
1204 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. I , JULY 1996

for image coding. This algorithm jointly searches for the best spa-
tial segmentation and the best frequency decomposition to use for
each segment. The main advantage of these adaptive representations
is their versatility: They can adapt to a wide variety of image
classes having varying space-frequency characteristics by searching
efficiently through a very large library of tree-structured bases.
Numerically, on a SPARC 5, calculating a 4-level wavelet transform
of a 512 x 512 image took 1.08 s, while calculating the best single-
tree basis (from among 4.9 x 10’’ bases) took 5.65 s, and calculating
the best double-tree basis (from among 5.6 x lo7’ bases) took 21.18 s.

REFERENCES

C. Herley, J. Kovacevic, K. Ramchandran, and M. Vetterli, “Tilings of
time-frequency plane: Construction of arbitrary orthogonal bases and
fast tiling algorithms,” IEEE Trans. Signal Processing, vol. 41, no. 12,
pp. 3341-3360, Dec. 1993.
A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice Hall, 1989.
H. S. Malvar, Signal Processing With Lapped Transforms. Norwood,
MA: Artech, 1992.
1. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Commun. Pure Appl. Math., vol. XLI, pp. 909-996, 1988.
S . G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet decomposition,” IEEE Trans. Pattern Anal. Machine Intell., vol.
11, pp. 67L693, 1989.
R . Coifman and V. Wickerhauser, “Entropy-based algorithms for best
basis selection,” IEEE Trans. Inform. Theory, vol. 38, pp. 713-718, Mar.
1992.
K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-
distortion sense,’’ IEEE Trans. Image Processing, vol. 2, no. 2, pp.
160-176, Apr. 1993.
K. Asai, K. Ramchandran, and M. Vetterli, “Image representation using
time-varying wavelet packets, spatial segmentation and quantization,”
in Proc. CISS.
M. Antonini, M. Barland, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,” IEEE Trans. Image Processing, vol. 1, no. 2,
pp. 205-221, Apr. 1992.
J . M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp.
3445-3463, Dec. 1993.
Z. Xiong, K. Ramchandran, and M. Orchard, “Joint optimization of
scalar and tree-structured quantization of wavelet image decomposition,”
in Proc. Asilomar Con$, Pacific Grove, CA, Nov. 1993, vol. 2, pp,
891-895.
Z. Xiong, K. Ramchandran, M. T. Orchard, and K. Asai, “Wavelet
packets-based image coding using joint space-frequency quantization,”
in Proc. ICIP’94, Austin, TX, Nov. 1994, vol. 111, pp. 32&328.

Baltimore, MD: Johns Hopkins Univ., Mar. 1993.

Cache Write Generate for Parallel Image
Processing on Shared Memory Architectures

Craig M. Wittenbrink, Arun K. Somani, and Chung-Ho Chen

Abstract-We investigate cache write generate, our cache mode inven-
tion. We demonstrate that for parallel image processing applications, the
new mode improves main memory bandwidth, CPU efficiency, cache hits,
and cache latency. We use register level simulations validated by the UW-
Proteus system. Many memory, cache, and processor configurations are
evaluated.

I. INTRODUCTION

Cache memories play an important role in achieving higher perfor-
mance in modem uni- and multiprocessors. When a high percentage
of reads and writes are made to the cache, the effective bandwidth
of the memory is that of the cache. Many prior studies have focused
on read caching [7] . Here, we focus on write caching. Write buffers
[7] , write allocate [4], and write through [l], [5] do not address the
removal of unnecessary traffic. To prevent unnecessary reads, many
systems provide software control of cache write updating [6]. Word
validate has been used by [l] , [4], and [5], and write allocate has
been used by [4].

C. M. Wittenbiink, in [9], investigated the effect of directly
updating the line when it was known in advance that the line is
to be written by using trace analysis. In this paper, we further
investigate the cache write technique cache write generate. Cache
write generate directly updates the cache on write misses, without
reading from memory. We show that for a class of applications, the
overall performance improvement is significant. We performed the
analysis using hardware description language (HDL) simulations and
performance measurements of each cache write technique.

