
D
eparrtm

ent oof Electr Chapter 9 ~ 10: rical Eng

Memory Management

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

System Programming, Spring 2010

D
epar Outlinertm

ent o
Background (address translation)
S t ti

of Electr

Segmentation
Pagingrical Eng

Virtual Memory
Page Replacementineering,

Page Replacement

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 2

D
epar

Virtualizing Resources

rtm
ent o of Electr

Physical Reality: Different Processes/Threads

rical Eng

Physical Reality: Different Processes/Threads
share the same hardware
 Need to multiplex CPU (CPU scheduling)ineering,

p (g)
 Need to multiplex use of Memory (Today)
 Need to multiplex disk and devices

Wh b t h i ?, Feng-Ch

Why worry about memory sharing?
 The complete working state of a process and/or kernel is

defined by its data in memory (and registers)hia U
nive

 Consequently, cannot just let different threads of control
use the same memory

 Probably don’t want different threads to even have

System Programming, Spring 2010

ersity 3

 Probably don t want different threads to even have
access to each other’s memory (protection)

D
epar

Multi-step Processing of a Program for Execution

rtm
ent o

Preparation of a program for
execution involves components at:of Electr

 Compile time (i.e. “gcc”)
 Link/Load time (unix “ld” does link)
 Execution time (e.g. dynamic libs)rical Eng

(g y)
Addresses can be bound to final
values anywhere in this path
 D d h d tineering,

 Depends on hardware support
 Also depends on operating system

Dynamic Libraries, Feng-Ch

y
 Linking postponed until execution
 Small piece of code, stub, used to

locate the appropriate memory-hia U
nive

locate the appropriate memory-
resident library routine

 Stub replaces itself with the
address of the routine and

System Programming, Spring 2010

ersity 4

address of the routine, and
executes routine

D
epar Dynamic Loadingrtm

ent o

Routine is not loaded until it is called
Better memory space utilization; unused routine isof Electr

Better memory-space utilization; unused routine is
never loaded
Useful when large amounts of code are needed torical Eng

Useful when large amounts of code are needed to
handle infrequently occurring cases
No special support from the operating system isineering,

No special support from the operating system is
required implemented through program design

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 5

D
epar Dynamic Linkingrtm

ent o
Linking postponed until execution time
Small piece of code stub used to locate theof Electr

Small piece of code, stub, used to locate the
appropriate memory-resident library routine
Stub replaces itself with the address of the routinerical Eng

Stub replaces itself with the address of the routine,
and executes the routine
Operating system needed to check if routine is inineering,

Operating system needed to check if routine is in
processes’ memory address
Dynamic linking is particularly useful for libraries, Feng-Ch

y g p y
System also known as shared libraries

hia U
nive

System Programming, Spring 2010

ersity 6

D
epar

Recall: Uniprogramming

rtm
ent o

Uniprogramming (no Translation or Protection)
 Application always runs at same place in physicalof Electr

 Application always runs at same place in physical
memory since only one application at a time

 Application can access any physical addressrical Eng

0xFFFFFFFF
Operating
System bi

t sineering,

y

id
 3

2-
b

dd
re

ss
es

, Feng-Ch 0x00000000
Application

Va
li

A
d

hia U
nive

 Application given illusion of dedicated machine by giving
it reality of a dedicated machine

0x00000000

System Programming, Spring 2010

ersity 7

it reality of a dedicated machine
Of course, this doesn’t help us with multithreading

D
epar

Multiprogramming (First Version)

rtm
ent o

Multiprogramming without Translation or Protection
 Must somehow prevent address overlap between threadsof Electr
 Must somehow prevent address overlap between threads

0xFFFFFFFFOperating
System

rical Eng

System

Application2 0x00020000

ineering,

0x00000000
Application1

, Feng-Ch

 Trick: Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)
 Everything adjusted to memory location of programhia U

nive

e y g adjus ed o e o y oca o o p og a
 Translation done by a linker-loader
Was pretty common in early days

With this solution no protection: bugs in any program

System Programming, Spring 2010

ersity 8

With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS

D
epar

Multiprogramming (Version with Protection)

rtm
ent o

Can we protect programs from each other without
translation?of Electr

translation?

