
Chapter 2: Assemblers

王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw

System Programming, Spring 2010

Department of Electrical Engineering, Feng-Chia University

2.1 Basic Assembler Functions

- 2.1.1 A Simple SIC Assembler
- 2.1.2 Assembler Algorithm and Data Structures
- 2.2 Machine-Dependent Assembler Features
 - 2.2.1 Instruction Formats and Addressing Modes
 - 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

3 System Programming, Spring 2010

Assembler Directives

Assembler directives (or pseudo-instructions) are not translated into machine instructions. Instead, they provide instructions to the assembler itself.

START	Specify name and starting address for the program.
END	Indicate the end of the source program and (optionally) specify the first executable instruction in the program.
BYTE	Generate character or hexadecimal constant, occupying as many bytes as needed to represent the constant.
WORD	Generate one-word integer constant.
RESB	Reserve the indicated number of bytes for a data area.
RESW	Reserve the indicated number of words for a data area.

Department of Electrical Engineering, Feng-Chia University

A SIC Assembly Program Example [Figure 2.1]

Line	Sour			
5	COPY	START	1000	COPY FILE FROM INPUT TO OUTPUT
10	FIRST	STL	RETADR	SAVE RETURN ADDRESS
15	CLOOP	JSUB	RDREC	READ INPUT RECORD
20		LDA	LENGTH	TEST FOR EOF (LENGTH = 0)
25		COMP	ZERO	
30		JEQ	ENDFIL	EXIT IF EOF FOUND
35		JSUB	WRREC	WRITE OUTPUT RECORD
40		J	CLOOP	LOOP
45	ENDFIL	LDA	EOF	INSERT END OF FILE MARKER
50		STA	BUFFER	
55		LDA	THREE	SET LENGTH = 3
60		STA	LENGTH	
65		JSUB	WRREC	WRITE EOF
70		LDL	RETADR	GET RETURN ADDRESS
75		RSUB		RETURN TO CALLER
80	EOF	BYTE	C'EOF'	
85	THREE	WORD	3	
90	ZERO	WORD	0	
95	RETADR	RESW	1	
100	LENGTH	RESW	1	LENGTH OF RECORD
105	BUFFER	RESB	4096	4096-BYTE BUFFER AREA

System Programming, Spring 2010

125	RDREC	LDX	ZERO	CLEAR LOOP COUNTER
130		LDA	ZERO	CLEAR A TO ZERO
135	RLOOP	TD	INPUT	TEST INPUT DEVICE
140		JEQ	RLOOP	LOOP UNTIL READY
145		RD	INPUT	READ CHARACTER INTO REGISTER A
150		COMP	ZERO	TEST FOR END OF RECORD (X'00')
155		JEQ	EXIT	EXIT LOOP IF EOR
160		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
165		TIX	MAXLEN	LOOP UNLESS MAX LENGTH
170		JLT	RLOOP	HAS BEEN REACHED
175	EXIT	STX	LENGTH	SAVE RECORD LENGTH
180		RSUB		RETURN TO CALLER
185	INPUT	BYTE	X'Fl'	CODE FOR INPUT DEVICE
190	MAXLEN	WORD	4096	
	SUBROL	JTINE ⁻	TO WRITE F	ECORD FROM BUFFER
210	WRREC	LDX	ZERO	CLEAR LOOP COUNTER
215	WLOOP	TD	OUTPUT	TEST OUTPUT DEVICE
220		JEQ	WLOOP	LOOP UNTIL READY
225		LDCH	BUFFER,X	GET CHARACTER FROM BUFFER
230		WD	OUTPUT	WRITE CHARACTER
235		TIX	LENGTH	LOOP UNTIL ALL CHARACTERS
240		JLT	WLOOP	HAVE BEEN WRITTEN
045		RSUB		RETURN TO CALLER
245		RSUB		KEIOKN IO CALLER
245	OUTPUT	BYTE	X'05'	CODE FOR OUTPUT DEVICE

SUBROUTINE TO READ RECORD INTO BUFFER

System Programming, Spring 2010

Outline

- 2.1 Basic Assembler Functions
 - 2.1.1 A Simple SIC Assembler
 - 2.1.2 Assembler Algorithm and Data Structures
- 2.2 Machine-Dependent Assembler Features
 - 2.2.1 Instruction Formats and Addressing Modes
 - 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

7 System Programming, Spring 2010

A Simple SIC Assembler

- 1. Convert mnemonic operation codes to their machine language equivalents. (e.g., translate STL to 14)
- 2. Convert symbolic operands to their equivalent machine addresses. (e.g., translate RETADR to 1033)
- 3. Build the **machine instructions** in the proper format.
- 4. Convert the data constants specified in the source program into their internal machine representations. (e.g., translate EOF to 454F46)
- 5. Write the **object program** and the **assembly listing**.

All of these functions except number 2 can easily be accomplished by sequential processing of the source program, one line at a time.

Program from Figure 2.1 with Object Code [Figure 2.2]

Line	Loc	Source statement			Object code
5	1000	COPY	START	1000	
10	1000	FIRST	STL	RETADR	141033
15	1003	CLOOP	JSUB	RDREC	482039
20	1006		LDA	LENGTH	001036
25	1009		COMP	ZERO	281030
30	100C		JEQ	ENDFIL	301015
35	100F		JSUB	WRREC	482061
40	1012		J	CLOOP	3C1003
45	1015	ENDFIL	LDA	EOF	00102A
50	1018		STA	BUFFER	0C1039
55	101B		LDA	THREE	00102D
60	101E		STA	LENGTH	0C1036
65	1021		JSUB	WRREC	482061
70	1024		LDL	RETADR	081033
75	1027		RSUB		4C0000
80	102A	EOF	BYTE	C'EOF'	454F46
85	102D	THREE	WORD	3	000003
90	1030	ZERO	WORD	0	000000
95	1033	RETADR	RESW	1	
100	1036	LENGTH	RESW	1	
105	1039	BUFFER	RESB	4096	

System Programming, Spring 2010

	SUBRO	UTINE TO	READ	RECORD IN	TO BUFFER				
125	2039	RDREC	LDX	ZERO	041030				
130	203C		LDA	ZERO	001030				
135	203F	RLOOP	TD	INPUT	E0205D				
140	2042		JEQ	RLOOP	30203F				
145	2045		RD	INPUT	D8205D				
150	2048		COMP	ZERO	281030				
155	204B		JEQ	EXIT	302057				
160	204E		STCH	BUFFER,X	549039				
165	2051		TIX	MAXLEN	2C205E				
170	2054		JLT	RLOOP	38203F				
175	2057	EXIT	STX	LENGTH	101036				
180	205A		RSUB		4C0000				
185	205D	INPUT	BYTE	X'Fl'	Fl				
190	205E	MAXLEN	WORD	4096	001000				
5	SUBROUTINE TO WRITE RECORD FROM BUFFER								
210	2061	WRREC	LDX	ZERO	041030				
215	2064	WLOOP	TD	OUTPUT	E02079				
220	2067		JEQ	WLOOP	302064				
225	206A		LDCH	BUFFER,X	509039				
225 230			LDCH WD	BUFFER,X OUTPUT	509039 DC2079				
	206A								
230	206A 206D		WD	OUTPUT	DC2079				
230 235	206A 206D 2070		WD TIX	OUTPUT LENGTH	DC2079 2C1036				
230 235 240	206A 206D 2070 2073	OUTPUT	WD TIX JLT	OUTPUT LENGTH	DC2079 2C1036 382064				

Department of Electrical Engineering, Feng-Chia University

Object Program Format

	Column	Contents					
	1	Н					
Header	2-7	Program name					
Record	8-13	Starting address of object program (HEX)					
	14-19	Length of object program in bytes (HEX)					
	1	Т					
Text	2-7	Starting address for object code in this record (HEX)					
Record	8-9	Length of object code in this record in bytes (HEX)					
	10-69	Object code (HEX, 2 columns per byte of object code)					
End	1	E					
Record	2-7	Address of first executable instruction in object program (HEX)					

11 System Programming, Spring 2010

Object Program (Corresponding to Figure 2.2) [Figure 2.3]

НСОРУ 0010000107А T₂001000,1E₁141033,482039,001036,281030,301015,482061,3C1003,00102A,0C1039,00102D T₀0101E₁5₀C1036<u>4</u>82061₀81033<u>4</u>C0000<u>4</u>54F46<u>000003</u>000000 T₀020391E₀4103001030E0205D₃0203F₂D8205D₂81030₃02057₅49039₂C205E₃8203F T₀020571C1010364C0000F1001000041030E02079302064509039DC20792C1036 T₀₀₂₀₇₃07<u>382064</u>40000005 E,001000

Note that there is no object code corresponding to addressed 1033-2038. This storage is simply reserved by the loader for use by the program during execution.