Cache write generate (CWG) is defined as cache write validation
on a write miss. The cache line is updated with the write and the
cache line tag is modified to the address of the write. Writes that
benefit from CWG are computed or initialized by the processor.
Examples include dynamically allocated memories, stack segments,
static memory segments, and temporary buffers. In image processing
and vision applications [3], [8], these memory areas are easy to
identify through explicit declaration or by the compiler. CWG is
done only on memory areas denoted as generate, and a cache line in
a generate memory area may lose its CWG ability to insure memory
consistency. We have developed several schemes to provide self
consistency, but do not discuss them due to space constraints. See
our paper [lo] for details.

11. SIMULATION MODELS AND HARDWARE SYSTEM

A. Cache Modes, Sizes, and Memory Timings
We compare the relative efficiency of the cache write generate

policy to existing write caching controls, using single and multipro-

Manuscript received February 18, 1995; revised September 27, 1995. This
work was supported by the Navy Coastal Systems Center. The associate editor
coordinating the review of this correspondence and approving it for publication
was Prof. A. M. Tekalp.

The authors are with the Department of Electrical Engineering, University
of Washington, Seattle, WA 98195 USA.

C. M. Wittenbrink is currently at the Baskin Center for Computer En-
gineering, University of California, Santa Cruz, CA 95064 USA (e-mail:
Craig @ cse.ncsc.edu).

Publisher Item Identifier S 1057-7149(96)03 172-7.

1057-7149/96$05.00 0 1996 IEEE

JEEE

Size Mode Read Write Combined
64k N 0.7558 0.0364 0.2918

A , G 0.7552 0.8750 0.8325
256k N 0.8285 0.4243 0.5678

A , G 0.9420 0.9375 0.9391

I

TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 7, JULY 1996

Inst. Cache
Write Buffer

Total

1205

35 137
65,536

101,621

a = I S E ()
I

I

I

I

flush

b = aCBSE()

flush

a = I - b
I

I

erosion (OI
dilation

flush a subtraction

Type Number
Loadsfstores 173,545

Delayed Branches 56,797
Other 444,308
Total 674,650

threshold

Percentage
26%
8%

66%
100%

R

Fig. 1. Bright feature detection morphological algorithm.

TABLE I
INSTRUCTION COUNTS, os PROGRAM

cessor shared memory systems. We developed a detailed model of
the Intel is60 RISC processor, a custom external cache, and a main
memory using register transfer level simulation language, ISP-prime,
used with the N.2 simulator. The simulation models were developed
for architectural investigation while designing the UW-Proteus system
[2], [3] , [8]. The UW-Proteus cluster hardware (currently 32 i860’s)
was used for verification and performance measurement. The simu-
lation models are shared memory multiprocessors, where we varied
memory timings, cache sizes, cache control, number of processors,
and external or no external caches. For performance comparisons, we
consider the following three scenarios for caching. Case N, normal
mode, is where the application is run with normal write back caching,
with write around on miss. Read misses are cached. Case A, allocate
mode, is write caching on write misses in addition to read caching.
Cache lines are first fetched from main memory and then updated in
the cache. Case G, generate mode, is write caching without fetches
on write misses for generate areas. For nongenerate areas, we use
the normal mode (write allocate can also be used). To investigate
the added complexities of performance with thrashing, we simulated
two cache sizes 64k and 256k bytes. We also simulated systems with
no external caches where the caching behavior of the i860 on-chip
cache was modified to include cache generate. For the first level
cache study, we use the same size cache as the i860, an 8k byte
data cache.

To investigate the effect of write posting (a nonblocking operation)
and replacement policies, we have also simulated two fundamentally
different external caches, cache x and cache y . Cache x uses no write
posting, no wraparound fills, and no posted replacement or other
enhancements. The simplest control is used to see how these devices
may have influenced the relative performance of CWG. Cache y (used
in the implemented digital hardware of the UW-Proteus system) uses
posted writes, wraparound fills, and posted replacements.

In all systems, on chip cache, secondary caches, and main memory
operate at progressively slower speeds. Let t , be processor clock
time. The secondary cache time is k t , and the main memory time is
k,t , . In our simulations, for the secondary cache we have k, = 2.
For the main memory we have three models, fast k , = 2(4), medium
k, = 4(5), and slow k , = 20(21) where the numbers in parentheses
are those for the first bus cycle in a burst mode. For the 8 6 0 , t, = 25
ns. The one-level cache system also uses these main memory timings.

