
D
eparrtm

ent oof Electr Chapter 2: Assemblersrical Eng

Chapter 2: Assemblers

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

System Programming, Spring 2010

D
epar Assemblersrtm

ent o

Assemblers
of Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 2

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 3

2.4.2 Multi-Pass Assemblers

D
epar Assembler Directives rtm

ent o

Assembler Directives

Assembler directives (or pseudo instructions) areof Electr

Assembler directives (or pseudo-instructions) are
not translated into machine instructions. Instead,
they provide instructions to the assembler itself.rical Eng

y p

START Specify name and starting address for the program.ineering,

END Indicate the end of the source program and (optionally)
specify the first executable instruction in the program.

BYTE Generate character or hexadecimal constant occupying, Feng-Ch

BYTE Generate character or hexadecimal constant, occupying
as many bytes as needed to represent the constant.

WORD Generate one-word integer constant.hia U
nive

RESB Reserve the indicated number of bytes for a data area.
RESW Reserve the indicated number of words for a data area.

System Programming, Spring 2010

ersity 4

D
epar A SIC Assembly Program Examplertm

ent o

y g p
[Figure 2.1]

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 5

D
epar

SUBROUTINE TO READ RECORD INTO BUFFER

rtm
ent oof Electrrical Engineering, SUBROUTINE TO WRITE RECORD FROM BUFFER, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 6

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 7

2.4.2 Multi-Pass Assemblers

D
epar A Simple SIC Assemblerrtm

ent o

A Simple SIC Assembler

1 Convert mnemonic operation codes to their machineof Electr

1. Convert mnemonic operation codes to their machine
language equivalents. (e.g., translate STL to 14)

2. Convert symbolic operands to their equivalent machine rical Eng

addresses. (e.g., translate RETADR to 1033)
3. Build the machine instructions in the proper format.

ineering,

4. Convert the data constants specified in the source program
into their internal machine representations. (e.g., translate
EOF to 454F46), Feng-Ch

EOF to 454F46)
5. Write the object program and the assembly listing.

hia U
nive

All of these functions except number 2 can easily be accomplished by
sequential processing of the source program, one line at a time.

System Programming, Spring 2010

ersity 8

D
epar Program from Figure 2.1 with Object Code rtm

ent o

g g j
[Figure 2.2]

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 9

D
epar

SUBROUTINE TO READ RECORD INTO BUFFER

rtm
ent oof Electrrical Engineering, SUBROUTINE TO WRITE RECORD FROM BUFFER, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 10

D
epar Object Program Formatrtm

ent o

Object Program Format

Column Contentsof Electr

Column Contents

Header
1 H

2-7 Program namerical Eng

Record 8-13 Starting address of object program (HEX)
14-19 Length of object program in bytes (HEX)

1 Tineering,

Text
Record

1 T
2-7 Starting address for object code in this record (HEX)
8-9 Length of object code in this record in bytes (HEX), Feng-Ch

10-69 Object code (HEX, 2 columns per byte of object code)

End
1 E

f f

hia U
nive

Record 2-7 Address of first executable instruction in object program
(HEX)

System Programming, Spring 2010

ersity 11

D
epar Object Program rtm

ent o

j
(Corresponding to Figure 2.2)

[Figure 2.3]of Electrrical Engineering,, Feng-Chhia U
nive

Note that there is no object code corresponding to addressed 1033-2038.
This storage is simply reserved by the loader for use by the program

during execution

System Programming, Spring 2010

ersity 12

during execution.

D
epar Two-pass SIC Assembler rtm

ent o

Two pass SIC Assembler

Pass 1 (define symbols):of Electr

Pass 1 (define symbols):
1. Assign addresses to all statements in the program.
2. Save the values (addresses) assigned to all labels for use in Pass 2.
3 Perform some processing of assembler directives (This includes

rical Eng

3. Perform some processing of assembler directives. (This includes
processing that affects address assignment, such as determining the
length of data areas defined by BYTE, RESW, etc.)