Department of Electrical Engineering, Feng-Chia University

Two-pass SIC Assembler

Pass 1 (define symbols):

- 1. Assign addresses to all statements in the program.
- 2. Save the values (addresses) assigned to all labels for use in Pass 2.
- 3. Perform some processing of **assembler directives**. (This includes processing that affects address assignment, such as determining the length of data areas defined by BYTE, RESW, etc.)
- 4. Write intermediate file.

Pass 2 (assemble instructions and generate object program):

- 1. Assemble **instructions** (translating operation codes and looking up addresses).
- 2. Generate data values defined by BYTE, WORD, etc.
- 3. Perform processing of assembler directives not done during Pass1.
- 4. Write the object program and the assembly listing.

13 System Programming, Spring 2010

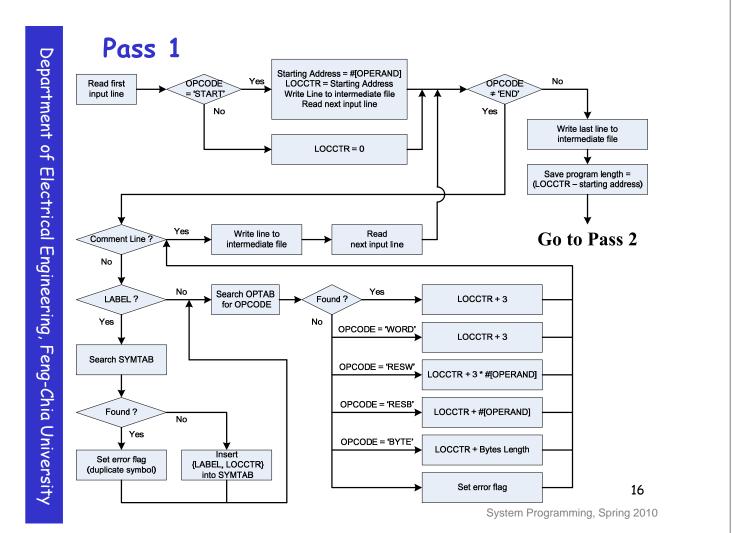
Outline

- 2.1 Basic Assembler Functions
 - 2.1.1 A Simple SIC Assembler

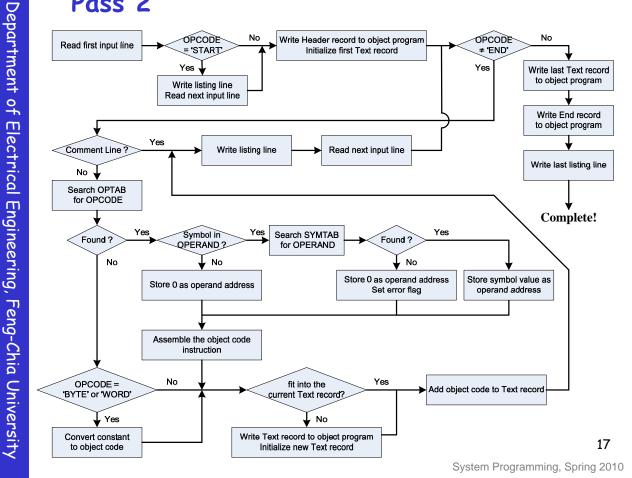
2.1.2 Assembler Algorithm and Data Structures

- 2.2 Machine-Dependent Assembler Features
 - 2.2.1 Instruction Formats and Addressing Modes
 - 2.2.2 Program Relocation
- 2.3 Machine-Independent Assembler Features
 - 2.3.1 Literals
 - 2.3.2 Symbol-Defining Statements
 - 2.3.3 Expressions
 - 2.3.4 Program Blocks
 - 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options


- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

Department of Electrical Engineering, Feng-Chia University


Data Structures

- Operation Code Table (OPTAB) is used to look up mnemonic operation codes and translate them to their machine language equivalents.
- Symbol Table (SYMTAB) is used to store values (addresses) assigned to labels.
- Location Counter (LOCCTR) is a variable that is used to help in the assignment of addresses.

Pass 2

Outline

2.1 Basic Assembler Functions

- 2.1.1 A Simple SIC Assembler
- 2.1.2 Assembler Algorithm and Data Structures

2.2 Machine-Dependent Assembler Features

- 2.2.1 Instruction Formats and Addressing Modes
- 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

A SIC/XE Assembly Program Example

	SIC (Fi	gure 2.´	l)	S	IC/XE(I	Figure 2	.5)
Line	Sour	ce statem	ent	Line	So	urce state	ment
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105	COPY FIRST CLOOP ENDFIL ENDFIL EOF THREE ZERO RETADR LENGTH BUFFER	START STL JSUB LDA COMP JEQ JSUB J LDA STA LDA STA LDA STA JSUB LDL RSUB BYTE WORD WORD RESW RESW RESB	1000 RETADR RDREC LENGTH ZERO ENDFIL WRREC CLOOP EOF BUFFER THREE LENGTH WRREC RETADR C'EOF' 3 0 1 1 1 4096	5 10 12 13 15 20 25 30 35 40 45 50 55 60 65 70 80 95 100 105	COPY FIRST CLOOP ENDFIL EOF RETADR LENGTH BUFFER	START STL LDB BASE +JSUB LDA COMP JEQ +JSUB J LDA STA LDA STA +JSUB J BYTE RESW RESW RESB	0 RETADR #LENGTH RDREC LENGTH #0 ENDFIL WRREC CLOOP EOF BUFFER #3 LENGTH WRREC @RETADR C'EOF' 1 1 4096
					0	atam Dragers	nming Spring 201

System Programming, Spring 2010

	SUBR	OUTINI	E TO READ	RECORD	INTO	BUFFEF	२
125 130 135 140 145 150 155 160 165 170 175 180 185 190	RDREC RLOOP EXIT INPUT MAXLEN	LDX LDA TD JEQ RD COMP JEQ STCH TIX JLT STX RSUB BYTE WORD	ZERO ZERO INPUT RLOOP INPUT ZERO EXIT BUFFER,X MAXLEN RLOOP LENGTH X'F1' 4096	125 130 132 133 135 140 145 150 155 160 165 170 175 180 185	RDREC RLOOP EXIT INPUT	CLEAR CLEAR +LDT TD JEQ RD COMPR JEQ STCH TIXR JLT STX RSUB BYTE	X A S #4096 INPUT RLOOP INPUT A,S EXIT BUFFER,X T RLOOP LENGTH X'F1'
	SUBRC	UTINE	TO WRITE	RECORD	FROM	BUFFE	R
210 215 220 225 230 235 240 245 250 255	WRREC WLOOP OUTPUT	LDX TD JEQ LDCH WD TIX JLT RSUB BYTE END	ZERO OUTPUT WLOOP BUFFER,X OUTPUT LENGTH WLOOP X'05' FIRST	210 212 215 220 225 230 235 240 245 250 255	WRREC WLOOP OUTPUT	CLEAR LDT TD JEQ LDCH WD TIXR JLT RSUB BYTE END	X LENGTH OUTPUT WLOOP BUFFER,X OUTPUT T WLOOP X'05' FIRST

Department of Electrical Engineering, Feng-Chia University

Department of Electrical Engineering, Feng-Chia University

Outline

- 2.1 Basic Assembler Functions
 - 2.1.1 A Simple SIC Assembler
 - 2.1.2 Assembler Algorithm and Data Structures
- 2.2 Machine-Dependent Assembler Features <u>2.2.1 Instruction Formats and Addressing Modes</u> 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

