,, and A' h - - E - E L - N LS'

therefore
memory cycles memory cycles

hit cycles hit cycles R(1+ a) h h

' h + a;, + .I;,
D P m + - 2 0 P,+ 1;

-

As shown, both sides of the above expression are the
mean memory delay time per (data) memory reference.
Hence, the trade-off results are based on the equiva-

0

From Theorem 1, the assumption that a nonload/store
instruction is executed in one clock cycle ciln be relaxed for
nonsuperscalar processors.

THEOREM 2. If the baseline system A and 13 both use write-
allocate and full-stalling data caches with the same line size
and have an average copy-back ratio of 0.5, and system A
have data bus width D bytes and line size L = 2 0 , then sys-
tem A with a design hit ratio HR, has the same perform-
ance as obtained from system B which uses a 2 0 data bus
and a cache with a hit ratio of 2.5HRI - 1.5.

PROOF. The fastest possible nonpipelined memory system,
,8, = 2, is used to find the lower bound of hit ratio of
system B. With a = d = 0.5 for the same copy-back
ratio, based on the equivalence of mean memory de-
lay time, we find r = % = 2.5 from (4). Substituting

0

Note that the results in this section are applicable to
systems with nonpipelined memory design. The above
analysis considers the situation where the fastest nonpipe-
lined memory system is used. Thus, it represents one end of
the design spectrum. The other end of the design space is
considered in the following theorem.

THEOREM 3. If the baseline system A and 13 both use zurite-
allocate and full-stalling data caches with the same line size
and have the same copy-back ratio, and system A has data
bus width D bytes and line size L t 2 0 , then system A
with a design tavget bit vatio HR, has the same pevfovm-
once as obtained from system B which uses a 2 0 data bus,
and uses a cache with a hit ratio of 2HR, - 1.

PROOF. Applying the L'Hospital's rule in (4) for a relatively

lence (balance) of mean memory delay times.

2

the value in (7) yields HR, = 2.5HRI - 1.5.

2 . The reason is that with fast memories hit ratio has less weight than
with slow memories.

large ,8,, we find v = % = 2 and HR, = 2 HR, -1.

The above results state that the performance loss due to
reducing the hit ratio of a blocking data cache from HR to
2HR - 1 or at most to 2.5HR - 1.5 can be compensated by
doubling the data bus width. The hit ratio traded between
2HR -1 and 2.5HR - 1.5 is determined by the line size and
the memory cycle time.

We can also use the hit (miss) ratio in the 2 0 width sys-
tem as a base, i.e., given HR, (MR,). The D width system
must have a higher hit ratio than that of the 2 0 width sys-
tem for both of them to have the same performance. The hit
ratio difference is given by

1 - U
2 - s + 1 HR, - H R - ~ (9)

COROLLARY 1. Given the base kit ratio (HR,) of the 2 0 bus
width system, L = 2 0 , /3, = 2, and a = d = 0.5, the
amount of hit ratio that trades the performance of a D-byte

PROOF. This result can be obtained from (9) directly or
from the result of Theorem 2, that is, HR, - HR2 =

COROLLARY 2. Given the base kit ratio (HR,) of the 2 0 bus
width system, a= d , L 2 2 0 , and a relatively large p,, the
amount of kit vatio that trades the performance of a D-byte
bus is 0.5(1 - HR,).

The above results state that given L 2 2 0 and a = d = 0.5,
the performance improvement due to increasing the data
cache hit ratio at H R by 0.5(1 - H R) to at most 0.6(1 - HR) is
the same as that obtained by doubling the data bus width
for systems designed with nonpipelined memories.

4.2 Stalling Feature versus Hit Ratio
To improve performance, a partial-stalling cache can be
designed instead of a full-stalling cache. Using a partiall-
stalling (PS) cache reduces the mean memory delay time.
The performance trade-off between using a partial-stalling
cache and cache hit ratio is obtained as follows. Let HR, be
the hit ratio for the full-stalling cache system as in (2) with
4 = L / D and HR, be the hit ratio for not using the full-
blocking feature, or equivalently for having a partial-
stalling feature. For the same performance, HR, must be
greater than HR,. The execution time X p s for a PS stalling
feature is shown in Table 3 row 2. The cache hit ratio differ-
ence traded for using the partial-stalling feature is the same
as in (7). Note that the ratio Y is obtained by solving (2) =
Xps . Moreover, ratio r is also based on the equivalence of
mean memory delay time.