4. Write intermediate file.ineering,

4. Write intermediate file.

Pass 2 (assemble instructions and generate object program):
1 Assemble instructions (translating operation codes and looking up, Feng-Ch

1. Assemble instructions (translating operation codes and looking up
addresses).

2. Generate data values defined by BYTE, WORD, etc.
3 Perform processing of assembler directives not done during Pass1hia U

nive

3. Perform processing of assembler directives not done during Pass1.
4. Write the object program and the assembly listing.

System Programming, Spring 2010

ersity 13

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 14

2.4.2 Multi-Pass Assemblers

D
epar Data Structuresrtm

ent o

Data Structures

Operation Code Table (OPTAB) is used to look upof Electr

Operation Code Table (OPTAB) is used to look up
mnemonic operation codes and translate them to their
machine language equivalents.rical Eng Symbol Table (SYMTAB) is used to store values (addresses)
assigned to labelsineering,

assigned to labels.

Location Counter (LOCCTR) is a variable that is used to help , Feng-Ch

() p
in the assignment of addresses.

hia U
nive

System Programming, Spring 2010

ersity 15

D
epar

Pass 1

rtm
ent oof Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 16

D
epar

Pass 2

rtm
ent oof Electrrical Eng Complete!ineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 17

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 18

2.4.2 Multi-Pass Assemblers

D
epar A SIC/XE Assembly Program Examplertm

ent o

SIC (Figure 2.1) SIC/XE (Figure 2.5)

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 19

D
epar SUBROUTINE TO READ RECORD INTO BUFFERrtm

ent oof Electrrical Engineering, SUBROUTINE TO WRITE RECORD FROM BUFFER, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 20

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 21

2.4.2 Multi-Pass Assemblers

D
epar Program from Figure 2.5 with Object Codertm

ent o

Program from Figure 2.5 with Object Code
of Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 22

D
epar SUBROUTINE TO READ RECORD INTO BUFFERrtm

ent oof Electrrical Engineering, SUBROUTINE TO WRITE RECORD FROM BUFFER, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 23

D
epar Addressingrtm

ent o

Addressing

Program Counter relative addressing (Format 3)of Electr

Program-Counter relative addressing (Format 3)
 -2048 ≤ Displacement ≤ +2047

rical Eng

Base relative addressing (Format 3)
 0 ≤ Displacement ≤ 4095ineering, Extended instruction format (Format 4), Feng-Ch

 20-bit address field, which is large enough to contain the
full memory address.

 Using the prefix +hia U
nive

 Using the prefix +

System Programming, Spring 2010

ersity 24

D
epar Example 1: PC Relative Addressing rtm

ent o

Example 1: PC Relative Addressing

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 25

D
epar Example 2: PC Relative Addressing rtm

ent o

Example 2: PC Relative Addressing
of Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 26

D
epar Base Relative Addressingrtm

ent o

Base Relative Addressing
Difference between PC-relative and Base-relative of Electr

addressing
 The assembler knows what the contents of the Program Counter

will be at execution time. Base register ?rical Eng

will be at execution time. Base register ?
 The base register is under control of the programmer. Therefore,

the programmer must tell the assembler what the base register
will contain during execution of the programineering,

will contain during execution of the program

Assembler Directives, Feng-Ch

BASE Informs the assembler that the base register will contain
the address of #[Operand]

NOBASE I f th bl th t th t t f th bhia U
nive

NOBASE Informs the assembler that the contents of the base
register can no longer be relied upon for addressing

System Programming, Spring 2010

ersity 27

D
epar Example : Base Relative Addressingrtm

ent o

Example : Base Relative Addressing
of Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 28

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 29

2.4.2 Multi-Pass Assemblers

D
epar Program Relocationrtm

ent o

Program Relocation

Multiprogrammingof Electr

Multiprogramming
 Running multiple programs (processes) that share

system resources (e.g. memory, CPU)rical Eng Absolute Programs ineering,

 Must be loaded at exact address in order to execute
properly

, Feng-Ch

Relocatable Programs
 Can be loaded into memory wherever these is room,hia U

nive

 Can be loaded into memory wherever these is room,
rather than specifying a fixed address at assembly time

