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for image coding. This algorithm jointly searches for the best spa- 
tial segmentation and the best frequency decomposition to use for 
each segment. The main advantage of these adaptive representations 
is their versatility: They can adapt to a wide variety of image 
classes having varying space-frequency characteristics by searching 
efficiently through a very large library of tree-structured bases. 
Numerically, on a SPARC 5,  calculating a 4-level wavelet transform 
of a 512 x 512 image took 1.08 s, while calculating the best single- 
tree basis (from among 4.9 x 10’’ bases) took 5.65 s, and calculating 
the best double-tree basis (from among 5.6 x lo7’ bases) took 21.18 s. 
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Cache Write Generate for Parallel Image 
Processing on Shared Memory Architectures 

Craig M. Wittenbrink, Arun K. Somani, and Chung-Ho Chen 

Abstract-We investigate cache write generate, our cache mode inven- 
tion. We demonstrate that for parallel image processing applications, the 
new mode improves main memory bandwidth, CPU efficiency, cache hits, 
and cache latency. We use register level simulations validated by the UW- 
Proteus system. Many memory, cache, and processor configurations are 
evaluated. 

I. INTRODUCTION 

Cache memories play an important role in achieving higher perfor- 
mance in modem uni- and multiprocessors. When a high percentage 
of reads and writes are made to the cache, the effective bandwidth 
of the memory is that of the cache. Many prior studies have focused 
on read caching [7] .  Here, we focus on write caching. Write buffers 
[7] ,  write allocate [4], and write through [l], [5]  do not address the 
removal of unnecessary traffic. To prevent unnecessary reads, many 
systems provide software control of cache write updating [6]. Word 
validate has been used by [ l ] ,  [4], and [5], and write allocate has 
been used by [4]. 

C. M. Wittenbiink, in [9], investigated the effect of directly 
updating the line when it was known in advance that the line is 
to be written by using trace analysis. In this paper, we further 
investigate the cache write technique cache write generate. Cache 
write generate directly updates the cache on write misses, without 
reading from memory. We show that for a class of applications, the 
overall performance improvement is significant. We performed the 
analysis using hardware description language (HDL) simulations and 
performance measurements of each cache write technique. 

Cache write generate (CWG) is defined as cache write validation 
on a write miss. The cache line is updated with the write and the 
cache line tag is modified to the address of the write. Writes that 
benefit from CWG are computed or initialized by the processor. 
Examples include dynamically allocated memories, stack segments, 
static memory segments, and temporary buffers. In image processing 
and vision applications [3], [8], these memory areas are easy to 
identify through explicit declaration or by the compiler. CWG is 
done only on memory areas denoted as generate, and a cache line in 
a generate memory area may lose its CWG ability to insure memory 
consistency. We have developed several schemes to provide self 
consistency, but do not discuss them due to space constraints. See 
our paper [ lo]  for details. 

11. SIMULATION MODELS AND HARDWARE SYSTEM 

A. Cache Modes, Sizes, and Memory Timings 
We compare the relative efficiency of the cache write generate 

policy to existing write caching controls, using single and multipro- 
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Size Mode Read Write Combined 
64k N 0.7558 0.0364 0.2918 

A , G 0.7552 0.8750 0.8325 
256k N 0.8285 0.4243 0.5678 

A , G 0.9420 0.9375 0.9391 

I 
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Fig. 1. Bright feature detection morphological algorithm. 

TABLE I 
INSTRUCTION COUNTS, os PROGRAM 

cessor shared memory systems. We developed a detailed model of 
the Intel is60 RISC processor, a custom external cache, and a main 
memory using register transfer level simulation language, ISP-prime, 
used with the N.2 simulator. The simulation models were developed 
for architectural investigation while designing the UW-Proteus system 
[2], [3] ,  [8]. The UW-Proteus cluster hardware (currently 32 i860’s) 
was used for verification and performance measurement. The simu- 
lation models are shared memory multiprocessors, where we varied 
memory timings, cache sizes, cache control, number of processors, 
and external or no external caches. For performance comparisons, we 
consider the following three scenarios for caching. Case N, normal 
mode, is where the application is run with normal write back caching, 
with write around on miss. Read misses are cached. Case A, allocate 
mode, is write caching on write misses in addition to read caching. 
Cache lines are first fetched from main memory and then updated in 
the cache. Case G, generate mode, is write caching without fetches 
on write misses for generate areas. For nongenerate areas, we use 
the normal mode (write allocate can also be used). To investigate 
the added complexities of performance with thrashing, we simulated 
two cache sizes 64k and 256k bytes. We also simulated systems with 
no external caches where the caching behavior of the i860 on-chip 
cache was modified to include cache generate. For the first level 
cache study, we use the same size cache as the i860, an 8k byte 
data cache. 