To evaluate the effectiveness of various stalling features,
we use trace-driven simulations to obtain the stalling factor
q9'. We assume that each instruction is executed in one cycle
except for the load/store misses and access stalling. This
implies that an infinite instruction cache (or an instruction
cache with a very high hit ratio) is used. In case of the E",
stalling feature stalling occurs in two situations. First, if a

bus is 0.6(1 - HR,).

0.6(1 - HR,). 0

PROOF. HR, - HR, = 0.5(1 - HR,) from (9).

1094 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. IO, OCTOBER 1996

5 7 0 -
\ 1 a

60+
c p
,? 50-
~ - m
vi
I

load/store accesses the line which is being fetched, that
load/store is stalled until the entire line is brought into the
cache. Second, if another cache miss occurs while a previ-
ous load miss is in progress, then the new miss is stalled
until the previous missed line is brought into the cache. Let
AC, be the distance between the ith and (i + 1)th load/store
instruction that miss in the cache. Then, the second
load/store access is stalled by

x
I

I

X BNLl 0 0 0

BNL2 + + +
4 0 - x BNL3 * * *

BL : x x x

cycles. The stalling factor qY for the BNL, model is com-
puted as follows.

30

where An is the number of the load/store instructions that
are misses. The last term, a constant one, is added for the
basic read miss time in the representation of X for the BNL,
stalling feature. The stalling factors for the BNL,, BNL,, and
BL features can be obtained in a similar way and we will
not discuss them here.

In Fig. 2, we show the average stalling factors obtained
from the trace-driven simulation of the SPEC92 programs
nasa7, swm256, wave5, ora, doduc, and hydro2d. The pro-
grams as shown in Table 4 are used to generate traces with
defaults on a DECstation 5000 with the pixie utility. The
cache system we simulated is 8K bytes, two-way set asso-
ciative with a line size of 32 bytes. These parameters are
chosen based on a typical on-chip cache implementation.
The simulation has run enough length of the traces consid-
ering the size of the on-chip caches to minimize the tran-
sient effect. The purpose of this simulation is to compute
the stalling factor 4 as used in row 2 of Table 3.

~

Fig. 2. Stalling factor (average from six SPEC92 programs with 50M
instructions executed each, write-allocate, 8K bytes, two-way set
associative).

TABLE 4
BENCHMARK DESCRIPTIONS AND DATA READ-WRITE STATISTICS

FOR 50 MILLION INSTRUCTIONS EXECUTED

RjW % = pevcentage of loadlstore instructions

longer memory latency has more stalling occurrences. We
observe that the stalling factors are very high for the BL,
BNL,, and BNL, features. If subsequent load/store accesses
are only stalled by the latency for the requested data to ar-
rive, Le., the BNL, feature, about a 20-30% reduction in the
read miss latency of a full-blocking cache can be achieved
for a memory cycle time which is about smaller than 15
processor clock cycles.

4.3 Read-Bypassing Write Buffers versus Hit Ratio
With an appropriate memory cycle time, the maximum effi-
ciency of using read-bypassing write buffers is achieved
when the cache flush latency can be completely hidden. The
execution time X,, described in Table 3 row 3 represents
the best possible performance of using read-bypassing
write buffers where the ucportion is zero. Let HR, be the hit
ratio for having the read-bypassing write buffers with the
execution time Xwn, and HR, be the hit ratio for not having
read-bypassing write buffers with the execution time as
shown in (2). In both cases, the stalling factor is L I D . The
ratio Y in Table 3 row 3 is obtained by solving (2) =XwB. The
cache hit ratio difference traded for the performance of us-
ing the read-bypassing write buffers is determined by (7)
with s = HR,

4.4 Pipelined (Burst Read) Memory System versus

Performance improvement can be achieved by changing the
nonpipelined memory into a pipelined one where the next
memory cycle can be started without waiting for the previ-
ous memory cycle to finish. In this paper, the pipelined op-
eration considered is limited to initiate for the requests of
fetching (or writing back) an entire cache line. We have not
modeled the pipelined operations across multiple-line fetches
in this study. The pipelined cycle for fetching a cache line is
described as follows. Let q be the clock cycles for the memory
system to be ready for receiving a new address request and
beginning the next pipeline cycle. The pipelined memory
cycle time 4, per L-byte request is given by

Hit Ratio

(11)
The stalling factor is illustrated in the percentages of

L / D . A partial-stalling feature behaves like a full-stalling
feature when its stalling factor reaches 100%. As expected, a