System Programming, Spring 2010

ersity 30

D
epar Examples of Program Relocationrtm

ent o

Examples of Program Relocation

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 31

D
epar Object Program Formatrtm

ent o

Object Program Format
Column Contents

1 H

of Electr

Header
Record

1 H
2-7 Program name
8-13 Starting address of object program (HEX)rical Eng

14-19 Length of object program in bytes (HEX)

Text
1 T

2-7 Starting address for object code in this record (HEX)ineering,

Text
Record

2 7 Starting address for object code in this record (HEX)
8-9 Length of object code in this record in bytes (HEX)

10-69 Object code (HEX, 2 columns per byte of object code), Feng-Ch

Mod.
Record

1 M
2-7 Starting location of the address field to be modified,

relative to the beginning of the program (HEX)hia U
nive

Record
8-9 Length of the address field to be modified, in half-bytes

(HEX)

End 1 E

System Programming, Spring 2010

ersity 32
Record 2-7 Address of first executable instruction (HEX)

D
epar Object programrtm

ent o

(Corresponding to Figure 2.6)
[Figure 2.8]

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 33

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 34

2.4.2 Multi-Pass Assemblers

D
epar Additional assembler featuresrtm

ent o

Figure 2.5 Figure 2.9

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 35

D
epar

SUBROUTINE TO READ RECORD INTO BUFFER

rtm
ent oof Electrrical Engineering,

SUBROUTINE TO WRITE RECORD FROM BUFFER

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 36

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 37

2.4.2 Multi-Pass Assemblers

D
epar Literals (1/3)rtm

ent o

Literals (1/3)

It is often convenient for the programmer to be able to writeof Electr

It is often convenient for the programmer to be able to write
the value of a constant operand as a part of the instruction that
uses it.rical Eng

This avoids having to define the constant elsewhere in the
program and make up a label for it.ineering,

Such an operand is called a literal because the value is stated
“literally” in the instruction, Feng-Ch

literally in the instruction.

In SIC/XE assembler language notation, a literal is identified
ith th fi hi h i f ll d b ifi ti f th

hia U
nive

with the prefix =, which is followed by a specification of the
literal value, using the same notation as in the BYTE
statement.

System Programming, Spring 2010

ersity 38

D
epar Literals (2/3)rtm

ent o

Literals (2/3)

The difference between a literal and an immediate operandof Electr

The difference between a literal and an immediate operand.
 (#) Immediate addressing: the operand value is

assembled as part of the machine instruction.rical Eng

 (=) Literal addressing: the assembler generates the
specified value as a constant at some other memory
l tiineering,

location.

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 39

D
epar Literals (3/3)rtm

ent o

Literals (3/3)

All of the literal operands used in a program are gatheredof Electr

All of the literal operands used in a program are gathered
together into one or more literal pools. Normally literals are
placed into a pool at the end of the program.rical Eng

When the assembler encounters a LTORG statement, it
creates a literal operands used since the previous LTORG ineering,

p p
(or the beginning of the program).

M t bl i d li t lit l d t l

, Feng-Ch

Most assemblers recognize duplicate literals and store only
one copy of the specified data value.
 By comparison of the character strings defining them.hia U

nive

 EX: the literal =X’05’ (Figure 2.9, Line 215 and 230)
 EX: =C’EOF’ and =X’454F45’ ?