21 System Programming, Spring 2010

Program from Figure 2.5 with Object Code

Line	Loc	Source statement			Object code
5	0000	COPY	START	0	
10	0000	FIRST	STL	RETADR	17202D
12	0003		LDB	#LENGTH	69202D
13			BASE	LENGTH	
15	0006	CLOOP	+JSUB	RDREC	4B101036
20	000A		LDA	LENGTH	032026
25	000D		COMP	#0	290000
30	0010		JEQ	ENDFIL	332007
35	0013		+JSUB	WRREC	4B10105D
40	0017		J	CLOOP	3F2FEC
45	001A	ENDFIL	LDA	EOF	032010
50	001D		STA	BUFFER	0F2016
55	0020		LDA	#3	010003
60	0023		STA	LENGTH	0F200D
65	0026		+JSUB	WRREC	4B10105D
70	002A		J	ØRETADR	3E2003
80	002D	EOF	BYTE	C'EOF'	454F46
95	0030	RETADR	RESW	1	
100	0033	LENGTH	RESW	1	
105	0036	BUFFER	RESB	4096	

ડા	JBROU ⁻	TINE TO	READ I	RECORD INT	O BUFFER
125	1036	RDREC	CLEAR	Х	B410
130	1038		CLEAR	A	B400
132	103A		CLEAR	S	B440
133	103C		+LDT	#4096	75101000
135	1040	RLOOP	TD	INPUT	E32019
140	1043		JEQ	RLOOP	332FFA
145	1046		RD	INPUT	DB2013
150	1049		COMPR	A,S	A004
155	104B		JEQ	EXIT	332008
160	104E		STCH	BUFFER,X	57C003
165	1051		TIXR	Т	B850
170	1053		JLT	RLOOP	3B2FEA
175	1056	EXIT	STX	LENGTH	134000
180	1059		RSUB		4F0000
185	105C	INPUT	BYTE	X'Fl'	F1
S	UBROU			RECORD FRC	M BUFFER
210	105D	WRREC	CLEAR	X	B410
212	105F	maubo	LDT	LENGTH	774000
215	1062	WLOOP	TD	OUTPUT	E32011
220	1065	112001	JEO	WLOOP	332FFA
220 225	1065 1068		JEQ LDCH	WLOOP BUFFER,X	332FFA 53C003
			~	WLOOP BUFFER,X OUTPUT	
225	1068		LDCH	BUFFER,X	53C003
225 230	1068 106B		LDCH WD	BUFFER,X OUTPUT	53C003 DF2008
225 230 235	1068 106B 106E		LDCH WD TIXR	BUFFER, X OUTPUT T	53C003 DF2008 B850
225 230 235 240	1068 106B 106E 1070	OUTPUT	LDCH WD TIXR JLT	BUFFER, X OUTPUT T	53C003 DF2008 B850 3B2FEF
225 230 235 240 245	1068 106B 106E 1070 1073		LDCH WD TIXR JLT RSUB	BUFFER,X OUTPUT T WLOOP	53C003 DF2008 B850 3B2FEF 4F0000

System Programming, Spring 2010

23

Addressing

Program-Counter relative addressing (Format 3)

→ -2048 ≤ Displacement ≤ +2047

Base relative addressing (Format 3)

 \blacktriangleright 0 \leq Displacement \leq 4095

Extended instruction format (Format 4)

- 20-bit address field, which is large enough to contain the full memory address.
- Using the prefix +

Example 1: PC Relative Addressing

Line	Loc		Object code		
10	0000	FIRST	STL	RETADR	17202D
Hex				Binary	

Hen	Dinay		
	op	nixbpe	disp/address
17202D	000101	110010	0000 <mark>0010</mark> 1101

25 System Programming, Spring 2010

Example 2: PC Relative Addressing

Line	Loc	Source statement	Object code		
40	0017	J CLOOP	3F2FEC		

Hex	Binary					
	op nixbpe	disp/address				
3 F 2 F E C	00111111001011	1 1 1 <mark>1 1 1 0</mark> 1 1 0 0				

Base Relative Addressing

Difference between PC-relative and Base-relative addressing

- The assembler knows what the contents of the Program Counter will be at execution time. Base register ?
- The base register is under control of the programmer. Therefore, the programmer must tell the assembler what the base register will contain during execution of the program

Assembler Directives

BASE	Informs the assembler that the base register will contain the <i>address</i> of #[Operand]
NOBASE	Informs the assembler that the contents of the base register can no longer be relied upon for addressing

27 System Programming, Spring 2010

Example : Base Relative Addressing

Line	Loc	Source statement	Object code	
160	104E	STCH BUFFER, X	57C003	

Hex		Binary					
	op nixb;	op n i x b p e disp/address					
57C003	0101011111	0000000000000011					

Outline

2.1 Basic Assembler Functions

- 2.1.1 A Simple SIC Assembler
- 2.1.2 Assembler Algorithm and Data Structures

2.2 Machine-Dependent Assembler Features 2.2.1 Instruction Formats and Addressing Modes

2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

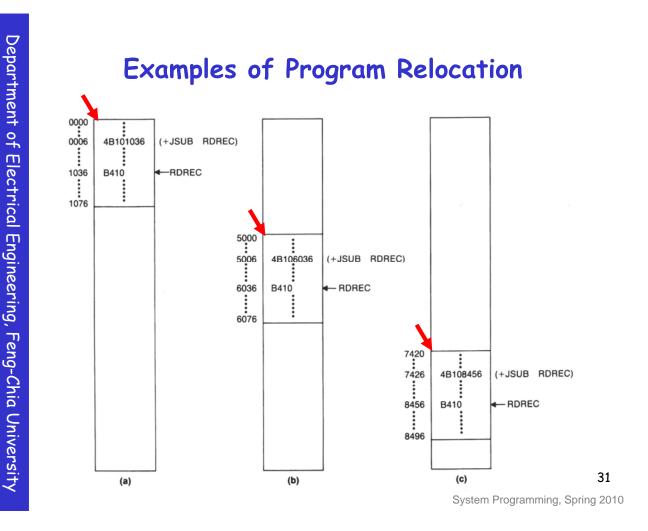
2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

29 System Programming, Spring 2010

Program Relocation

Multiprogramming


Running multiple programs (processes) that share system resources (e.g. memory, CPU)

Absolute Programs

Must be loaded at exact address in order to execute properly

Relocatable Programs

Can be loaded into memory wherever these is room, rather than specifying a fixed address at assembly time

Object Program Format

	Column	Contents
	1	Н
Header	2-7	Program name
Record	8-13	Starting address of object program (HEX)
	14-19	Length of object program in bytes (HEX)
	1	Т
Text	2-7	Starting address for object code in this record (HEX)
Record	8-9	Length of object code in this record in bytes (HEX)
	10-69	Object code (HEX, 2 columns per byte of object code)
	1	Μ
Mod. Record	2-7	Starting location of the address field to be modified, relative to the beginning of the program (HEX)
Record	8-9	Length of the address field to be modified, in half-bytes (HEX)
End	1	E
Record	2-7	Address of first executable instruction (HEX)

(Corresponding to Figure 2.6) [Figure 2.8] HCOPY 00000001077 T₂000000,1 D₁ 7 202 D₆ 9 202 D₄ 4 B 1 0 1 0 3 6 0 3 2 0 2 6 2 9 0 0 0 0 3 3 2 0 0 7 4 B 1 0 1 0 5 D 3 F 2 F E C₂0 3 2 0 1 0 T₂00001D₁130F20160100030F200D₄B10105D₃E2003454F46 T_0010361D_B410_B400_B440_75101000_E32019_332FFA_DB2013_A004_332008_57C003_B850 T₂0010531D₃B2FEA₂134000₂4F0000₂F1₂B410₂774000<u>2</u>E32011<u>3</u>32FFA₂53C003DF2008₂B850 T₂001070<u>0</u>7<u>3</u>B2FEF<u>4</u>F0000<u>0</u>5 M000007,05 M00001405 M00002705 E,000000

Object program

33 System Programming, Spring 2010

Outline

- 2.3 Machine-Independent Assembler Features

2.3.1 Literals

2.3.3 Expressions 2.3.4 Program Blocks

2.2.2 Program Relocation

2.4 Assembler Design Options 2.4.1 One-Pass Assemblers 2.4.2 Multi-Pass Assemblers

2.2.1 Instruction Formats and Addressing Modes

2.3.5 Control Sections and Program Linking

- 2.2 Machine-Dependent Assembler Features
- 2.1.2 Assembler Algorithm and Data Structures
- 2.1.1 A Simple SIC Assembler