CHEN AND SOMANI: ARCHITECTURE TECHNIQUE TFIADE-OFFS USING MEAN MEMORY DELAY TIME 1095

14-
U

13-

With the pipelined memory system, the execution of a
processor is stalled by the pipeline latency pp for a cache
miss in a full-blocking cache. The assumption for pp is that
the processor can issue the consecutive memory requests it
needs for an L-byte line, and the pipelined memory system
can accommodate each request within 9 clock cycles. For
instance, if q = 2, we may deem pp as the best possible im-
plementation of a pipelined memory system. Because of the
full-blocking feature, if the data bus width is equal to the
line size, then the latency for a line is same both for pipe-
lined and non-pipelined memory systems as indicated in
(11) by setting L = D. For full-blocking write-allocate caches,
we can relate the nonpipelined memory cycle time p,.,, with
the pipelined memory cycle time fly.

In trading the performance of a pipelined memory sys-
tem with hit ratio, let HR2 be the hit ratio for using the
pipelined memory system with the execution time XpM in
Table 3 row 4 and HR, be the hit ratio for not using the
pipelined memory system with the execution time as
shown in (2). Again, in both cases, the stalling factor is L / D .
The ratio Y in Table 3 row 4 is obtained by solving (2) = XpM.
The cache hit ratio difference traded for using the pipelined
memory system is the same as in (7) with s = s. This

pipelined memory model is similar to that of the burst read
mechanism where the first word of a cache line is read usu-
ally with more cycles than the subsequent words.

solid line L = 32
dashed line L = 16
dotted line L = 8

5 RESULTS OF ARCHITECTURE TRADE-OFFS
We present the results obtained by using the above trade-
off approach. The comparisons made are based on a system
using a full-blocking cache, D-byte data bus, and the non-
pipelined basic memory model.

5.2 Data Bus Width and Hit Ratio
Fig. 3 illustrates the performance trade-off between a 32-bit
bus width and the hit ratio of a full-blocking cache with
base hit ratio of 98% and 90%, respectively. When the data
bus and memory width are increased from 32 bits to 64 bits,
the hit ratio in the 64-bit case could be smaller than the base
hit ratio of the 32-bit system for both systems to have the
same performance. The amount of the hit ratio traded is
shown on the y axis in Fig. 3. The design limit is reached
when the memory cycle latency p, is two. We assume that
the flush ratio a i s 0.5 although the other value of acan also
be used. In 121, 1111, Smith also used 50% in describing the
copy back traffic.

In the upper part of Fig. 3, given L = 32 bytes and a rela-
tively long memory cycle time, a 32-bit bus system using a
cache with a hit ratio of 98% has the same performance as a
64-bit bus system using a cache with a hit ratio of about

96% to 98% (2% increase), we can reduce the bus width
(processor data bus and memory bus) from 64 bits to 32 bits
while retaining the same performance. When L = 8 bytes
and pm = 2, increasing hit ratio 3% (from 95% to 98761, a 32-
bit bus width can get the same performance as a 64-bit sys-
tem with 95% hit ratio. The lower part of Fig. 3 shows the

96% (98 - 2). In another words, increasing thc hit ratio from

Full-stalling feature, a= a'= 0 5, D = 4 bytes, at base hit ratio = 9 8%
3

; 2.8 solid line: L = 32
dashed line: L = 16 6 2.6 dotted line: L = 8

i
Memory cycle time per memory access

Fig. 3. Effect of memory latency on the hit ratio and bus width trading
(use D = 4 bytes as the base system, a= a' = 0.5).

case where a different base hit ratio is used.
This illustration agrees with the previous limit analysis

for (9). That is, given L 2 2 0 and a= a' = 0.5, increasing the
hit ratio at HX% of a full-blocking cache by 0.5(100 - HX)%
to at most 0.6(100 - HR)% has the same performance as
obtained by doubling the data bus. To relate performance
to cost, we can map a hit ratio to cache size and trade-off
the cache size with the data bus width at the performance
equivalent point. For instance, a processor with a 64-bit
data bus and an 8KB cache (hit ratio = 91% from the simu-
lation results of [14]) and a processor with a 32-bit data bus
and a 32KB cache (95.5%) establish a performance equiva-
lent point. That is, the (64-bit, 8KB) system and the (32-bit,
32KB) system has the same Performance. The (32-bit, 32KB)
system has significantly reduced the package size and pin
count of the processor. In other words, increasing the size
of a small on-chip cache can easily achieve the same per-
formance level that is achievable by doubling the data bus
width. In this context, a relatively smaller amount of chip
area is increased in the cache memory to trade for the proc-
essor pin count and memory data bus width.