System Programming, Spring 2010

ersity 40

D
epar The implementation of literalsrtm

ent o

The implementation of literals

The basic data structure needed is a literal table (LITTAB)of Electr

The basic data structure needed is a literal table (LITTAB).
 Literal name, value, length, and address

Pass1:rical Eng

Pass1:
 Search and update LITTAB for the specified literal name
 When encounters a LTORG statement or the end of the program,

the assembler makes a scan of the LITTAB and assigns anineering,

the assembler makes a scan of the LITTAB and assigns an
address for all unallocated literals

 Update the location counter to reflect the number of bytes
occupied by each literal, Feng-Ch

p y

Pass2:
 Search LITTAB for the address of each literal encounteredhia U

nive

 Search LITTAB for the address of each literal encountered
 Literal values placed at correct locations in the object program
 If a literal value represents an address in the program, the

assembler must also generate the appropriate Modification record.

System Programming, Spring 2010

ersity 41

assembler must also generate the appropriate Modification record.

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 42

2.4.2 Multi-Pass Assemblers

D
epar EQU assembler directivertm

ent o

EQU assembler directive

EQU (for “equate”) assembler directive allows theof Electr

EQU (for equate) assembler directive allows the
programmer to define symbols and specify their values.
 Improve readability in place of numeric values rical Eng

 EX: “MAXLEN” and “ * ” (Figure 2.9, Line 106 and 107)

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 43

D
epar EQU assembler directivertm

ent o

EQU assembler directive

The resulting object code is exactly the same as in theof Electr

The resulting object code is exactly the same as in the
original version of the instruction; however, the source
statement is easier to understand. rical Eng

Another common use of EQU is in defining mnemonic names
for registers.ineering,

A EQU 0
X EQU 1, Feng-Ch

L EQU 2

INDEX EQU Xhia U
nive

INDEX EQU X
BASE EQU B
FLOAT EQU F

System Programming, Spring 2010

ersity 44

D
epar ORG assembler directivertm

ent o

ORG assembler directive

ORG (for “origin”) assembler directiveof Electr

ORG (for origin) assembler directive
 When ORG is encountered during assembly of a program, the

assembler resets its location counter (LOCCTR) to the specified
value

rical Eng

value.

Example:ineering,

 SYMBOL is 6-byte, VALUE is 1-word, and FLAGS is 2-byte

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 45

D
epar Use EQU assembler directivesrtm

ent oof Electrrical Engineering,

Use ORG assembler directives

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 46

D
epar Restrictionsrtm

ent o EQU:

Restrictions

of Electr

EQU:
all symbols used on the right-hand side of the statement
must have been defined previously in the program.

rical Eng

ineering, ORG:, Feng-Ch

all symbols used to specify the new location counter value
must have been previously defined.

hia U
nive

System Programming, Spring 2010

ersity 47

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 48

2.4.2 Multi-Pass Assemblers

D
epar Expressionsrtm

ent o

Expressions

Assemblers generally allow arithmetic expressions formedof Electr

Assemblers generally allow arithmetic expressions formed
according to the normal rules using the operators +, -, *, / .
Division is usually defined to produce an integer result.rical Eng

Individual terms in the expression may be constants, user-
defined symbols, or special terms.

ineering,

“ * “ : This special term represents the value of the next
unassigned memory location.

, Feng-Ch Expression Terms

106 BUFEND EQU *

hia U
nive

Expression Terms
 Relative terms: defined relative to the beginning of the program
 Absolute terms: independent of program location

System Programming, Spring 2010

ersity 49

D
epar Absolute and Relative Expressionsrtm

ent o

Absolute and Relative Expressions

Absolute Expressionsof Electr

Absolute Expressions
 Contains only absolute terms
 Contains relative terms provided the relative terms occur in

i ith it i th d d th

rical Eng

pairs with opposite signs; the dependency on the program
starting address is canceled out; the result is an absolute value

107 MAXLEN EQU BUFEND BUFFER

ineering,

R l ti E i

107 MAXLEN EQU BUFEND-BUFFER

, Feng-Ch

Relative Expressions
 Contains an odd number of relative terms, with one more

positive terms than negative termshia U
nive

 No relative term may enter into a multiplication or division
operation

System Programming, Spring 2010

ersity 50

D
epar Defining Symbol Types in the

S b l T bl

rtm
ent o To determine the type of an expression we must keep track of the

Symbol Table

of Electr

To determine the type of an expression, we must keep track of the
types of all symbols defined in the program.