TABLE I11
EXTERNAL CACHE REQUESTS, os PROGRAM

Cache I Line Fills I External Requests 1
I Data Cache I 8.987 I 35,948 I

B. Workload

We benchmarked our cache variations with image processing
applications using a mathematical morphology algorithm of bright
feature detection shown in Fig. 1 . I is the input image operated on
by the structuring element S E () . Memory is used most efficiently
by using temporary images Q and b , and processing in the eight-
step program shown along the left side of Fig. 1. Additionally, we
optimized the algorithm to use a minimal amount of memory shown
by the buffers labeled in Fig. 1 by I , U , b, and R. Buffer n is
reused, which helps caching. Flushes are only necessary for the
parallel version SPSD, below. To execute the task graph of Fig. 1,
it is partitioned using two types of parallelism. SPMD (nd variant),
single programming multiple data, the data for each task is strictly
partitioned; and SPSD (os variant), single programming single data,
each function is computed by all of the processors. This uses finer
grained sharing. Data are split for processing, each part given to
a separate processor. For four processors, each processor works on
1 /4 of the job. In the UW-Proteus system, we use 1M cache and
256 x 256 images. So, for 128 x 128 images, 256K cache was the
chosen scaling.

111. SIMULATION AND RESULTS

We have grouped the results into three different cases: i) simulation
results when the processor’s on-chip cache model remains the same
but the secondary cache uses different modes; ii) simulation results
when only one level (on-chip) cache is used; and iii) the UW-Proteus
system measurements where the secondary cache is programmed to
use generate, allocate, or normal write caching.

A. Secondary Cache Results
With the mix of instructions given in Table I, the on-chip cache

behavior of the i860 is the same regardless of secondary cache modes.
For the external cache, allocate and generate give exactly the same
hit ratios for reads and writes (see Table 11). Allocate and generate are
differentiated by read and write miss penalties. This affects program
performance, which can be seen through the number of bus cycles
they use, the number of load stalls, and the run time.

B. Bus Cycles
The external cache uses generate to reduce the number of bus

cycles to main memory. To illustrate, we present all of the cycles in
the system for this program. The on-chip cache loads, cache stores,
and instruction cache misses create read, write, line fill, and line
flush requests on the bus outside of the processor. These requests
are serviced by the external cache. Since the on-chip (i860) behavior
for all modes in the secondary cache is the same, the number of
external requests are the same for all three modes and these are
summarized in Table 111 for the os program. For this program, there

1206

TABLE IV
SHARED MEMORY Bus CYCLES, os PROGRAM

Mode I Writes [Burst Writes I Burst Reads 1 Total 1

...................................

............................ // ,
- f f i X c a d %

- f f i y c a c h e

-NGxcaehe

- m y o c h e

---t AJG s64x

1 + N/G SMX

..................

.....................

.......................

.

0 9 t I I

0.8 J I

1 P. 4 P. 8 P.
No. of Processors

Fig. 2.
one, four, and eight processors in two-level cache system.

os program speedup o f generate versus normal and allocate, with

are no replacements, and the number of memory references by the on-
chip execution unit is 848 195. About 88% of the memory requests are
satisfied on chip, and therefore, the number of external cycles is only
101 621 for data cache line fills, instruction cache line fills, and writes.

Table IV is the most concise demonstration of the difference
between normal, allocate, and generate cache modes. In this table,
we show the number of bus cycles due to single write, burst writes,
and burst reads (to fill cache lines). The final column in Table IV
is the total number of external reads and writes to main memory by
one processor. In a multiprocessor system with n processors, there
will be n times as many bus cycles (external memory read and write
cycles). Generate has fewer bus cycles than allocate or normal.

C. Load Stalls

In varying our external cache model, the number of stalled loads
varies. A load stall is a memory load operation that cannot be satisfied
in a single processor cycle, because the data is not available on chip,
and/or there is bus contention. The 64k caches in all modes have
19852 stalled loads, or 18.38% of all loads. The 256k caches are
large enough for no replacements and are more efficient than 64k
caches. The number of stalled loads for 256k caches is N (= 18 424),
A and G (= 17777). Because the generate mode writes are more
efficient, fewer loads are stalled for that cache. Increasing the cache
size reduces stalled loads by 7.19%. Increasing the cache size and
using A or G reduces stalled loads by 11.67%, an improvement of
3.64% over 64k cache N mode.