To consider a larger cache size, we use the hit ratio and
cache size data from Short and Levy's work again [141. For
instance, if we choose a (32-bit, 128KB) system as a base, the
64-bit system that has the same performance is one that has
a 32KB cache. The conclusion made from this mapping ex-
ample is that based on a system with a higher hit ratio, in-
creasing the bus width is more advantageous for trading
the chip area because bus width trades a larger cache size
(die area) for a large cache.

If we map the hit ratio to cache size with other simula-
tion data, such as those in 113 (p. 424)] and then trade-off
with the bus width, the results are similar.

5.2 Unified Comparisons Based on Nonpipelined

Figs. 4, 5, and 6 illustrate the trade-offs among hit ratio,
pipelined memory system, bus width, processor stalling
feature, and read-bypassing write buffers. The comparisons
for these architecture features are based on the same

Memories

1096 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 10, OCTOBER 1996

6 -

B 5-

grounds, i.e., a full-blocking cache (4 = L / D) and the non-
pipelined memory system. (See (2) .) The nonpipelined
memory cycle P,, is plotted on the x axis. These curves serve
two purposes. First, they show how each individual archi-
tecture feature is traded with the hit ratio to achieve the
same mean memory delay. Second, the curves show the
comparisons among the features themselves. The solid line
shows the amount of hit ratio difference which is required
to trade the performance of using the pipelined bus and
memory system. If the memory cycle fl, is two, pipelining
does not make the difference because q = 2. This is shown in
the figures where the solid lines meet with the x axis.

In Fig. 4, a fast pipelined memory system is used with
q = 2, and the line size is eight bytes. The flush ratio is as-
sumed to be 0.5 considering the average situation. The
BNL, stalling-feature is evaluated with the average stalling
factor obtained from the simulations. The dashed curve
represents the best performance by using the read-
bypassing write buffers because there are some reads that
can not bypass on-going writes. This situation is similar to
the one where a request is stalled in a partial-stalling cache.
From the simulations, we found that an application makes
very frequent consecutive requests to a cache line which
just missed. That is, when a load miss is in progress, the
occurrences of another miss for the other cache lines are
much fewer than the load /store accesses on the line which
is being filled. We also found that it is much easier to hide
the cache flush latency successfully by using the write buff-
ers because

1) the flushed cache line is written after the missing line

2) the processor will spend some time using the data on

We notice that for L / D = 2 in Fig. 4, using a high speed
pipelined memory system does not show any performance
advantage over doubling the bus width even for a large
memory cycle time. When the line size to data bus width
ratio is increased, the advantage of using a pipelined mem-
ory system is shown in Fig. 5. The performance improve-
ment due to the BNL, feature is quite limited (see Figs. 4 and
5). The BNL, feature has a higher performance improvement
when the memory cycle time is small (see Fig. 6).

From Figs. 4, 5, and 6, we rank the performance of each
of the features except the pipelined memory system as fol-
lows. In general, doubling the data bus width is best, pro-
viding the read-bypassing write buffers is the second best
while using a cache with a bus-not-locked feature is the
third most useful. This observation is generally good for a
wide range of memory latencies and is not sensitive to line
sizes. The stalling factor for a nonblocking cache was not
evaluated from the simulation. However, because many
subsequent load/store accesses are directed to the line just
missed and even if a processor does not stall the execution
for the first miss, a subsequent load/store access will be
stalled unless the processor include mechanism to support
multiple load/store misses.

The use of a pipelined memory system is most advanta-
geous when the memory latency reaches the cross over
points in the curves. Doubling the data bus width, using the

is filled, and

the line just fetched from the main memory.

doubling bus 1

50 'Yo flushes, L=8. D = 4, q = 2, base HR = 95%

88

18-

16-

14-

U

m
g 12- -
IT i o - -

Fig. 4. Architecture trade-off for L = 8 bytes

50 Yo flushes, L=32, D = 4, q = 2, base HR = 95%.

16

14

Non-pipelined memory cycle time per memory access

Fig. 5. Architecture trade-off for L = 32 bytes.