0xFFFFFFFF
Operatingrical Eng

System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000

ineering, 0x00000000
Application1

Application2 0x00020000

, Feng-Ch  Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area

0x00000000

hia U
nive

prevent user from straying outside designated area
 If user tries to access an illegal address, cause an error

 During switch, kernel loads new base/limit from TCB
 User not allowed to change base/limit registers

System Programming, Spring 2010

ersity 9

 User not allowed to change base/limit registers

D
epar

Simple Segmentation: Base and Bounds
B

rtm
ent o

DRAM+
Base

CPU

Virtual
Addressof Electr

DRAM

>?
+

Limit

CPU
Physical
Addressrical Eng

?
Yes: Error!

ineering,

Can use base & bounds/limit for dynamic address
translation (Simple form of “segmentation”):
 Alter every address by adding “base”, Feng-Ch

 Alter every address by adding base
 Generate error if address bigger than limit

This gives program the illusion that it is running on its
o n dedicated machine ith memor starting at 0hia U

nive

own dedicated machine, with memory starting at 0
 Program gets continuous region of memory
 Addresses within program do not have to be relocated when

System Programming, Spring 2010

ersity 10

p g
program placed in different region of DRAM

D
epar Memory-Management Unit (MMU)rtm

ent o

Hardware device that maps virtual to physical address
In MMU scheme, the value in the relocation register is added of Electr

to every address generated by a user process at the time it is
sent to memory
The user program deals with logical addresses; it never sees rical Eng

p g g
the real physical addresses

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 11

D
epar

Issues with simple segmentation method

rtm
ent o

process 6

process 5

process 6

process 5

process 6

process 5

process 6

process 5of Electr
process 5

process 2

process 5 process 5 process 5

process 9process 9

process 10rical Eng

OS OS OS OS

ineering,

Fragmentation problem
 Not every process is the same size
 Over time memory space becomes fragmented, Feng-Ch

 Over time, memory space becomes fragmented
Hard to do inter-process sharing
 Want to share code segments when possiblehia U

nive

 Want to share code segments when possible
 Want to share memory between processes
 Helped by providing multiple segments per process

N d h h i l f

System Programming, Spring 2010

ersity 12
Need enough physical memory for every process

D
epar Dynamic Storage-Allocation Problemrtm

ent o

How to satisfy a request of size n from a list of free
holesof Electr

holes
 First-fit: Allocate the first hole that is big enough
 Best-fit: Allocate the smallest hole that is big enough;

t h ti li t l d d b i

rical Eng

must search entire list, unless ordered by size
 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search ineering,

entire list
 Produces the largest leftover hole

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 13

D
epar Fragmentationrtm

ent o
External Fragmentation – total memory space
exists to satisfy a request but it is not contiguousof Electr

exists to satisfy a request, but it is not contiguous
Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size rical Eng

g y g q y;
difference is memory internal to a partition, but not
being usedineering,

Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory

together in one large block, Feng-Ch

together in one large block
 Compaction is possible only if relocation is dynamic, and

is done at execution timehia U
nive

 I/O problem
 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers

System Programming, Spring 2010

ersity

 Do I/O only into OS buffers
14

D
epar

Multiprogramming (Translation and Protection version 2)

rtm
ent o

Problem: Run multiple applications in such a way
that they are protected from one anotherof Electr

Goals:
 Isolate processes and kernel from one another
 Allow flexible translation that:

rical Eng

 Allow flexible translation that:
 Doesn’t lead to fragmentation
 Allows easy sharing between processesineering,

 Allows only part of process to be resident in physical memory
(Some of the required) Hardware Mechanisms:
 General Address Translation, Feng-Ch

 General Address Translation
 Flexible: Can fit physical chunks of memory into arbitrary

places in users address space
 Not limited to small number of segmentshia U

nive

 Not limited to small number of segments
 Think of this as providing a large number (thousands) of fixed-

sized segments (called “pages”)
 Dual Mode Operation

System Programming, Spring 2010

ersity 15

 Dual Mode Operation
 Protection base involving kernel/user distinction

D
epar

Example of General Address Translation

rtm
ent o

Code
Data

Code
Data

Data 2

Stack 1of Electr

Heap
Stack

Data
Heap
Stack

Heap 1

Code 1rical Eng Prog 1
Virtual

Prog 2
Virtual

Stack
Stack 2

Data 1ineering,

Virtual
Address
Space 1

Virtual
Address
Space 2

Heap 2

Code 2, Feng-Ch

Code 2

OS code

OS dataT n l ti n M p 1 T n l ti n M p 2hia U
nive

OS heap &
Stacks

OS dataTranslation Map 1 Translation Map 2

System Programming, Spring 2010

ersity 16Physical Address Space

D
epar

Two Views of Memory

rtm
ent o

Physical
AddressesCPU MMU

Virtual
Addresses

of Electr Untranslated read or writerical Eng

Recall: Address Space:
 All the addresses and state a process can touch
 Each process and kernel has different address spaceineering,