D. Performance
For our two application programs, the speedup of mode G

over mode A (A/G in Figs.) and mode G over mode N
(N/G in Figs.) in external caches are shown in Figs. 2-5.
We use speedup as defined by the following: speedup =
(execution timeoriginal) / (execution timeenhanced). The speedups
for 256K cache os program, 64K cache os program, and 64K cache
nd program are also given in Tables V-VII.

The results in Fig. 2 are speedups for 256K cache fast memory with
respect to the number of processors. The speedups show that both

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. I, JULY 1996

1.8 T - - - / - - ' - - - - - - - e
1.7

1.6

1.5

p 1.4

1.3
U

Q
ln 1.2

1.1

1

0,9 ..

0.8 I

f m S

Memory Speeds

x lp. N/G - x 4p. ffi

b y Ip. N/G - y 4p. N/G

-x1p. ffi - x 4p. ffi - y 1p. NO - y 4p. AI0

Fig. 3.
medium, and slow memories in two-level cache is 256k.

os program speedup of generate versus normal and allocate, fast,

..

1.7 T.... I ..

0.8 J I

-1c- x Ip . N/G

x 4p. NIG

----)--- y Ip. NIG

-0- y 4p. NIG

A - x I p . N G

d.- x 4p. N G

-----C y Ip. N G

y 4p. AJG

f m S

Memory Speeds

Fig. 4.
medium. and slow memories in two-level cache is 64k.

os program speedup of generate versus normal and allocate, fas

1.8 ...

1.7 4 ..
1 .6

1.5

n 1.4
U

R
1.3

1.2

1.1

1

.
0

. ~ ~ ~ ~ ~ ~ ~~~.C...~ #

..

...

.. a -/

-O-- x 4p. NIG

-C- y Ip. N/G - y 4p. NIG

x Ip. N G - x 4p. NG

y Ip. N G

. I y 4p. NG ~

0.9

0.8 I

f m s
Memory Speeds

Fig. 5.
medium. and slow memories in two-level cache is 64k.

nd program speedup, generate versus normal and allocate, fast,

allocate and generate perform the same using up to four processors.
Beyond that, generate outperforms allocate due to fewer bus cycles
and, hence, less contention on the bus. This shows that generate is
an effective technique for increasing the number of processors on a
shared bus. Generate performs better in comparison to the normal
caching mode even when only four processors are sharing the bus.

Figs. 3-5 (and Tables V-VII) show the speedups with respect to
the memory speed (f, m, or s) for different cache sizes (256K or 64K),
di€ferent cache implementations (x or y) and different programs (os
or nd). These figures show that generate improves performance by
a greater amount when the memory is slower. This is as expected,
because we are incrementally improving a small percentage of the
program-the writes. Generate yields a significant speedup over mode
A for all systems with slow memories in the single-processor case.
For the more sophisticated y cache model, we achieve a greater

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5 , NO. 7, JULY 1996

No. Proc. 1 P 4 P
Memory f m S f m S

Cache x y x y x y x y x y x y
N/G 1.08 1.06 1.12 1.11 1.67 1.64 1.40 1.40 1.66 1.67 4.13 4.13
A/G 1.00 1.00 1.01 1.01 1.18 1.18 1.01 1.01 1.04 1.04 1.79 1.79

1207

8 P
f

x y
2.39 2.39
1.08 1.08

Cache

N/G
A/G

TABLE VI
SPEEDUP FOR THE os PROGRAM 64K CACHES

x y x y x y x y x y x y
0.97 0.99 0.95 0.99 1.08 1.19 1.41 1.48 1.55 1.46 1.56 1.52
1.00 1.00 1.02 1.01 1.21 1.30 1.05 1.14 1.30 1.27 1.48 1.47

I No. Proc. I I n I 4 D I

No. Proc.
Memory

Cache
N/G
A/G

I M e m o r v l f I m I s I f I m I s I

1 P 4 P
f m S f m S

x y x y x y x y x y x y
1.00 1.02 0.98 1.02 1.15 1.30 1.45 1.48 1.53 1.52 1.60 1.56
1.00 1.00 1.01 0.99 1.20 1.21 1.08 1.14 1.24 1.31 1.52 1.52

No. Proc.
Memory

N/G
A/G

TABLE VI1
SPEEDUP FOR THE nd PROGRAM 64K CACHES

1 p 4 P 8 P
f m f m f m

0.94 0.90 1.17 1.32 1.47 1.41
1.06 1.10 1.23 1.28 1.31 1.32

speedup, which shows that generate is improved even with fills and
flush postings.