For this purpose we need a flag in the symbol table to indicate typerical Eng

For this purpose we need a flag in the symbol table to indicate type
of value (absolute or relative) in addition to the value itself.

ineering,, Feng-Chhia U
nive

With this information the assembler can easily determine the type of
each expression used as an operand and generate Modification
records in the object program for relative values

System Programming, Spring 2010

ersity 51

records in the object program for relative values.

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 52

2.4.2 Multi-Pass Assemblers

D
epar Program Blocks vs Control Sectionsrtm

ent o

Program Blocks vs. Control Sections

Program Blocksof Electr

Program Blocks
 Refer to segments of code that are rearranged within a

single object program unitrical Eng Control Sectionsineering,

 Refer to segments that are translated into independent
object program units

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 53

D
epar Program Blocksrtm

ent o

Program Blocks
of Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 54

D
epar Program Blocks (1/2)rtm

ent o

Program Blocks (1/2)

The source programs logically contained subroutines dataof Electr

The source programs logically contained subroutines, data
areas, etc. However, they were handled by the assembler as
one entity, resulting in a single block of object code.rical Eng

Many assemblers provide features that allow more flexible
handling of the source and object programs. ineering,

 Some features allow the generated machine instructions
and data to appear in the object program in a different, Feng-Ch

and data to appear in the object program in a different
order from the corresponding source statements.

 Other features result in the creation of several
i d d t t f th bj t

hia U
nive

independent parts of the object program.
 These parts maintain their identity and are handled

separately by the loader.

System Programming, Spring 2010

ersity 55

p y y

D
epar Program Blocks (2/2)rtm

ent o

Program Blocks (2/2)

The assembler directive USE indicates which portions of theof Electr

The assembler directive USE indicates which portions of the
source program belong to the various blocks.

E h bl k t ll t i l t

rical Eng

Each program block may actually contain several separate
segments of the source program. The assembler will (logically)
rearrange these segments to gather together the pieces of ineering,

each block.

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 56

D
epar Program from Fig. 2.11 with object codertm

ent o

g g j
[Figure 2.12]

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 57

D
epar

SUBROUTINE TO READ RECORD INTO BUFFER

rtm
ent oof Electrrical Engineering,

SUBROUTINE TO WRITE RECORD FROM BUFFER

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 58

D
epar The implementation of Program Blocks (1/2)rtm

ent o

The implementation of Program Blocks (1/2)

Pass 1of Electr

Pass 1
 A separate location counter for each program block.
 The current value of this location counter is saved when rical Eng

switching to another block, and the saved value is
restored when resuming a previous block.

 Each label in the program is assigned an address that isineering,

 Each label in the program is assigned an address that is
relative to the start of the block that contains it.

 The latest value of the location counter for each block , Feng-Ch

indicates the length of that block.
 At the end of Pass 1 the assembler constructs a table

that contains the starting addresses and lengths for allhia U
nive

that contains the starting addresses and lengths for all
blocks.

(see next page)

System Programming, Spring 2010

ersity 59

D
epar The implementation of Program Blocks (2/2)rtm

ent o

The implementation of Program Blocks (2/2)
of Electrrical Eng ineering,

Pass 2
 The address for each symbol relative to the start of the, Feng-Ch

 The address for each symbol relative to the start of the
object program is easily found from the information in
SYMTAB.

 The assembler simply adds the location of the symbolhia U
nive

 The assembler simply adds the location of the symbol,
relative to the start of its block, to the assigned block
starting address.