2.3.2 Symbol-Defining Statements

2.1 Basic Assembler Functions

Additional assembler features

	Figu	re 2.5			Fiç	gure 2.9)
Line	So	urce state	ment	Line	So	ource state	ment
5 10 12 13 15 20 25 30 35 40 45 50 55 60 65 70 80 95 100 105	COPY FIRST CLOOP ENDFIL EOF RETADR LENGTH BUFFER	START STL LDB BASE +JSUB LDA COMP JEQ +JSUB J LDA STA LDA STA LDA STA +JSUB J BYTE RESW RESB	0 RETADR #LENGTH LENGTH RDREC LENGTH #0 ENDFIL WRREC CLOOP EOF BUFFER #3 LENGTH WRREC @RETADR C'EOF' 1 1 4096	5 10 13 14 15 20 25 30 35 40 45 55 60 65 70 93 95 100 105 106 107	COPY FIRST CLOOP ENDFIL RETADR LENGTH BUFFER BUFEND MAXLEN	START STL LDB BASE +JSUB LDA COMP JEQ +JSUB J LDA STA LDA STA +JSUB J LTORG RESW RESW RESW RESB EQU EQU	0 RETADR #LENGTH LENGTH RDREC LENGTH #0 ENDFIL WRREC CLOOP =C'EOF' BUFFER #3 LENGTH WRREC @RETADR 1 1 4096 * BUFEND-BUFFER

35

System Programming, Spring 2010

SUBROUTINE TO READ RECORD INTO BUFFER									
125	RDREC	CLEAR	Х	125	RDREC	CLEAR	х		
130		CLEAR	A	130		CLEAR	A		
132		CLEAR	S	132		CLEAR	S		
133		+LDT	#4096	133		+LDT	#MAXLEN		
135	RLOOP	TD	INPUT	135	RLOOP	TD	INPUT		
140		JEQ	RLOOP	140		JEQ	RLOOP		
145		RD	INPUT	145		RD	INPUT		
150		COMPR	A,S	150		COMPR	A,S		
155		JEQ	EXIT	155		JEQ	EXIT		
160		STCH	BUFFER,X	160		STCH	BUFFER,X		
165		TIXR	Т	165		TIXR	т		
170		JLT	RLOOP	170		JLT	RLOOP		
175	EXIT	STX	LENGTH	175	EXIT	STX	LENGTH		
180		RSUB		180		RSUB			
185	INPUT	BYTE	X'F1'	185	INPUT	BYTE	X'F1'		
	SUBRO	UTINE	TO WRITE	RECC	RD FRC)M BUF	FER		
210									
210 212	SUBRO WRREC	UTINE CLEAR LDT	TO WRITE	210	WRREC	CLEAR	X		
		CLEAR	х				X LENGTH		
212	WRREC	CLEAR LDT	X LENGTH	210 212	WRREC	CLEAR LDT TD	X LENGTH =X'05'		
212 215	WRREC	CLEAR LDT TD	X LENGTH OUTPUT	210 212 215	WRREC	CLEAR LDT	X LENGTH		
212 215 220	WRREC	CLEAR LDT TD JEQ	X LENGTH OUTPUT WLOOP	210 212 215 220	WRREC	CLEAR LDT TD JEQ	X LENGTH =X'05' WLOOP		
212 215 220 225	WRREC	CLEAR LDT TD JEQ LDCH	X LENGTH OUTPUT WLOOP BUFFER, X	210 212 215 220 225	WRREC	CLEAR LDT TD JEQ LDCH	X LENGTH =X'05' WLOOP BUFFER,X		
212 215 220 225 230	WRREC	CLEAR LDT TD JEQ LDCH WD	X LENGTH OUTPUT WLOOP BUFFER, X OUTPUT	210 212 215 220 225 230	WRREC	CLEAR LDT TD JEQ LDCH WD	X LENGTH =X'05' WLOOP BUFFER,X =X'05'		
212 215 220 225 230 235	WRREC	CLEAR LDT TD JEQ LDCH WD TIXR	X OUTPUT WLOOP BUFFER, X OUTPUT T	210 212 215 220 225 230 235	WRREC	CLEAR LDT TD JEQ LDCH WD TIXR	X LENGTH =X'05' WLOOP BUFFER,X =X'05' T		
212 215 220 225 230 235 240	WRREC	CLEAR LDT TD JEQ LDCH WD TIXR JLT	X OUTPUT WLOOP BUFFER, X OUTPUT T	210 212 215 220 225 230 235 240	WRREC	CLEAR LDT TD JEQ LDCH WD TIXR JLT	X LENGTH =X'05' WLOOP BUFFER,X =X'05' T		
212 215 220 225 230 235 240 245	WRREC WLOOP	CLEAR LDT TD JEQ LDCH WD TIXR JLT RSUB	X LENGTH OUTPUT WLOOP BUFFER, X OUTPUT T WLOOP	210 212 215 220 225 230 235 240 245	WRREC	CLEAR LDT TD JEQ LDCH WD TIXR JLT RSUB	X LENGTH =X'05' WLOOP BUFFER,X =X'05' T WLOOP		

Department of Electrical Engineering, Feng-Chia University

Outline

- 2.1 Basic Assembler Functions
 - 2.1.1 A Simple SIC Assembler
 - 2.1.2 Assembler Algorithm and Data Structures
- 2.2 Machine-Dependent Assembler Features
 - 2.2.1 Instruction Formats and Addressing Modes
 - 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

2.3.1 Literals

- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

37 System Programming, Spring 2010

Literals (1/3)

- It is often convenient for the programmer to be able to write the value of a constant operand as a part of the instruction that uses it.
- This avoids having to define the constant elsewhere in the program and make up a label for it.
- Such an operand is called a literal because the value is stated "literally" in the instruction.
- In SIC/XE assembler language notation, a literal is identified with the prefix =, which is followed by a specification of the literal value, using the same notation as in the BYTE statement.

Department of Electrical Engineering, Feng-Chia University

Literals (2/3)

- The difference between a literal and an immediate operand.
 - (#) Immediate addressing: the operand value is assembled as part of the machine instruction.
 - (=) Literal addressing: the assembler generates the specified value as a constant at some other memory location.

40	0017		J	CLOOP	3F2FEC
45	001A	ENDFIL	LDA	=C'EOF'	032010
50	001D		STA	BUFFER	0F2016
55	0020		LDA	#3	010003
60	0023		STA	LENGTH	0F200D
65	0026		+JSUB	WRREC	4B10105D
70	002A		J	@RETADR	3E2003
93			LTORG		
	002D	*	=C'EOF'		454F46
95	0030	RETADR	RESW	1	

39 System Programming, Spring 2010

Department of Electrical Engineering, Feng-Chia University

Literals (3/3)

- All of the literal operands used in a program are gathered together into one or more literal pools. Normally literals are placed into a pool at the end of the program.
- When the assembler encounters a LTORG statement, it creates a literal operands used since the previous LTORG (or the beginning of the program).
- Most assemblers recognize duplicate literals and store only one copy of the specified data value.
 - > By comparison of the character strings defining them.
 - EX: the literal =X'05' (Figure 2.9, Line 215 and 230)
 - ➢ EX: =C'EOF' and =X'454F45' ?

The implementation of literals

The basic data structure needed is a literal table (LITTAB).
Literal name, value, length, and address

Pass1:

- > Search and update LITTAB for the specified literal name
- When encounters a LTORG statement or the end of the program, the assembler makes a scan of the LITTAB and assigns an address for all unallocated literals
- Update the location counter to reflect the number of bytes occupied by each literal

Pass2:

- > Search LITTAB for the address of each literal encountered
- Literal values placed at correct locations in the object program
- If a literal value represents an address in the program, the assembler must also generate the appropriate Modification record.

41

System Programming, Spring 2010

Outline

- 2.1 Basic Assembler Functions
 - 2.1.1 A Simple SIC Assembler
 - 2.1.2 Assembler Algorithm and Data Structures
- 2.2 Machine-Dependent Assembler Features
 - 2.2.1 Instruction Formats and Addressing Modes
 - 2.2.2 Program Relocation
- 2.3 Machine-Independent Assembler Features
 - 2.3.1 Literals

2.3.2 Symbol-Defining Statements

- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking


2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

EQU assembler directive

EQU (for "equate") assembler directive allows the programmer to define symbols and specify their values.