To investigate the effect of write posting (a nonblocking operation) 
and replacement policies, we have also simulated two fundamentally 
different external caches, cache x and cache y .  Cache x uses no write 
posting, no wraparound fills, and no posted replacement or other 
enhancements. The simplest control is used to see how these devices 
may have influenced the relative performance of CWG. Cache y (used 
in the implemented digital hardware of the UW-Proteus system) uses 
posted writes, wraparound fills, and posted replacements. 

In all systems, on chip cache, secondary caches, and main memory 
operate at progressively slower speeds. Let t ,  be processor clock 
time. The secondary cache time is k t ,  and the main memory time is 
k,t , .  In our simulations, for the secondary cache we have k, = 2. 
For the main memory we have three models, fast k ,  = 2(4), medium 
k, = 4(5), and slow k ,  = 20(21) where the numbers in parentheses 
are those for the first bus cycle in a burst mode. For the 8 6 0 ,  t, = 25 
ns. The one-level cache system also uses these main memory timings. 

TABLE I11 
EXTERNAL CACHE REQUESTS, os PROGRAM 

Cache I Line Fills I External Requests 1 
I Data Cache I 8.987 I 35,948 I 

B. Workload 

We benchmarked our cache variations with image processing 
applications using a mathematical morphology algorithm of bright 
feature detection shown in Fig. 1 .  I is the input image operated on 
by the structuring element S E ( ) .  Memory is used most efficiently 
by using temporary images Q and b ,  and processing in the eight- 
step program shown along the left side of Fig. 1. Additionally, we 
optimized the algorithm to use a minimal amount of memory shown 
by the buffers labeled in Fig. 1 by I ,  U ,  b, and R. Buffer n is 
reused, which helps caching. Flushes are only necessary for the 
parallel version SPSD, below. To execute the task graph of Fig. 1, 
it is partitioned using two types of parallelism. SPMD (nd variant), 
single programming multiple data, the data for each task is strictly 
partitioned; and SPSD (os variant), single programming single data, 
each function is computed by all of the processors. This uses finer 
grained sharing. Data are split for processing, each part given to 
a separate processor. For four processors, each processor works on 
1 /4  of the job. In the UW-Proteus system, we use 1M cache and 
256 x 256 images. So, for 128 x 128 images, 256K cache was the 
chosen scaling. 

111. SIMULATION AND RESULTS 

We have grouped the results into three different cases: i) simulation 
results when the processor’s on-chip cache model remains the same 
but the secondary cache uses different modes; ii) simulation results 
when only one level (on-chip) cache is used; and iii) the UW-Proteus 
system measurements where the secondary cache is programmed to 
use generate, allocate, or normal write caching. 

A. Secondary Cache Results 
With the mix of instructions given in Table I, the on-chip cache 

behavior of the i860 is the same regardless of secondary cache modes. 
For the external cache, allocate and generate give exactly the same 
hit ratios for reads and writes (see Table 11). Allocate and generate are 
differentiated by read and write miss penalties. This affects program 
performance, which can be seen through the number of bus cycles 
they use, the number of load stalls, and the run time. 

B. Bus Cycles 
The external cache uses generate to reduce the number of bus 

cycles to main memory. To illustrate, we present all of the cycles in 
the system for this program. The on-chip cache loads, cache stores, 
and instruction cache misses create read, write, line fill, and line 
flush requests on the bus outside of the processor. These requests 
are serviced by the external cache. Since the on-chip (i860) behavior 
for all modes in the secondary cache is the same, the number of 
external requests are the same for all three modes and these are 
summarized in Table 111 for the os program. For this program, there 
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TABLE IV 
SHARED MEMORY Bus CYCLES, os PROGRAM 
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Fig. 2. 
one, four, and eight processors in two-level cache system. 

os program speedup o f  generate versus normal and allocate, with 

are no replacements, and the number of memory references by the on- 
chip execution unit is 848 195. About 88% of the memory requests are 
satisfied on chip, and therefore, the number of external cycles is only 
101 621 for data cache line fills, instruction cache line fills, and writes. 

Table IV is the most concise demonstration of the difference 
between normal, allocate, and generate cache modes. In this table, 
we show the number of bus cycles due to single write, burst writes, 
and burst reads (to fill cache lines). The final column in Table IV 
is the total number of external reads and writes to main memory by 
one processor. In a multiprocessor system with n processors, there 
will be n times as many bus cycles (external memory read and write 
cycles). Generate has fewer bus cycles than allocate or normal. 