System Programming, Spring 2010

ersity 60

D
epar Object Program rtm

ent o

j g
(Corresponding to Figure 2.11)

[Figure 2.13]of Electrrical Eng Default(1)ineering,

()

Default(2)
CDATA(2), Feng-Ch

CDATA(2)

CDATA(3)
Default(3)

hia U
nive

System Programming, Spring 2010

ersity 61

D
eparrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 62

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 63

2.4.2 Multi-Pass Assemblers

D
epar Assembler Directivesrtm

ent o

Assembler Directives

<symbol> CSECTof Electr
<symbol> CSECT
 The CSECT assembler directive signals the start of a new

control section named <symbol>

rical Eng

EXTDEF < symbol1, symbol2, … symboln >
 The EXTDEF (external definition) statement in a control section

names symbols called external symbols that are defined in thisineering,

names symbols, called external symbols, that are defined in this
control section and may be used by other sections.

 Control section names do not need to be named in an EXTDEF
statement because they are automatically considered to be , Feng-Ch

y y
external symbols.

EXTREF < symbol1, symbol2, … symboln >hia U
nive

 The EXTREF (external reference) statement names symbols
that are used in this control section and are defined elsewhere.

System Programming, Spring 2010

ersity 64

D
epar Control Section : COPYrtm

ent o

[Figure 2.16]

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 65

D
epar Control Section : RDREC rtm

ent o
[Figure 2.16]

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 66

D
epar Control Section : WRRECrtm

ent o

[Figure 2.16]

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 67

D
epar Object Program Formatrtm

ent o

Object Program Format

Column Contentsof Electr
Co u Co e s

Define
Record

1 D
2-7 Name of external symbol defined in this control section

8 13 Relative address of symbol within this control section (HEX)

rical Eng

Record 8-13 Relative address of symbol within this control section (HEX)
14-73 Repeat information in Col. 2-13 for other external symbols

Refer 1 R
2 7 N f t l b l f d t i thi t l ti

ineering,

Record
2-7 Name of external symbol referred to in this control section

8-73 Names of other external reference symbols
1 M, Feng-Ch

Mod.
Record

2-7 Starting address of the field to be modified, relative to the
beginning of the program (HEX)

8-9 Length of the field to be modified, in half-bytes (HEX)hia U
nive

eco d
10 Modification flag (+ or -)

11-16 External symbol whose value is to be added to or subtracted
from the indicated field

System Programming, Spring 2010

ersity 68

D
eparrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 69

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 70

2.4.2 Multi-Pass Assemblers

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 71

2.4.2 Multi-Pass Assemblers

D
epar One-Pass Assemblersrtm

ent o

One Pass Assemblers

The main problem in trying to assemble a program in oneof Electr

The main problem in trying to assemble a program in one
pass involves forward references.

Eli i t f d f

rical Eng

Eliminate forward references
 Data items are defined before they are referenced.
 But, forward references to labels on instructions cannot be ineering,

,
eliminated as easily.

 Prohibit forward references to data items.

, Feng-Ch

There are two main types of one-pass assembler.
 Load-and-Go : Produces object code directly in memory for hia U

nive

immediate execution
 Object Program Output : Produces the usual kind of object

program for late execution.

System Programming, Spring 2010

ersity 72

D
epar Sample program for a one-pass assemblerrtm

ent o

p p g p
[Figure 2.18]

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 73

D
epar

SUBROUTINE TO READ RECORD INTO BUFFER

rtm
ent oof Electrrical Engineering, SUBROUTINE TO WRITE RECORD FROM BUFFER, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 74

D
epar Load-and-Go Assemblers (1/2)rtm

ent o

Load and Go Assemblers (1/2)

This kind of load-and-go assembler is useful in a system that isof Electr

This kind of load-and-go assembler is useful in a system that is
oriented toward program development and testing.

If i t ti d i b l th t h t t b

rical Eng

If an instruction operand is a symbol that has not yet been
defined, the operand address is omitted when the instruction is
assembled.ineering,

 The symbol used as an operand is entered into the symbol table.
 This entry is flagged to indicate that the symbol is undefined, Feng-Ch

 This entry is flagged to indicate that the symbol is undefined.
 The address of the operand field of the instruction that refers to

the undefined symbol is added to a list of forward references
associated with the symbol table entryhia U

nive

associated with the symbol table entry.