- > Improve readability in place of numeric values
- > EX: "MAXLEN" and " * " (Figure 2.9, Line 106 and 107)

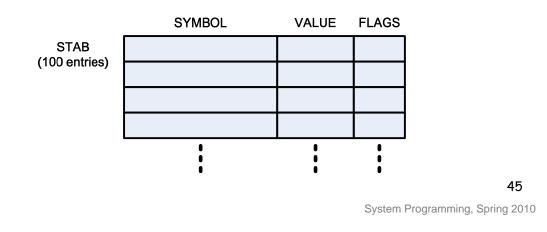
System Programming, Spring 2010

EQU assembler directive

- The resulting object code is exactly the same as in the original version of the instruction; however, the source statement is easier to understand.
- Another common use of EQU is in defining mnemonic names for registers.

A	EQU	0	
X	EQU	1	
L	EQU	2	
INDEX	EQU	X	
BASE	EQU	B	
FLOAT	EQU	F	

Department of Electrical Engineering, Feng-Chia University


ORG assembler directive

ORG (for "origin") assembler directive

When ORG is encountered during assembly of a program, the assembler resets its location counter (LOCCTR) to the specified value.

Example:

> SYMBOL is 6-byte, VALUE is 1-word, and FLAGS is 2-byte

Use EQU assembler directives

					(6-byte)	(1-word)	(2-byte)
	STAB	RESB	1100		SYMBOL	VALUE	FLAGS
	SYMBOL	EQU	STAB	STAB			
	VALUE	EQU	STAB+6	(100 entries)			
	FLAGS	EQU	STAB <mark>+9</mark>				
1]		!	:
	LDA	VALUE,	X		•	:	i

Use ORG assembler directives

STAB	RESB ORG	1100 STAB		(6-byte) SYMBOL	(1-word) VALUE	<mark>(2-byte</mark>) FLAGS
SYMBOL VALUE FLAGS	RESB RESW RESB	6 1 2	STAB (100 entries)			
	ORG	STAB+1100			:	
LDA	VALUE,	Х		i	i	i

Department of Electrical Engineering, Feng-Chia University

Restrictions

EQU:

all symbols used on the right-hand side of the statement must have been defined previously in the program.

ORG:

all symbols used to specify the new location counter value must have been previously defined.

×	BYTE1 BYTE2 BYTE3	ORG RESB RESB RESB	ALPHA 1 1
	BTTE	ORG	•
	ALPHA	RESW	1

47

System Programming, Spring 2010

Outline

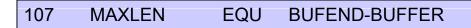
- 2.1 Basic Assembler Functions
 - 2.1.1 A Simple SIC Assembler
 - 2.1.2 Assembler Algorithm and Data Structures
- 2.2 Machine-Dependent Assembler Features
 - 2.2.1 Instruction Formats and Addressing Modes
 - 2.2.2 Program Relocation
- 2.3 Machine-Independent Assembler Features
 - 2.3.1 Literals
 - 2.3.2 Symbol-Defining Statements
 - 2.3.3 Expressions
 - 2.3.4 Program Blocks
 - 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

Expressions

- Assemblers generally allow arithmetic expressions formed according to the normal rules using the operators +, -, *, /.
- Division is usually defined to produce an integer result.
- Individual terms in the expression may be constants, userdefined symbols, or special terms.
- * * * * : This special term represents the value of the next unassigned memory location.


106 BUFEND EQU *

- Expression Terms
 - > Relative terms: defined relative to the beginning of the program
 - > Absolute terms: independent of program location

49 System Programming, Spring 2010

Absolute and Relative Expressions

- Absolute Expressions
 - Contains only absolute terms
 - Contains relative terms provided the relative terms occur in pairs with opposite signs; the dependency on the program starting address is canceled out; the result is an absolute value

- Relative Expressions
 - Contains an odd number of relative terms, with one more positive terms than negative terms
 - No relative term may enter into a multiplication or division operation

Defining Symbol Types in the Symbol Table

- To determine the type of an expression, we must keep track of the types of all symbols defined in the program.
- For this purpose we need a flag in the symbol table to indicate type of value (absolute or relative) in addition to the value itself.

Symbol	Туре	Value
RETADR	R	0030
BUFFER	R	0036
BUFEND	R	1036
MAXLEN	А	1000

With this information the assembler can easily determine the type of each expression used as an operand and generate Modification records in the object program for relative values.

51

System Programming, Spring 2010

Outline

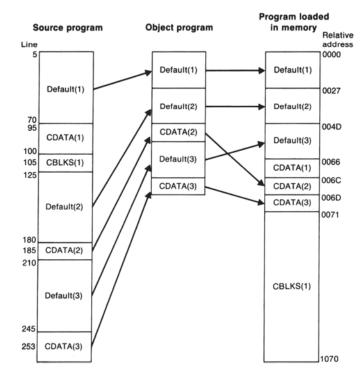
- 2.1 Basic Assembler Functions
 - 2.1.1 A Simple SIC Assembler
 - 2.1.2 Assembler Algorithm and Data Structures
- 2.2 Machine-Dependent Assembler Features
 - 2.2.1 Instruction Formats and Addressing Modes
 - 2.2.2 Program Relocation
- 2.3 Machine-Independent Assembler Features
 - 2.3.1 Literals
 - 2.3.2 Symbol-Defining Statements
 - 2.3.3 Expressions
 - 2.3.4 Program Blocks
 - 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

Program Blocks vs. Control Sections

Program Blocks


Refer to segments of code that are rearranged within a single object program unit

Control Sections

Refer to segments that are translated into independent object program units

> 53 System Programming, Spring 2010

Program Blocks

Program Blocks (1/2)

- The source programs logically contained subroutines, data areas, etc. However, they were handled by the assembler as one entity, resulting in a single block of object code.
- Many assemblers provide features that allow more flexible handling of the source and object programs.
 - Some features allow the generated machine instructions and data to appear in the object program in a different order from the corresponding source statements.
 - Other features result in the creation of several independent parts of the object program.
 - These parts maintain their identity and are handled separately by the loader.

55 System Programming, Spring 2010

Program Blocks (2/2)

- The assembler directive USE indicates which portions of the source program belong to the various blocks.
- Each program block may actually contain several separate segments of the source program. The assembler will (logically) rearrange these segments to gather together the pieces of each block.

Department of Electrical Engineering, Feng-Chia University

Program from Fig. 2.11 with object code [Figure 2.12]

Line	Loc/Block	So	urce statem	ent	Object code
5	0000 0	COPY	START	0	
10	0000 0	FIRST	STL	RETADR	172063
15	0003 0	CLOOP	JSUB	RDREC	4B2021
20	0006 0		LDA	LENGTH	032060
25	0009 0		COMP	#0	290000
30	000C 0		JEQ	ENDFIL	332006
35	000F 0		JSUB	WRREC	4B203B
40	0012 0		J	CLOOP	3F2FEE
45	0015 0	ENDFIL	LDA	=C'EOF'	032055
50	0018 0		STA	BUFFER	0F2056
55	001B 0		LDA	#3	010003
60	001E 0		STA	LENGTH	0F2048
65	0021 0		JSUB	WRREC	4B2029
70	0024 0		J	@RETADR	3E203F
92	0000 1		USE	CDATA	
95	0000 1	RETADR	RESW	1	
100	0003 1	LENGTH	RESW	1	
103	0000 2		USE	CBLKS	
105	0000 2	BUFFER	RESB	4096	
106	1000 2	BUFEND	EOU	*	
107	1000	MAXLEN	EQU	BUFEND-BUFFER	