50 '4 flushes, L = 32, D = 4, q = 2, base HR = 95%.
20, I

"2 4 6 8 10 12 14 16 18 20
Non-pipelined memory cycle time per memory access

Fig. 6. Architecture trade-off for BNL,.

read-bypassing write buffers, and a cache with a bus-not-
locked feature has a limited performance contribution over

CHEN AND SOMANI: ARCHITECTURE TECHNIQUE TRADE-OFFS USING MEAN MEMORY DELAY TIME 1097

a relatively large range of memory latency. The memory
cycle time is less than about five or six clock cycles for q =
2 (L > 20) when the performance of a pipelined memory
system surpasses that of doubling the bus width. Notice
that a large hit ratio (cache size) is traded with the usage of
the pipelined memory system. For instance, in a 32-bit bus
and 32-byte cache line size system, changing a 10-cycle per
32 bits nonpipelined memory system into a pipelined
memory system can trade about 12% of the hit ratio for a
given 95% hit ratio cache system as shown in Fig. 6. Thus,
the 10-cycle per 32 bits nonpipelined memory system with
a 95% hit ratio cache for some application has the same per-
formance as a system with pipelined mernory and a cache
with only an 83% hit ratio for the same application. The
huge amount of hit ratio traded for the use of a pipelined
memory system shows that pipelined memories or burst
read memories are probably the most cost-effective tech-
nique to use for performance.

5.3 Model Verification with Line Size and Hit Ratio

In this section, we verify the trade-off methodology by de-
veloping a performance trade-off between line sizes and the
hit ratio, and compare our results with previously pub-
lished results. Given a cache size, a larger cache line size
(up to a certain range) usually results in a higher hit ratio
than a smaller line size for the same application [21, [41.
Smith determined the best line size by finding the line size
which minimizes the mean memory (cache miss) delay per
memory reference [2].

As shown later, the trade-off approach presented in this
paper obtains the exact same results as t:hose of Smith. In
addition, the trade-off approach can be used to quantify the
inter-relationship in line size, cache hit ratio, and memory
cycle times. To do this, we use c + f l L / i 3) for the time it
takes to fill a cache line as used in [2]. The constant c ac-
counts for the memory access latency, and p i s the transfer
time of the bus when D bytes are transmitted per bus cycle.
We pose the question as how much of a hit (miss) ratio dif-
ference between using a larger line and a smaller line is
necessary to justify the advantage of using a large line size
in terms of mean memory delay time. We find the trade-off
by setting the simplified execution time to be equal, Le.,
X,, = Xi,, where

Trade-off

and

and obtain

To serve the context of trading line size with hit ratio, let
EHR be the hit ratio for using a larger line size L*, and HR
be the hit ratio for using a smaller line size Lo. Then, the

difference of cache hit ratio for the equivalence of mean
memory delay time is

1-Y
AEHR, = EHR ~ HR = M R - EMR = ~ s + l (15)

R
~

where s = $& and Y = 4. -
L"

AEHR, is the minimum hit (miss) ratio difference required
for using a larger line size L" to have the same performance as
using a smaller lines size Lo. Next, we use the hit ratio and line
size trade-off relationship combined with Smith's approach to
determine the optimal line size [2]. An optimal line size can be
determined by finding the least average memory delay per
memory reference. Suppose that we want to determine the
optimal line size from the set of y line sizes represented by
(L , I 1 < i < y). For 1 < i 5 y, the optimal line size is determined
by the following minimum operations:

Min (1- (16)

The hit cycle time is one here. Latency c and bus speed pare
normalized with the hit cycle time. However, Smith multi-
plied (e' + p) by the corresponding miss ratio to find the
optimal line size. He uses the following minimum opera-
tion to determine the optimal line size:

Min (1 - r
where c' = c ~ 1 in relation to (16). What he minimized is
actually the minimum mean cache miss delay time per
memory reference. Since hit cycle times are the same for the
comparison, the minimum of the cache miss delay can also
determine the optimal line size.

We use the line size Lo as a base case for the comparison
of mean memory delay with the set of y line sizes repre-
sented by {L , I 1 < i < y] where L, > Lo. In this setting, we
can examine whether a larger line size offers a performance
advantage or not due to its higher hit ratio. The hit ratio of
line L, is denoted as HR, and HRL, for Lo. We consider the
range of line sizes when HRL 2 HR,, . Based on the mini-

mum mean memory delay approach, the best line is deter-
mined by the following equivalent maximum operations:

HRL" - (1 -

= Max (AHRL)(c - 1
I

HRL2

(1 8)

It becomes maximum operation because we choose the
largest difference of the mean memory delay between line
size Lo and each of the other line sizes, respectively. The
largest difference means the smallest mean memory delay
of the corresponding line size L,. The following maximum
operation determines the optimal line size and indicates the
beneficial range of bus speed or memory access time for
using that line size:

1098 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. IO, OCTOBER 1996

A (a) 16K lull blocking data cache

+

m

&

8 10

- (c) 16K full blocking data cache
100

v

+
Delay = 600 11s + 4 nshyte ::I I D=8, c=18.75 + 1 t
Smith:,64 or 128 bytes at be@=l 1

2 4 6 x 1 0
Normalized bus speed (beta)

Fig. 7. Validation with Smith’s design target hit ratio for data caches.

where AEHR, is specified by (15) replacing L* with L, for

1 I i I y, respectively. The above operation can also be rep-
resented as

since the difference of hit ratio equals to the difference of
miss ratio. Line size Li is justified by its sufficient lower
miss ratio being a large size when the above maximum has
a value greater than zero. We compare the optimal line size
determined by (20) with the results of Smiths work [Z].
They are presented in Fig. 7. For instance, consider Fig. 7a.
Given 360 ns + 15 ns/byte for the delay time and bus width
D = 8 bytes, normalizing with 60 ns (a chosen processor
cycle time), we obtain c = 6 + 1 and /3= (8 x 15) + 60 = 2. At
p = 2, the optimal line size determined by (20) for a 16KB
data cache is 32 bytes which has the maximum reduced
delay time per memory reference (see Fig. 7a). This result is
exactly the same one as in Smiths work. The order of line
size to choose is 32, 64, 16, and 128 bytes, which also
matches with Smith‘s work. Consequently, our perform-
ance trade-off methodology is verified.

6 GENERALIZATION OF THE TRADE-OFF
METHODOLOGY

We have shown the trade-off relationship between an ar-
chitecture feature and the data cache hit ratio based on the
nonpipelined memory model. In Section 6.1, we further

(b) 16K full blocking data cache
20 -

%
m

m -40

Delay = I60 ns + 15 iisibyte
D=8, c=4 + 1

2 4 6 8 1 0

(d) 8K full blocking data cache
I

-1001 m
Y I

Delay r 360 ns + 15 ns/byte
-1501 D=8, c=h+l

Smith: 32 bytes beta=2 m

-200
0 2 4 6 8 1 0

Normalized bus speed (beta)

generalize the trade-off methodology considering the com-
posite hit ratio. In Section 6.2, we use a burst read memory
model for the execution time equation and find the trade-
off between data path and hit ratio.

6.1 Data Bus Width and Compositive Cache Hit

Considering the trade-off between composite hit ratio and
data bus as an example, we rewrite the expression for the exe-
cution time. The following expression denotes the execution
time of using data bus width D with I-cache miss penalty.

Ratio

R R (a + w)R x, = (E - + (4&) + 7 P,
where w is the ratio of instruction cache misses to data
cache misses for the given system, i.e., w = 2. Similarly for
the 2 0 case, the execution time

R’ with w’ = + . Here (R’, R;, a‘, 4’1 and {R, R, a, 41 are pa-
rameters for the system using data bus width 2 0 and D

quantify the time contributed by instruction cache miss
assuming that full-stalling I-caches are used. The I-cache is
assumed to have the same line size as the D-cache (data
cache). The maximum value of 4’ is L / 2 0 and L 2 2 0 . Let
E = .Eh + E , where Eh (E,) is the number of instructions that hit
(miss) in the instruction cache used. Solving XD = X2, yields

bytes, respectively. 3 The FP, and ePm are used to

3. wand d can be derived from (X, XI) and (R’, Xi), respectively.

CHEN AND SOMANI: ARCHITECTURE TECHNIQUE TRADE-OFFS USING MEAN MEMORY DELAY TIME 1099

Let E , + ;lh = s (E , + &). The composite miss ratio MR1 of
the instruction and data cache for the case of D width is
given by

Since the program characteristics rernain unchanged,
therefore E, + E, + 1, + I., = El, + El, + Al, + A:, . Let

Let MR, be the composite miss ratio for the 2 0 width
system,

Therefore, the composite hit ratio difference that trades a
D width is

Y-1
HR, - HR, = MR, - M R ~ -~

1 - s + l (25)

H R where Y is specified by (23) and s = *.

COROLLARY 3. The composite kit ratio to bus width performance
trade-off is also based on the equivalence of the mean mem-
ory delay time.

PROOF. Assuming that instruction cache hit cycle times are
overlapped with the CPU execution time and do not
contribute to the total memory reference cycle times,
the proof is similar to that given for Theorem 1. 0

It is noted that when I-cache is not consi.dered, i.e., w = d
= 0, the ratio r is the same as in Theorem 2 and Theorem 3,
respectively. For most applications have simall u) (i.e., small
fraction of instruction reference misses), the results of Theo-
rem 2 and Theorem 3 can be applied to composite hit ratio
with negligible difference from that determined by (25).