C. Load Stalls 

In varying our external cache model, the number of stalled loads 
varies. A load stall is a memory load operation that cannot be satisfied 
in a single processor cycle, because the data is not available on chip, 
and/or there is bus contention. The 64k caches in all modes have 
19852 stalled loads, or 18.38% of all loads. The 256k caches are 
large enough for no replacements and are more efficient than 64k 
caches. The number of stalled loads for 256k caches is N (= 18 424), 
A and G (= 17777). Because the generate mode writes are more 
efficient, fewer loads are stalled for that cache. Increasing the cache 
size reduces stalled loads by 7.19%. Increasing the cache size and 
using A or G reduces stalled loads by 11.67%, an improvement of 
3.64% over 64k cache N mode. 

D. Performance 
For our two application programs, the speedup of mode G 

over mode A (A/G in Figs.) and mode G over mode N 
(N/G in Figs.) in external caches are shown in Figs. 2-5. 
We use speedup as defined by the following: speedup = 
(execution timeoriginal) / (execution timeenhanced). The speedups 
for 256K cache os program, 64K cache os program, and 64K cache 
nd program are also given in Tables V-VII. 

The results in Fig. 2 are speedups for 256K cache fast memory with 
respect to the number of processors. The speedups show that both 
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Fig. 5.  
medium. and slow memories in two-level cache is 64k. 

nd program speedup, generate versus normal and allocate, fast, 

allocate and generate perform the same using up to four processors. 
Beyond that, generate outperforms allocate due to fewer bus cycles 
and, hence, less contention on the bus. This shows that generate is 
an effective technique for increasing the number of processors on a 
shared bus. Generate performs better in comparison to the normal 
caching mode even when only four processors are sharing the bus. 

Figs. 3-5 (and Tables V-VII) show the speedups with respect to 
the memory speed (f, m, or s) for different cache sizes (256K or 64K), 
di€ferent cache implementations (x or y) and different programs (os 
or nd). These figures show that generate improves performance by 
a greater amount when the memory is slower. This is as expected, 
because we are incrementally improving a small percentage of the 
program-the writes. Generate yields a significant speedup over mode 
A for all systems with slow memories in the single-processor case. 
For the more sophisticated y cache model, we achieve a greater 
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No. Proc. 1 P  4 P  
Memory f m S f m S 

Cache x y x y x y x y x y x y 
N/G 1.08 1.06 1.12 1.11 1.67 1.64 1.40 1.40 1.66 1.67 4.13 4.13 
A/G 1.00 1.00 1.01 1.01 1.18 1.18 1.01 1.01 1.04 1.04 1.79 1.79 
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TABLE VI 
SPEEDUP FOR THE os PROGRAM 64K CACHES 

x y x y x y x y x y x y 
0.97 0.99 0.95 0.99 1.08 1.19 1.41 1.48 1.55 1.46 1.56 1.52 
1.00 1.00 1.02 1.01 1.21 1.30 1.05 1.14 1.30 1.27 1.48 1.47 

I No. Proc. I I n  I 4 D  I 

No. Proc. 
Memory 

Cache 
N/G 
A/G 

I M e m o r v l  f I m I s I f I m I s I 

1 P  4 P  
f m S f m S 

x y x y x y x y x y x y 
1.00 1.02 0.98 1.02 1.15 1.30 1.45 1.48 1.53 1.52 1.60 1.56 
1.00 1.00 1.01 0.99 1.20 1.21 1.08 1.14 1.24 1.31 1.52 1.52 

No. Proc. 
Memory 

N/G 
A/G 

TABLE VI1 
SPEEDUP FOR THE nd PROGRAM 64K CACHES 

1 p 4 P  8 P  
f m f m f m 

0.94 0.90 1.17 1.32 1.47 1.41 
1.06 1.10 1.23 1.28 1.31 1.32 

speedup, which shows that generate is improved even with fills and 
flush postings. 

E. Single-Level Cache Memo y 
We also performed simulations using only one level on-chip cache 

by modifying the is60 cache to support generate. We did not change 
the size of the on-chip cache (it remained 8K for data cache and 
41< for instruction cache), simulated two memory speeds, fast (f) and 
medium (m), and varied the number of processors sharing a single 
bus from one to eight. The speedups for the ad program are shown in 
Fig. 6 and Table VIII, and the run times are shown in Fig. 7. Generate 
has a lower number of load stalls and external bus cycles than 
allocate. It is interesting to note that the normal mode performs best 
with one processor, but is taken over by generate with four processors 
and then by generate and allocate with eight processors. Generate 
achieves 17% speedup for the fast memory and 32% speedup for the 
medium-speed memory over normal caching when four processors are 
sharing the bus. The corresponding speedups over allocate are 22% 
and 27%. With eight processors sharing the bus, speedups achieved 
by generate are even better. These results, again, show how generate 
improves performance on a shared bus. 