E. Single-Level Cache Memo y
We also performed simulations using only one level on-chip cache

by modifying the is60 cache to support generate. We did not change
the size of the on-chip cache (it remained 8K for data cache and
41< for instruction cache), simulated two memory speeds, fast (f) and
medium (m), and varied the number of processors sharing a single
bus from one to eight. The speedups for the ad program are shown in
Fig. 6 and Table VIII, and the run times are shown in Fig. 7. Generate
has a lower number of load stalls and external bus cycles than
allocate. It is interesting to note that the normal mode performs best
with one processor, but is taken over by generate with four processors
and then by generate and allocate with eight processors. Generate
achieves 17% speedup for the fast memory and 32% speedup for the
medium-speed memory over normal caching when four processors are
sharing the bus. The corresponding speedups over allocate are 22%
and 27%. With eight processors sharing the bus, speedups achieved
by generate are even better. These results, again, show how generate
improves performance on a shared bus.

F. UW-Proteus Perj5ormance Results

Lastly, we ran the nd program for 256 x 256 32-b integer images
and an optimized matrix multiplication assembly program to multiply
two 256 x 256 floating point matrices on UW-Proteus. We used
normal, generate, and allocate caching modes for the secondary cache
with one and four processors. Measured speedups of generate over
normal were 18% for the nd program. The speedup was only 0.8% for
the matrix multiplication. The write frequency is less than 0.4% for
the matrix multiplication, and not much speedup is as expected for
one processor with the fast memory sytem used to implement UW-
Proteus. Note that we implemented CWG in hardware and validated
our simulation models.

Table IX shows how simulated performance results compare to
measured UW-Proteus performance on the os program. The program

L N G f - N/G f

- N G m

NIG m

0.8 I

' P. 4 P- 8 P.
No. Processors

Fig. 6.
four, and eight processors in one-level cache system.

nd program speedup, generate versus normal and allocate, with one,

TABLE VI11
SPEEDUP FOR THE nd PROGRAM SINGLE LEVEL CACHE

was parallelized for two and four processors, and contained syn-
chronization code for barriers between the respective operations. The
speedup of generate over allocate is 3% for timings taken from a
four-processor program running on UW-Proteus. As predicted the
performance impact is small; the simulation showed speedups of 1%
and 4% on a four-processor system. Results are duplicated here from
Tables V and VI. The timings help verify the proper modeling of
the system.

IV. CONCLUSIONS

Generate improves performance of multiprocessor applications
significantly over allocate and write back caching modes by altering

1208

No. Proc.
A/G

Simulation 64k cache A/G fast mem.
Simulation 256k cache A/G fast mem.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5 , NO. 7, JULY 1996

1 p 2 p 4 p
1.0079 1.0065 1.03046

1.00 - 1.14
1.00 - 1.01

120

100
U) U

s 8 0

‘zi

0

3 6 0

4 0

PO

0
1 P. 4 P. 8 P.

NO. Processors

Fig. 7.
and eight processors in one-level cache system.

nd program timings of generate, normal, and allocate, with one, four,

TABLE IX
COMPARISON OF UW-PROTEUS MEASURED SPEEDUP FOR THE OS PROGRAM

’IO SIMULATED SPEEDUP WITH y (POSTING, LOCKUP FREE) CACHES

1 Simulation 256k cache A/G medium mem. I 1.01 I - I 1.04 1 ,
the second-level cache. When generate is incorporated on chip, even
greater improvements are achieved. Allocate and generate have the
same hit ratio, but generate significantly reduces the number of
bus cycles by making write misses more efficient. For our image
processing application, generate reduced the number of bus cycles in
a multilevel cache system by 33% to 66%. Performance is weakly
coupled with trace results in the case of write behaviors, and the
improvement in generate over allocate averaged about 20%. The
reduction in bus cycles is achievable without rewriting programs,
and allows shared bus systems to use greater numbers of processors.
Program performance can be improved in single-processor systems
as well, where the contention between loads, stores, branches, and
instructions is reduced by decreasing cache write miss service times.

REFERENCES

[I] W. C. Brantley, K. P. McAuliffe, and J. Weiss, “RP3 processor memory
element,” in Proc. 1985 Int. Coqf Parallel Processing, Aug 1985, pp.
782-789.