6.2 Trade-off of Data Path and Hit Ra1:io in Burst

In this section, we show that the trade-off methodology can
be easily used to examine the performance trade-off be-
tween data path and hit ratio based on a burst read mem-
ory model instead of the nonpipelined meimory model used
previously.

A general form of memory cycles for the burst memory
system reading a line can be represented by c + p($) as in
[2] where c is the constant time and pis the per-bus transfer
cycles. The first data request of refilling a line takes c + ,B
processor cycles while each of the subsequent requests for
the rest of the line takes p processor cycles. To use this
memory model, (2) and (3) are rewritten as follows.

Read Memories

(26)

R' R'(1 + a') L
X,, = (E - - - -) + L L (c + P _ D) (27)

The above execution time assumes the use of a full-
blocking cache and both the D and 2 0 system have the
same line size and the same constant time for the first ac-
cess. Again, solving (26) = (271, we have

R'
R

(1 +a)(, + pk) - 1
y = - = (28)

As before, the hit ratio that trades the performance of a
D-byte bus is described as (7) with the Y specified by (28)
and its bound in a transfer time dominated memory design
is found as follows.

THEOREM 4. If system A and B both use a burst read memory
with p % c and full-stalling write-allocate caches with the
same line size (L 2 2D), and have the same copy-back ratio,
then system A with a design target kit ratio HR, and D-
byte data bus has the same performance as obtained from
system B which uses a 2D-byte data bus and uses a cache
with a kit ratio of 2HR1 - 1.

PROOF. Applying L'Hospital's rule in (28) for a relatively
large ,8 (p % c), we find r = 5 = 2 and HR, = 2HR1 - 1
from (7).

(1 + a')(, + p&) - 1.

Fig. 8 illustrates the impact of the constant time on the
data path and hit ratio trade-off. As shown, a larger constant
time reduces the amount of hit ratio which is traded with the
performance of bus width. As the per-bus transfer time (P, is
increased on the x axis, the amount of hit ratio traded for the
performance of a D-byte data path is increased.

Burst read bus model (50 %flushes, L=32)

constant time = 5

at base HR = 90%

1
5 10 15 20 25 30

No. of clocks Der-bus transfer

Fig. 8. Data path and hit ratio trade-off based on burst read memories.

7 CONCLUSION
We presented an architecture trade-off methodology and
investigated the performance trade-offs among external
data bus width, cache hit ratio, processor stalling features,
read-bypassing write buffers, and pipelined memory sys-
tems. We used the trade-off methodology to determine the
optimal line size and verify the approach. We showed that
the performance trade-offs are based on the equivalence of

1100

mean memory delay time and can be generalized for com-
posite hit ratio and burst read memories. The performance
and cost trade-offs examined are listed as follows:

0 Given L 2 2 0 and a = a’ = 0.5, the performance im-
provement due to increasing the cache hit ratio at HR
by 0.5(1 - HR) to at most 0.6(1 - HR) is the same as
that obtained by doubling the data bus width using
nonpipelined memories. To consider trade-offs be-
tween cost and performance, increasing the size of a
small on-chip data cache can easily achieve the per-
formance level of doubling the data bus width. Sn this
case, a relatively smaller amount of chip area is in-
creased in the cache memory to trade for the proces-
sor pin count and memory data bus width. However,
as the hit ratio and cache size curve flattens out, then
increasing the bus width is more advantageous for
trading the chip area because bus width trades a
larger cache size (die area) for a large cache.

0 Except for the pipelined memory system, the best
choice to improve the performance of a system using
nonpipelined memories doubling the bus width.
Using read-bypassing write buffers is the second,
while the use of a cache with a bus-not-locked feature
is the third. In systems that have already used burst
read memory design, the attempt in doubling the data
path should be accompanied with the reducing of the
constant time. Otherwise, the performance improve-
ment of doubling the data path can be quite limited in
constant time dominated systems.

0 The study for various processor stalling features
showed that a cache allowing other cache lines to be
accessed while a missing line is being filled has a very
limited performance advantage. However, if subse-
quent load/store accesses are only stalled by the la-
tency for the requested data to arrive, about 20-30%
reduction in the read miss latency of a full-blocking
cache can be achieved for a memory cycle time of less
than 15 clock cycles.