F. UW-Proteus Perj5ormance Results 

Lastly, we ran the nd program for 256 x 256 32-b integer images 
and an optimized matrix multiplication assembly program to multiply 
two 256 x 256 floating point matrices on UW-Proteus. We used 
normal, generate, and allocate caching modes for the secondary cache 
with one and four processors. Measured speedups of generate over 
normal were 18% for the nd program. The speedup was only 0.8% for 
the matrix multiplication. The write frequency is less than 0.4% for 
the matrix multiplication, and not much speedup is as expected for 
one processor with the fast memory sytem used to implement UW- 
Proteus. Note that we implemented CWG in hardware and validated 
our simulation models. 

Table IX shows how simulated performance results compare to 
measured UW-Proteus performance on the os program. The program 

L N G f  - N/G f 

- N G m  

NIG m 
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Fig. 6. 
four, and eight processors in one-level cache system. 

nd program speedup, generate versus normal and allocate, with one, 

TABLE VI11 
SPEEDUP FOR THE nd PROGRAM SINGLE LEVEL CACHE 

was parallelized for two and four processors, and contained syn- 
chronization code for barriers between the respective operations. The 
speedup of generate over allocate is 3% for timings taken from a 
four-processor program running on UW-Proteus. As predicted the 
performance impact is small; the simulation showed speedups of 1% 
and 4% on a four-processor system. Results are duplicated here from 
Tables V and VI. The timings help verify the proper modeling of 
the system. 

IV. CONCLUSIONS 

Generate improves performance of multiprocessor applications 
significantly over allocate and write back caching modes by altering 
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No. Proc. 
A/G 

Simulation 64k cache A/G fast mem. 
Simulation 256k cache A/G fast mem. 
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and eight processors in one-level cache system. 

nd program timings of generate, normal, and allocate, with one, four, 

TABLE IX 
COMPARISON OF UW-PROTEUS MEASURED SPEEDUP FOR THE OS PROGRAM 

’IO SIMULATED SPEEDUP WITH y (POSTING, LOCKUP FREE) CACHES 

1 Simulation 256k cache A/G medium mem. I 1.01 I - I 1.04 1 , 
the second-level cache. When generate is incorporated on chip, even 
greater improvements are achieved. Allocate and generate have the 
same hit ratio, but generate significantly reduces the number of 
bus cycles by making write misses more efficient. For our image 
processing application, generate reduced the number of bus cycles in 
a multilevel cache system by 33% to 66%. Performance is weakly 
coupled with trace results in the case of write behaviors, and the 
improvement in generate over allocate averaged about 20%. The 
reduction in bus cycles is achievable without rewriting programs, 
and allows shared bus systems to use greater numbers of processors. 
Program performance can be improved in single-processor systems 
as well, where the contention between loads, stores, branches, and 
instructions is reduced by decreasing cache write miss service times. 
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The Application of the Gibbs-Bogoliubov-Feynman 
Inequality in Mean Field Calculations 

for Markov Random Fields 

Jun Zhang 

Abstract-The Gibbs-Bogoliubov-Feynman (GBF) inequality of statis- 
tical mechanics is adopted, with an information-theoretic interpretation, 
as a general optimization framework for deriving and examining var- 
ious mean field approximations for Markov random fields (MRF’s). 
The efficacy of this approach is demonstrated through the compound 
Gauss-Markov (CGM) model, comparisons between different mean field 
approximations, and experimental results in image restoration. 

I. INTRODUCTION 
Recently, there has been considerable interest in the mean field 

theory (MFT) for Markov random fields (MRF’s) and its application 
in image processing and computer vision (e.g., see [1]-[4]).‘ In 
MFWrelated optimization problems, the MFT can provide “SA- 
like“ performance at “ICM-like” computational cost.* It does this by 
approximating the mean of a MRF, which is optimal in the sense of 
least mean square error (LMSE) [l]. Most previously proposed MFT 
schemes belong to two classes, the physically motivated local mean 
field energy (LMFE) [ 11-[2] and the Gibbs-Bogoliubov-Feynman 
(GBF) inequality [4]. Although the efficacy of the MET has been 
demonstrated in applications, it is often unclear how the various 
schemes relate to each other and how their (mostly) statistical 
mechanics motivations translate into signal processing ones. 

In this paper, we adopt the GBF as a framework for mean field 
approximation. We will give it an information-theoretic interpretation 
that could be understood more easily in signal processing terms 
(Section 11). As an illustration, the GBF scheme is applied to an 
important and fairly complex MRF, a compound Gauss-Markov 
(CGM) model (with line field), and compared with the LMFE 
(Section IV). 

TI. THE GBF INEQUALITY 
We begin with the concept of the MRF. Let S be a finite extent 

two-dimensional (2-D) lattice with a neighborhood system and its 
associated cliques (see Fig. I). Let x = { 2%. i E S} be a collection of 
random variables. For the sake of simplicity, assume for the moment 
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