[2] S. B. Choi et al., “Reconfigurable multiprocessor system having circuit-
switched routing, cache write generation, and fault tolerant synchro-
nization,” U.S. pat. pend., 1992.

[3] R. M. Hardlick et al.,“UW-Proteus: a reconfigurable computational
network for computer vision,” in J. Machine Vision Applic., vol. 8 , no.
2, pp. 85-100.

141 N. P. Jouppi, “Cache write policies and performance,” in 20th Annual
Int. Symp. Comput. Architect., San Diego, CA, May 1993, pp. 191-201.

1.5) MC68030 Enhanced 32-bit Microprocessor User’s Manual, Motorola
Inc, 1987.

161 G. Radin, “The 801 minicomputer,” in Proc. Symp. Architecr. Support
Program. Lang. Operating Syst., Palo Alto, CA, Mar. 1982, pp. 39-47.

[7] A. J . Smith. “Cache memories,”Comput. Surveys, vol. 14, no. 3, Sept.
1982.

[SI A. K. Somani et al., “UW-Proteus system architecture & organization,”
in Proc. 5th Int. Parallel Processing Symp., Anaheim, CA, Apr.-May,
1991, pp. 276-284.

[91 C. M. Wittenbrink, “Directed data cache for high performance morpho-
logical image processing,” Master’s thesis, University of Washington,
Dept. of Elect. Eng., Oct. 1990.

[lo] C. M. Wittenbrink, A. K. Somani, and C.-H. Chen, “Cache write
generate for parallel image processing on shared memory architectures,”
tech. rep. TR-EE-95-17, University of Washington, Dept. of Elect. Eng.,
Jan. 1995.

The Application of the Gibbs-Bogoliubov-Feynman
Inequality in Mean Field Calculations

for Markov Random Fields

Jun Zhang

Abstract-The Gibbs-Bogoliubov-Feynman (GBF) inequality of statis-
tical mechanics is adopted, with an information-theoretic interpretation,
as a general optimization framework for deriving and examining var-
ious mean field approximations for Markov random fields (MRF’s).
The efficacy of this approach is demonstrated through the compound
Gauss-Markov (CGM) model, comparisons between different mean field
approximations, and experimental results in image restoration.

I. INTRODUCTION
Recently, there has been considerable interest in the mean field

theory (MFT) for Markov random fields (MRF’s) and its application
in image processing and computer vision (e.g., see [1]-[4]).‘ In
MFWrelated optimization problems, the MFT can provide “SA-
like“ performance at “ICM-like” computational cost.* It does this by
approximating the mean of a MRF, which is optimal in the sense of
least mean square error (LMSE) [l]. Most previously proposed MFT
schemes belong to two classes, the physically motivated local mean
field energy (LMFE) [11-[2] and the Gibbs-Bogoliubov-Feynman
(GBF) inequality [4]. Although the efficacy of the MET has been
demonstrated in applications, it is often unclear how the various
schemes relate to each other and how their (mostly) statistical
mechanics motivations translate into signal processing ones.

In this paper, we adopt the GBF as a framework for mean field
approximation. We will give it an information-theoretic interpretation
that could be understood more easily in signal processing terms
(Section 11). As an illustration, the GBF scheme is applied to an
important and fairly complex MRF, a compound Gauss-Markov
(CGM) model (with line field), and compared with the LMFE
(Section IV).

TI. THE GBF INEQUALITY
We begin with the concept of the MRF. Let S be a finite extent

two-dimensional (2-D) lattice with a neighborhood system and its
associated cliques (see Fig. I). Let x = { 2%. i E S} be a collection of
random variables. For the sake of simplicity, assume for the moment

Manuscript received November 24, 1993; revised September 17, 1995. This
work was supported by the National Science Foundation under Grants DIRIS-
9010601 and IRI-93 15 193. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. R. L. Lagendijk.

The author is with the Department of Electrical Engineering and Computer
Science, University of Wisconsin, Milwaukee, WI 53201 USA (e-mail:
junzhang@ee.uwm.edu).

Publisher Item Identifier S 1057-7149(96)04539-3.
’ More references can be found in a longer version of this paper [5] .
’SA: simulated annealing; ICM: iterative conditional mode.

1057-7149/96$05.00 0 1996 IEEE