 Each process and kernel has different address space
Consequently: two views of memory:
 View from the CPU (what program sees, virtual memory)
 View from memory (physical memory), Feng-Ch

 View from memory (physical memory)
 Translation box converts between the two views

Translation helps to implement protection
 If task A cannot even gain access to task B’s data no way for Ahia U

nive

 If task A cannot even gain access to task B s data, no way for A
to adversely affect B

With translation, every program can be linked/loaded into
same region of user address space

System Programming, Spring 2010

ersity 17

g p
 Overlap avoided through translation, not relocation

D
epar Schematic View of Swappingrtm

ent oof Electrrical Eng ineering,

Extreme form of Context Switch: Swapping
 In order to make room for next process some or all of the, Feng-Ch

 In order to make room for next process, some or all of the
previous process is moved to disk
 Likely need to send out complete segments

 This greatly increases the cost of context-switchinghia U
nive

g y g
Desirable alternative?
 Some way to keep only active portions of a process in memory

at any one time

System Programming, Spring 2010

ersity 18
 Need finer granularity control over physical memory

D
epar Outlinertm

ent o

Background (address translation)
S t ti

of Electr

Segmentation
Pagingrical Eng

Virtual Memory
Page Replacementineering,

Page Replacement

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 19

D
epar

More Flexible Segmentation

rtm
ent o

1

1

4

1
of Electr

1

3

2

4

rical Eng

3
4

2

3

2

ineering,

user view of
memory space

physical
memory space, Feng-Ch

Logical View: multiple separate segments
 Typical: Code, Data, Heap, Stack
 O h h i

y p y p

hia U
nive

 Others: memory sharing, etc
Each segment is given region of contiguous memory
 Has a base and limit

System Programming, Spring 2010

ersity 20
 Can reside anywhere in physical memory

D
epar

Implementation of Multi-Segment

rtm
ent o Base0 Limit0 V

Base1 Limit1 V

OffsetSeg #Virtual
Address > Error

of Electr

Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V

Base2 Limit2 V
+ Physical

Addressrical Eng

Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 Vineering,

Segment map resides in processor
 Segment number mapped into base/limit pair
 Base added to offset to generate physical address, Feng-Ch

 Base added to offset to generate physical address
 Error check catches offset out of range

As many chunks of physical memory as entries
 Segment addressed by portion of virtual addresshia U

nive

 Segment addressed by portion of virtual address
 However, could be included in instruction instead:

 x86 Example: mov [es:bx],ax.
What is “V/N”?

System Programming, Spring 2010

ersity 21
 Can mark segments as invalid; requires check as well

D
epar

Example: Four Segments (16 bit addresses)

rtm
ent o

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400

OffsetSeg
014 1315

of Electr

1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

014 1315
Virtual Address Format

rical Eng

0x0000 0x0000

Mi ht

ineering,

0x4000
0x4800
0x5C00

0x4000 Might
be shared

, Feng-Ch

0x8000

0xC000
Space for
Other Appshia U

nive

Vi t l

0xF000

Ph i l

Shared with
Other Apps

System Programming, Spring 2010

ersity 22

Virtual
Address Space

Physical
Address Space

pp

D
epar Example of segment translationrtm

ent o

0x240 main: la $a0, varx
0x244 jal strlen

… …
0x360 strlen: li $v0 0 ;count

Seg ID # Base Limit
0 (code) 0x4000 0x0800of Electr

0x360 strlen: li $v0, 0 ;count
0x364 loop: lb $t0, ($a0)
0x368 beq $r0,$t1, done

… …
0x4050 varx dw 0x314159

1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000rical Eng

Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240

()

ineering,

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

2 F t h 0 244 T l t d t Ph i l 0 4244 G t “j l t l ”

, Feng-Ch

2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248  $ra (return address!), Move 0x0360  PC

3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0”
Move 0x0000  $v0, Move PC+4PChia U

nive

,
4. Fetch 0x364. Translated to Physical=0x4364. Get “lb $t0,($a0)”

Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050. Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800 Physical addr = 0x4850

System Programming, Spring 2010

ersity 23

Physical address? Base=0x4800, Physical addr = 0x4850,
Load Byte from 0x4850$t0, Move PC+4PC