57

System Programming, Spring 2010

SUI	BROU	TIN	E TO RE	AD REC	ORD INTO	BUFFER
123	0027	0		USE		
125	0027	0	RDREC	CLEAR	Х	B410
130	0029	0		CLEAR	A	B400
132	002B	0		CLEAR	S	B440
133	002D	0		+LDT	#MAXLEN	75101000
135	0031	0	RLOOP	TD	INPUT	E32038
140	0034	0		JEQ	RLOOP	332FFA
145	0037	0		RD	INPUT	DB2032
150	003A	0		COMPR	A,S	A004
155	003C	0		JEQ	EXIT	332008
160	003F	0		STCH	BUFFER,X	57A02F
165	0042	0		TIXR	т	B850
170	0044	0		JLT	RLOOP	3B2FEA
175	0047	0	EXIT	STX	LENGTH	13201F
180	004A	0		RSUB		4F0000
183	0006	1		USE	CDATA	
185	0006	1	INPUT	BYTE	X'F1'	F1
105	0006	T	INFOI	DITE	A FI	F 1
		-				
		-				
SUB	ROUT	INE		ITE REC		
SUB 208		INE 0	TO WR	ITE REC		A BUFFER
SUB 208 210		0 0	TO WR	ITE REC	ORD FROM	A BUFFER B410
208 210 212	ROUT 004D 004D 004F	0 0	TO WR	ITE REC USE CLEAR LDT	ORD FROM	A BUFFER B410 772017
208 210 212 215	ROUT 004D 004D 004F 0052	0 0 0 0	TO WR	USE CLEAR LDT TD	X LENGTH =X'05'	A BUFFER B410 772017 E3201B
208 210 212 215 220	ROUT 004D 004D 004F 0052 0055	0 0 0 0 0	TO WR	USE CLEAR LDT TD JEQ	X LENGTH =X'05' WLOOP	A BUFFER B410 772017 E3201B 332FFA
208 210 212 215 220 225	ROUT 004D 004D 004F 0052 0055 0058	0 0 0 0 0 0	TO WR	ITE REC USE CLEAR LDT TD JEQ LDCH	X LENGTH =X'05' WLOOP BUFFER, X	B410 772017 E3201B 332FFA 53A016
208 210 212 215 220 225 230	ROUT 004D 004F 0052 0055 0058 005B	0 0 0 0 0 0 0 0	TO WR	ITE REC USE CLEAR LDT TD JEQ LDCH WD	X LENGTH =X'05' WLOOP BUFFER,X =X'05'	A BUFFER B410 772017 E3201B 332FFA 53A016 DF2012
208 210 212 215 220 225 230 235	ROUT 004D 004F 0052 0055 0058 005B 005E	0 0 0 0 0 0 0 0 0 0 0	TO WR	ITE REC USE CLEAR LDT TD JEQ LDCH WD TIXR	X LENGTH =X'05' WLOOP BUFFER,X =X'05' T	A BUFFER B410 772017 E3201B 332FFA 53A016 DF2012 B850
SUB 208 210 212 215 220 225 230 235 240	ROUT 004D 004F 0052 0055 0058 005B 005E 0060	0 0 0 0 0 0 0 0 0 0 0 0	TO WR	ITE REC USE CLEAR LDT TD JEQ LDCH WD TIXR JLT	X LENGTH =X'05' WLOOP BUFFER,X =X'05' T	A BUFFER B410 772017 E3201B 332FFA 53A016 DF2012 B850 3B2FEF
208 210 212 215 220 225 230 235 240 245	ROUT 004D 004F 0052 0055 0058 005B 005E 0060 0063	0 0 0 0 0 0 0 0 0 0 0 0 0 0	TO WR	ITE REC USE CLEAR LDT TD JEQ LDCH WD TIXR JLT RSUB	X LENGTH =X'05' WLOOP BUFFER,X =X'05' T WLOOP	A BUFFER B410 772017 E3201B 332FFA 53A016 DF2012 B850 3B2FEF
SUB 208 210 212 215 220 225 230 235 240 245 252	ROUT 004D 004F 0052 0055 0058 005B 005E 0060 0063	0 0 0 0 0 0 0 0 0 0 0 0 0 0	TO WR	ITE REC USE CLEAR LDT TD JEQ LDCH WD TIXR JLT RSUB USE	X LENGTH =X'05' WLOOP BUFFER,X =X'05' T WLOOP	A BUFFER B410 772017 E3201B 332FFA 53A016 DF2012 B850 3B2FEF
208 210 212 215 220 225 230 235 240 245 252	ROUT 004D 004F 0052 0055 0058 005B 005E 0060 0063 0007	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TO WR	ITE REC USE CLEAR LDT TD JEQ LDCH WD TIXR JLT RSUB USE LTORG	X LENGTH =X'05' WLOOP BUFFER,X =X'05' T WLOOP	A BUFFER B410 772017 E3201B 332FFA 53A016 DF2012 B850 3B2FEF 4F0000

System Programming, Spring 2010

The implementation of Program Blocks (1/2)

Pass 1

- > A separate location counter for each program block.
- The current value of this location counter is saved when switching to another block, and the saved value is restored when resuming a previous block.
- Each label in the program is assigned an address that is relative to the start of the block that contains it.
- The latest value of the location counter for each block indicates the length of that block.
- At the end of Pass 1 the assembler constructs a table that contains the starting addresses and lengths for all blocks.

(see next page)

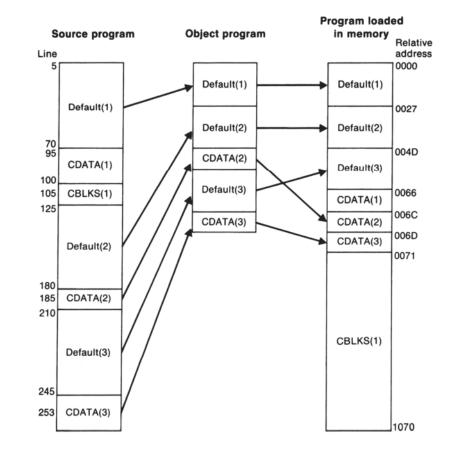
The implementation of Program Blocks (2/2)

Block name	Block number	Address	Length
(default)	0	0000	0066
CDATA	1	0066	000B
CBLKS	2	0071	1000

Pass 2

- The address for each symbol relative to the start of the object program is easily found from the information in SYMTAB.
- The assembler simply adds the location of the symbol, relative to the start of its block, to the assigned block starting address.

⁵⁹ System Programming, Spring 2010


E000000

Object Program (Corresponding to Figure 2.11) [Figure 2.13]

нсору 00000001071	
T0000001E1720634B20210320602900003320064B203B3F2FEE0320550F20	56010003
T00001E090F20484B20293E203F	Default(1)
T0000271DB410B400B44075101000E32038332FFADB2032A00433200857A	02F ₀ 8850
T000044093B2FEA13201F4F0000	Default(2)
T00006C01F1	CDATA(2)
T_00004D19_B410 772017_E3201B_332FFA_53A016_DF2012_B850_3B2FEF_4F0000	Default(3)
T_00006D_04_454F46_05	CDATA(3)

61

System Programming, Spring 2010

Department of Electrical Engineering, Feng-Chia University

Outline

2.1 Basic Assembler Functions

- 2.1.1 A Simple SIC Assembler
- 2.1.2 Assembler Algorithm and Data Structures

2.2 Machine-Dependent Assembler Features

- 2.2.1 Instruction Formats and Addressing Modes
- 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

63 System Programming, Spring 2010

Assembler Directives

<symbol> CSECT

The CSECT assembler directive signals the start of a new control section named <symbol>

• EXTDEF < symbol₁, symbol₂, ... symbol_n >

- The EXTDEF (external definition) statement in a control section names symbols, called external symbols, that are defined in this control section and may be used by other sections.
- Control section names do not need to be named in an EXTDEF statement because they are automatically considered to be external symbols.

EXTREF < symbol₁, symbol₂, ... symbol_n >

The EXTREF (external reference) statement names symbols that are used in this control section and are defined elsewhere.