The pipelined memory system is most advantageous for
performance when the memory cycle time is larger than
about five or six clock cycles (for L / D > 2 and q = 2). Dou-
bling the bus width, using read-bypassing write buffers, or
using caches with a bus-not-locked feature has a limited
performance contribution when a relatively long memory
cycle latency presents. For the huge amount of hit ratio that
a pipelined memory can trade, it appears that the pipelined
mechanism or the burst read memory design is the most
cost-effective technique to use.

ACKNOWLEDGMENTS
This work was supported in part by the U.S. National Sci-
ence Foundation under grant MSP-9224462 and in part by
the funding of NSC-83-0408-E2224-007, Taiwan, Republic of
China.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 10, OCTOBER 1996

REFERENCES
J.R. Goodman, “Using Cache Memory to Reduce Processor-Memory
Traffics,” Proc. 10th Int’l Symp. Computer Architecture, pp. 124-131,
1983.
A.J. Smith, ”Line (Block) Size Choice for CPU Cache Memories,”
I E E E Trans. Computers, vol. 36, no. 9, pp. 1,063-1,075, Sept. 1987.
A.J. Smith, “Cache Memories,” Computing Surveys, vol. 14, no. 3,
pp. 473-530, Sept. 1982
S. Przybylski, M. Horowitz, and J. Hennessy, ”Performance
Trade-offs in Cache Design,” Proc. 15th h t ’ l Symp. Computer Ar-
chitecture, pp. 290-298, May 1988.
S. Przybylski, ”Performance Impact of Block Sizes and Fetch
Strategies,” Proc. 17th Int’l Symp. Computer Architecture, pp. 160-
169, May 1990.
D.B. Alpert and M.J. Flynn, ”Performance Trade-offs for Micro-
processor Cache Memories,” I E E E Micro, pp. 45-54, Aug. 1988.
N.P. Jouppi, ”Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” Proc. 17th Int’l Symp. Computer Architecture, pp. 364-373,
June 1990.
W.Y. Chen, S.A. Mahlke, and W.W. Hwu, ”Tolerating First Level
Memory Access Latency in High-Performance Systems,” Proc.
Int’l Conf. Parallel Processing, pp. 136-143, Aug. 1992.
T.-F. Chen and J.-L. Baer, ”Reducing Memory Latency via Non-
blocking and Prefetching Caches,” Technical Report 92-06-03,
Dept. of Computer Science and Eng., Univ. of Washington, June
1992.

[lo] A.J. Smith, ”Second Bibliography on Cache Memories,” Computer

1111 A.J. Smith, ”Cache Evaluation and Impact of Workload Choice,”

[12] KSRl Technical Summary, Kendall Square Research, 1992.
[13] J.L. Hennessy and D.A. Patterson, Computer Architecture, A Quan-

titative Approach, p. 458. Morgan Kaufmann Publishers, 1990.
1141 R.T. Short and H.M. Levy, “A Simulation Study of Two-Level

Caches,” Proc. 15th Int’l Symp. Computer Architecture, pp. 81-88,
1988.

Architecture Nezus, vol. 19, no. 4, pp. 154.182, June 1991.

Proc. 12th Int’l Symp. Computer Architecture, pp. 64-73, June 1985.

multiprocessor systen

Chung-Ho Chen graduated with honors from
the National Taipei Institute of Technology in
1983 and received the MS degree from the
University of Missouri at Rolla in 1989 and the
PhD degree from the University of Washington
at Seattle in 1993, all in electrical engineering.
He is currently an associate professor of elec-
tronic engineering at the National Yunlin Insti-
tute of Technology, Touliu, Taiwan. His cur-
rent research interests are high-performance
processor architectures and implementation of

ns.

Arun K. Somani earned his MSEE and PhD
degrees in electrical engineering from McGill
University, Montreal, Canada, in 1983 and 1985,
respectively Prior to that, he worked as a scien-
tific officer for the government of India in New
Delhi from 1974 to 1982 During this period, he

warfare system for the Indian Navy Dr Somani
IS currently a professor of electrical engineering
and computer science and engineering at the
University of Washington at Seattle

Prof. Somani’s research interests are in the areas of fault-tolerant
computing, interconnection networks, computer architecture, parallel
computer systems, and parallel algorithms. He is currently involved in
three major projects: 1) high integrity system design addressing the
issue related to cache memory design in redundant computer systems
and evaluation tools for such systems, 2) congestion control and fault
tolerance in broadband networks, and 3) development of “Proteus”
architecture, a multiprocessor system for automated classification of
objects based on generalized enhanced hypercube reconfigurable
interconnection network exploring coarse grain parallelism.

designed and developed an anti-submarine