D
epar

Observations about Segmentation

rtm
ent o

Virtual address space has holes
 Segmentation efficient for sparse address spacesof Electr

 A correct program should never address gaps (except as
mentioned in moment)
 If it does, trap to kernel and dump corerical Eng

When it is OK to address outside valid range:
 This is how the stack and heap are allowed to grow
 For instance, stack takes fault, system automaticallyineering,

 For instance, stack takes fault, system automatically
increases size of stack

Need protection mode in segment table
 For example code segment would be read-only, Feng-Ch

 For example, code segment would be read-only
 Data and stack would be read-write (stores allowed)
 Shared segment could be read-only or read-write

Wh t t b d/ t d t t it h?hia U
nive

What must be saved/restored on context switch?
 Segment table stored in CPU, not in memory (small)
 Might store all of processes memory onto disk when

it h d (ll d “ i ”)

System Programming, Spring 2010

ersity 24
switched (called “swapping”)

D
epar Outlinertm

ent o

Background (address translation)
S t ti

of Electr

Segmentation
Pagingrical Eng

Virtual Memory
Page Replacementineering,

Page Replacement

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 25

D
epar Paging: Physical Memory in Fixed Size Chunksrtm

ent o
Problems with segmentation?
 Must fit variable-sized chunks into physical memoryof Electr

 May move processes multiple times to fit everything
 Limited options for swapping to disk

Fragmentation: wasted spacerical Eng

g p
 External: free gaps between allocated chunks
 Internal: don’t need all memory within allocated chunks

Solution to fragmentation from segments?ineering,

Solution to fragmentation from segments?
 Allocate physical memory in fixed size chunks (“pages”)
 Every chunk of physical memory is equivalent

 Can use simple vector of bits to handle allocation:, Feng-Ch

 Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

 Each bit represents page of physical memory
1allocated, 0freehia U

nive

Should pages be as big as our previous segments?
 No: Can lead to lots of internal fragmentation

 Typically have small pages (1K-16K)

System Programming, Spring 2010

ersity 26

yp y p g ()
 Consequently: need multiple pages/segment

D
epar How to Implement Paging?rtm

ent o

Offset

OffsetVirtual
Page #Virtual Address:

PageTablePtr page #0 V,R Physicalof Electr

Physical Address

Offset

>PageTableSize

p g

page #2
page #3

page #1 V,R
V,R,W
V,R,W

page #1 V,R

Check Perm

y
Page #

rical Eng

Access
Error

page #3
page #4
page #5

V,R,W
N

V,R,W

hec erm

Access
Errorineering,

Page Table (One per process)
 Resides in physical memory
 Contains physical page and permission for each virtual page, Feng-Ch

p y p g p p g
 Permissions include: Valid bits, Read, Write, etc

Virtual address mapping
 Offset from Virtual address copied to Physical Addresshia U

nive

 Example: 10 bit offset  1024-byte pages
 Virtual page # is all remaining bits

 Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
 Ph sical page # copied from table into ph sical address

System Programming, Spring 2010

ersity 27

 Physical page # copied from table into physical address
 Check Page Table bounds and permissions

D
epar Free Frames (Physical Pages)rtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 28
Before allocation After allocation

D
epar What about Sharing?rtm

ent o

OffsetVirtual
Page #

Virtual Address
(Process A):

of Electr

PageTablePtrA page #0
page #1

V,R
V,R

page #2 V R Wpage #2 V R Wrical Eng

page #3
page #4
page #5

page #2 V,R,W
V,R,W

N
V R W

Shared
Page

page #2 V,R,W

ineering,

PageTablePtrB page #0
page #1

V,R
N

page #5 V,R,W

, Feng-Ch

page #1
page #2
page #3

N
V,R,W

N
page #4 V Rpage #4 V R

This physical page
appears in address

space of both
processeshia U

nive

page #5
page #4 V,R

V,R,W
page #4 V,R

OffVirtualVirtual Address:

processes

System Programming, Spring 2010

ersity 29

OffsetVirtual
Page #

Virtual Address:
Process B

D
epar Simple Page Table Discussionrtm

ent o
What needs to be switched on
a context switch?
 P t bl i t d li it

a
b

0x00 0x00

0 04

of Electr

 Page table pointer and limit
Analysis
 Pros

 Si l ll ti

c
d
e
f

0x04
i
j
k
l

0x04
4
3
1

rical Eng

 Simple memory allocation
 Easy to Share

 Con: What if address space is
sparse?

f
g
h
i
j

0x08
e
f

l0x08

0x0C

1

Page
Tableineering,

sparse?
 E.g. on UNIX, code starts at 0,

stack starts at (231-1).
 With 1K pages, need 4 million

page table entries!

j
k
l

Virtual a

f
g
h0x10

a

, Feng-Ch

page table entries!
 Con: What if table really big?