Control Section : COPY [Figure 2.16]

Line	Loc	Source statement			Object code
5	0000	COPY	START	0	
6			EXTDEF	BUFFER, BUFEND, LE	NGTH
7			EXTREF	RDREC, WRREC	
10	0000	FIRST	STL	RETADR	172027
15	0003	CLOOP	+JSUB	RDREC	4B100000
20	0007		LDA	LENGTH	032023
25	A000		COMP	#O	290000
30	000D		JEQ	ENDFIL	332007
35	0010		+JSUB	WRREC	4B100000
40	0014		J	CLOOP	3F2FEC
45	0017	ENDFIL	LDA	=C'EOF'	032016
50	001A		STA	BUFFER	0F2016
55	001D		LDA	#3	010003
60	0020		STA	LENGTH	0F200A
65	0023		+JSUB	WRREC	4B100000
70	0027		J	ØRETADR	3E2000
95	002A	RETADR	RESW	1	
100	002D	LENGTH	RESW	1	
103			LTORG		
	0030	*	=C'EOF'		454F46
105	0033	BUFFER	RESB	4096	
106	1033	BUFEND	EQU	*	
107	1000	MAXLEN	EQU	BUFEND-BUFFER	

System Programming, Spring 2010

Control Section : RDREC [Figure 2.16]

109	0000	RDREC	CSECT		
110					
115			SUBROUT	INE TO READ RECORI	O INTO BUFFER
120					
122			EXTREF	BUFFER, LENGTH, BU	JFEND
125	0000		CLEAR	Х	B410
130	0002		CLEAR	A	B400
132	0004		CLEAR	S	B440
133	0006		LDT	MAXLEN	77201F
135	0009	RLOOP	TD	INPUT	E3201B
140	000C		JEQ	RLOOP	332FFA
145	000F		\overline{RD}	INPUT	DB2015
150	0012		COMPR	A,S	A004
155	0014		JEQ	EXIT	332009
160	0017		+STCH	BUFFER,X	57900000
165	001B		TIXR	т	B850
170	001D		JLT	RLOOP	3B2FE9
175	0020	EXIT	+STX	LENGTH	13100000
180	0024		RSUB		4F0000
185	0027	INPUT	BYTE	X'F1'	F1
190	0028	MAXLEN	WORD	BUFEND-BUFFER	000000

Department of Electrical Engineering, Feng-Chia University

Control Section : WRREC [Figure 2.16]

193 195	0000	WRREC	CSECT			
200			SUBROUI	INE TO WRITE	RECORD	FROM BUFFEF
205						
207			EXTREF	LENGTH, BUF	FER	
210	0000		CLEAR	Х		В410
212	0002		+LDT	LENGTH		77100000
215	0006	WLOOP	TD	=X'05'		E32012
220	0009		JEQ	WLOOP		332FFA
225	000C		+LDCH	BUFFER,X		53900000
230	0010		WD	=X'05'		DF2008
235	0013		TIXR	т		B850
240	0015		JLT	WLOOP		3B2FEE
245	0018		RSUB			4F0000
255			END	FIRST		
	001B	*	=X′05′			05

System Programming, Spring 2010

Object Program Format

	Column	Contents					
	1	D					
Define	2-7	Name of external symbol defined in this control section					
Record	8-13	Relative address of symbol within this control section (HEX)					
	14-73	Repeat information in Col. 2-13 for other external symbols					
Refer	1	R					
	2-7	lame of external symbol referred to in this control section					
Record	8-73	Names of other external reference symbols					
	1	Μ					
Mad	2-7	Starting address of the field to be modified, relative to the beginning of the program (HEX)					
Mod. Record	8-9	Length of the field to be modified, in half-bytes (HEX)					
Record	10	Modification flag (+ or -)					
	11-16	External symbol whose value is to be added to or subtracted from the indicated field					

HCOPY 000000001033 DBUFFER000033BUFEND001033LENGTH00002D RRDREC WRREC
RDREC WRREC
X X X X X X X X X X X X X X X X X X X
<u>гоооооодиди 72027,48100000,032023,290000,332007,48100000,3F2FEc,032016,0F2016</u>
r,00001
r,00003,003,454F46
400000405,+RDREC
400001105+wrrec
M00002405,+WRREC
E000000
HRDREC 0000000002B RBUFFERLENGTHBUFEND F0000001D8410B400B44077201FE3201B332FFADB2015A00433200957900000B850 F00001D0E3B2FE9131000004F00000F1000000 400001805+BUFFER 400002105+LENGTH 400002806+BUFFER 400002806-BUFFER E
WRREC 0000000001C
RLENGTHBUFFER
0000001CB41077100000E32012332FFA53900000DF2008B8503B2FEE4F000005
400000305+LENGTH
100000D05+BUFFER

69

System Programming, Spring 2010

Outline

2.1 Basic Assembler Functions

- 2.1.1 A Simple SIC Assembler
- 2.1.2 Assembler Algorithm and Data Structures

2.2 Machine-Dependent Assembler Features

- 2.2.1 Instruction Formats and Addressing Modes
- 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

Department of Electrical Engineering, Feng-Chia University

Outline

2.1 Basic Assembler Functions

- 2.1.1 A Simple SIC Assembler
- 2.1.2 Assembler Algorithm and Data Structures

2.2 Machine-Dependent Assembler Features

- 2.2.1 Instruction Formats and Addressing Modes
- 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

71 System Programming, Spring 2010

One-Pass Assemblers

- The main problem in trying to assemble a program in one pass involves forward references.
- Eliminate forward references
 - > Data items are defined before they are referenced.
 - But, forward references to labels on instructions cannot be eliminated as easily.
 - Prohibit forward references to data items.
- There are two main types of one-pass assembler.
 - Load-and-Go : Produces object code directly in memory for immediate execution
 - Object Program Output : Produces the usual kind of object program for late execution.

Produce n.

Sample program for a one-pass assembler [Figure 2.18]

Line	Loc	Source statement			Object code
0	1000	COPY	START	1000	
1	1000	EOF	BYTE	C'EOF'	454F46
2	1003	THREE	WORD	3	000003
3	1006	ZERO	WORD	0	000000
4	1009	RETADR	RESW	1	
5	100C	LENGTH	RESW	1	
6	100F	BUFFER	RESB	4096	
9					
10	200F	FIRST	STL	RETADR	141009
15	2012	CLOOP	JSUB	RDREC	48203D
20	2015		LDA	LENGTH	00100C
25	2018		COMP	ZERO	281006
30	201B		JEQ	ENDFIL	302024
35	201E		JSUB	WRREC	482062
40	2021		J	CLOOP	302012
45	2024	ENDFIL	LDA	EOF	001000
50	2027		STA	BUFFER	0C100F
55	202A		LDA	THREE	001003
60	202D		STA	LENGTH	0C100C
65	2030		JSUB	WRREC	482062
70 75	2033 2036		LDL RSUB	RETADR	081009 4C0000
15	2030		RSUD		40000

System Programming, Spring 2010

73

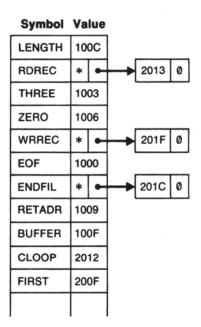
		INE TO F		ECORD INT	
121 122 124	2039 203A	INPUT MAXLEN	BYTE WORD	X'F1' 4096	F1 001000
125 130 135 140 145 150 155 160 165 170 175 180	203D 2040 2043 2046 2049 204C 204F 2052 2055 2055 2058 205B 205E	RDREC RLOOP EXIT	LDX LDA TD JEQ RD COMP JEQ STCH TIX JLT STX RSUB	ZERO ZERO INPUT RLOOP INPUT ZERO EXIT BUFFER,X MAXLEN RLOOP LENGTH	041006 001006 E02039 302043 D82039 281006 30205B 54900F 2C203A 382043 10100C 4C0000
SUE	BROUTI	NE TO W	RITE R	ECORD FR	OM BUFFER
206 207	2061	OUTPUT	BYTE	X′05′	05
210 215 220 225 230 235 240 245 255	2062 2065 2068 206B 206E 2071 2074 2077	WRREC WLOOP	LDX TD JEQ LDCH WD TIX JLT RSUB END	ZERO OUTPUT WLOOP BUFFER,X OUTPUT LENGTH WLOOP FIRST	041006 E02061 302065 50900F DC2061 2C100C 382065 4C0000

Department of Electrical Engineering, Feng-Chia University

Load-and-Go Assemblers (1/2)

- This kind of load-and-go assembler is useful in a system that is oriented toward program development and testing.
- If an instruction operand is a symbol that has not yet been defined, the operand address is omitted when the instruction is assembled.
 - > The symbol used as an operand is entered into the symbol table.
 - > This entry is flagged to indicate that the symbol is undefined.
 - The address of the operand field of the instruction that refers to the undefined symbol is added to a list of forward references associated with the symbol table entry.