(Cont.)

System Programming, Spring 2010

ersity 75

D
epar Load-and-Go Assemblers (2/2)rtm

ent o

Load and Go Assemblers (2/2)

When the definition for a symbol is encountered the forwardof Electr

When the definition for a symbol is encountered, the forward
reference list for that symbol is scanned, and the proper
address is inserted into any instructions previously generated.rical Eng

At the end of the program, all symbols must be defined
without any * in SYMTAB.ineering,

For a load-and-go assembler, the actual address must be
known at assembly time, Feng-Ch

known at assembly time.

hia U
nive

System Programming, Spring 2010

ersity 76

D
epar Object code in memory and symbol table entries

f i Fi 2 18 ft i li 40

rtm
ent o

for program in Fig. 2.18 after scanning line 40

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 77

D
epar Object code in memory and symbol table entries

f i Fi 2 18 ft i li 160
rtm

ent o
for program in Fig. 2.18 after scanning line 160

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 78

D
epar Object Program Output Assemblersrtm

ent o

Object Program Output Assemblers

One-pass assemblers that produce object programs asof Electr

One-pass assemblers that produce object programs as
output are often used on systems where external working-
storage devices are not available.rical Eng

The assembler generate another Text record with the correct
operand address.ineering,

When the program is loaded, this address will be inserted
into the instruction by the action of the loader, Feng-Ch

into the instruction by the action of the loader.

The object program records must be kept in their original
d h th t d t th l d

hia U
nive

order when they are presented to the loader.

System Programming, Spring 2010

ersity 79

D
epar Object program from one-pass assembler for

 i Fi 2 18
rtm

ent o
program in Fig. 2.18

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 80

D
epar Outlinertm

ent o

Outline

2 1 Basic Assembler Functionsof Electr

2.1 Basic Assembler Functions
2.1.1 A Simple SIC Assembler
2.1.2 Assembler Algorithm and Data Structures

2 2 M hi D d t A bl F t

rical Eng

2.2 Machine-Dependent Assembler Features
2.2.1 Instruction Formats and Addressing Modes
2.2.2 Program Relocationineering,

2.3 Machine-Independent Assembler Features
2.3.1 Literals
2.3.2 Symbol-Defining Statements, Feng-Ch

y g
2.3.3 Expressions
2.3.4 Program Blocks
2.3.5 Control Sections and Program Linkinghia U

nive

2.3.5 Control Sections and Program Linking
2.4 Assembler Design Options

2.4.1 One-Pass Assemblers
2 4 2 Multi Pass Assemblers

System Programming, Spring 2010

ersity 81

2.4.2 Multi-Pass Assemblers

D
epar Multi-Pass Assemblersrtm

ent o

Multi Pass Assemblers

In our discussion of the EQU assembler directiveof Electr

In our discussion of the EQU assembler directive,
we required that any symbol used on the RHS be
defined previously in the source program.rical Eng

p y p g

Consider, for example, the sequenceineering,

Consider, for example, the sequence

ALPHA EQU BETA
BETA EQU DELTA, Feng-Ch Two-pass assemblers

DELTA RESW 1

hia U
nive

Two pass assemblers

System Programming, Spring 2010

ersity 82

D
epar Multi-Pass Assemblersrtm

ent o

Multi Pass Assemblers

The general solution is a multi-pass assembler that canof Electr

The general solution is a multi-pass assembler that can
make as many passes as are needed to process the
definitions of symbols.rical Eng

It is not necessary for such an assembler to make more than
two passes over the entire program. ineering,

p p g

The method we describe involves storing those symbol
definitions that involve forward references in the symbol table, Feng-Ch

definitions that involve forward references in the symbol table.

 This table also indicates which symbols are dependent hia U
nive

on the values of others, to facilitate symbol evaluation.

System Programming, Spring 2010

ersity 83

D
eparrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 84

D
eparrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 85

D
eparrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 86

D
eparrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 87

D
eparrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 88