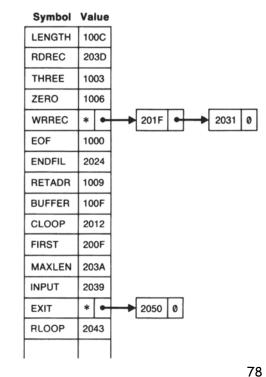
(Cont.)


75 System Programming, Spring 2010

Load-and-Go Assemblers (2/2)

- When the definition for a symbol is encountered, the forward reference list for that symbol is scanned, and the proper address is inserted into any instructions previously generated.
- At the end of the program, all symbols must be defined without any * in SYMTAB.
- For a load-and-go assembler, the actual address must be known at assembly time.

Object code in memory and symbol table entries for program in Fig. 2.18 after scanning line 40


Memory address	Contents				
1000 1010 •	454F4600 xxxxxxxx	00030000 xxxxxxx	00xxxxxx xxxxxxxx	xxxxxxx xxxxxxx	
• 2000 2010 2020 •	xxxxxxxx 100948 3C2012	xxxxxxxx 00100C	xxxxxxx 28100630	xxxxxx14 48	
•					

77 System Programming, Spring 2010

Object code in memory and symbol table entries for program in Fig. 2.18 after scanning line 160

Memory address	Contents				
1000	454F4600	00030000	00xxxxxx	*****	
1010	*****	*****	*****	*****	
•					
2000	*****	*****	*****	xxxxxx14	
2010	10094820	3D00100C	28100630	202448	
2020	3C2012	0010000C	100F0010	030C100C	
2030	4808	10094C00	00F10010	00041006	
2040	001006E0	20393020	43D82039	28100630	
2050	5490	OF			
•					
•					
•					

Object Program Output Assemblers

- One-pass assemblers that produce object programs as output are often used on systems where external workingstorage devices are not available.
- The assembler generate another Text record with the correct operand address.
- When the program is loaded, this address will be inserted into the instruction by the action of the loader.
- The object program records must be kept in their original order when they are presented to the loader.

Object program from one-pass assembler for program in Fig. 2.18

H_COPY 00100000107A T_00100009454F4600000300000 T_00200F1514100948000000100C2810063000004800003c2012 T_00201C022024 T_002024190010000c100F0010030c100C4800000810094c0000F1001000 T_00201302203D T_00203D1E041006001006E02039302043D820392810063000054900F2c203A382043 T_00205002205B T_00205002205B T_00205B0710100C4c000005 T_00201F022062 T_00201F022062 T_00206218041006E0206130206550900FDc20612c100C3820654c0000 E_00200F

⁷⁹ System Programming, Spring 2010

Outline

- 2.1 Basic Assembler Functions
 - 2.1.1 A Simple SIC Assembler
 - 2.1.2 Assembler Algorithm and Data Structures
- 2.2 Machine-Dependent Assembler Features
 - 2.2.1 Instruction Formats and Addressing Modes
 - 2.2.2 Program Relocation

2.3 Machine-Independent Assembler Features

- 2.3.1 Literals
- 2.3.2 Symbol-Defining Statements
- 2.3.3 Expressions
- 2.3.4 Program Blocks
- 2.3.5 Control Sections and Program Linking

2.4 Assembler Design Options

- 2.4.1 One-Pass Assemblers
- 2.4.2 Multi-Pass Assemblers

81 System Programming, Spring 2010

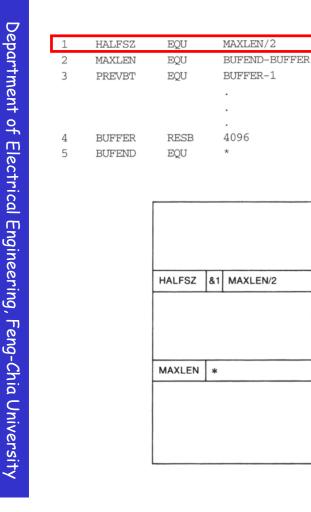
Multi-Pass Assemblers

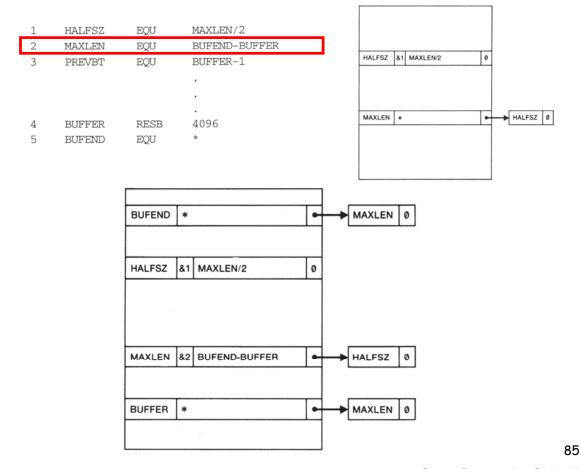
In our discussion of the EQU assembler directive, we required that any symbol used on the RHS be defined previously in the source program.

Consider, for example, the sequence

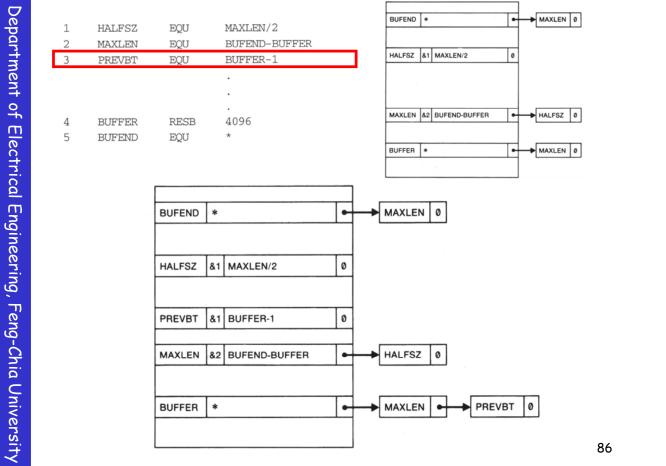
ALPHA	EQU	BETA	
BETA	EQU	DELTA	
DELTA	RESW	1	

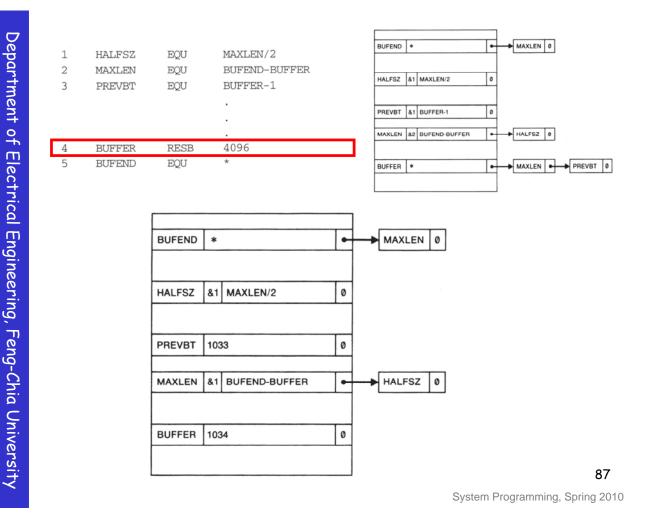
Two-pass assemblers x

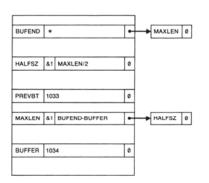

Multi-Pass Assemblers


- The general solution is a multi-pass assembler that can make as many passes as are needed to process the definitions of symbols.
- It is not necessary for such an assembler to make more than two passes over the entire program.
- The method we describe involves storing those symbol definitions that involve forward references in the symbol table.
 - > This table also indicates which symbols are dependent on the values of others, to facilitate symbol evaluation.

Ø


HALFSZ


Ø


System Programming, Spring 2010

1	HALFSZ	EQU	MAXLEN/2
2	MAXLEN	EQU	BUFEND-BUFFER
3	PREVBT	EQU	BUFFER-1
			•
4	BUFFER	RESB	4096
5	BUFEND	EQU	*

BUFEND 2034	Ø
HALFSZ 800	0
PREVBT 1033	Ø
MAXLEN 1000	Ø
BUFFER 1034	Ø