 Not all pages used all the time
 would be nice to have

Virtual
Memory b

c
d

Physicalhia U
nive

working set of page table in
memory

How about combining paging
and segmentation?

Physical
Memory

Example (4 byte pages)

System Programming, Spring 2010

ersity 30

and segmentation?Example (4 byte pages)

D
epar Multi-level Translationrtm

ent o

What about a tree of tables?
 Lowest level page table  memory still allocated with bitmap
 Higher levels often segmented

of Electr

 Higher levels often segmented
Could have any number of levels. Example (top segment):

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

rical Eng

page #0
page #1

V,R

V,R

Address: Page #Seg #

Base0 Limit0 V Physical
P #

ineering,

p g

page #3
page #4

,

page #2 V,R,W

V,R,W

N

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base2 Limit2 V

page #2 V,R,W

y
Page #

, Feng-Ch

page #4
page #5

N

V,R,WBase4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N

Access

Check Perm

Accesshia U
nive What must be saved/restored on context switch?

 C t t f t l l t i t (f thi l)

Base7 Limit7 V Access
Error> Access

Error

System Programming, Spring 2010

ersity 31

 Contents of top-level segment registers (for this example)
 Pointer to top-level table (page table)

D
epar Paging Hardware With TLBrtm

ent o
Making Address Translation Fast
A cache for address translations: Translation Lookaside Bufferof Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 32

D
epar Outlinertm

ent o

Background (address translation)
S t ti

of Electr

Segmentation
Pagingrical Eng

Virtual Memory
Page Replacementineering,

Page Replacement

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 33

D
epar Virtual Memoryrtm

ent oof Electr

TLBrical Eng

Page
Table

Physical Diskineering,

Physical
Memory
512 MB

D
500GBVirtual

Memory
4 GB, Feng-Ch

Illusion of Infinite Memory
Disk is larger than physical memory hia U

nive

g p y y
 In-use virtual memory can be bigger than physical memory
 Combined memory of running processes much larger than

physical memory

System Programming, Spring 2010

ersity 34

p y y

D
epar Page Tablesrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 35

D
epar Translation Lookaside Buffer (TLB)rtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 3636

D
epar TLB Missesrtm

ent o If page is in memoryof Electr

 Load the PTE from memory and retry
 Could be handled in hardware

C t l f li t d t bl

rical Eng

Can get complex for more complicated page table
structures

 Or in softwareineering,

Raise a special exception, with optimized handler

, Feng-Ch

If page is not in memory (page fault)
 OS handles fetching the page and updating the page table
 Th t t th f lti i t ti

hia U
nive

 Then restart the faulting instruction

System Programming, Spring 2010

ersity 37

D
epar Steps in Handling a Page Faultrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 38

D
epar Outlinertm

ent o

Background (address translation)
S t ti

of Electr

Segmentation
Pagingrical Eng

Virtual Memory
Page Replacementineering,

Page Replacement

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 39

D
epar What happens if there is no free frame?rtm

ent o
Page replacement – find some page in memory,
but not really in use swap it outof Electr

but not really in use, swap it out
 algorithm
 performance – want an algorithm which will result in rical Eng

minimum number of page faults
Same page may be brought into memory several
tiineering,

times

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 40

D
epar Page Replacement Policiesrtm

ent o

Why do we care about Replacement Policy?
 Replacement is an issue with any cache
 P ti l l i t t ith

of Electr

 Particularly important with pages
 The cost of being wrong is high: must go to disk
 Must keep important pages in memory, not toss them out

FIFO (First In First Out)rical Eng

FIFO (First In, First Out)
 Throw out oldest page. Be fair – let every page live in memory

for same amount of time.
 Bad because throws out heavily used pages instead ofineering,

 Bad, because throws out heavily used pages instead of
infrequently used pages

MIN (Minimum, Optimal):
 Replace page that won’t be used for the longest time , Feng-Ch

p p g g
 Great, but can’t really know future…
 Makes good comparison case, however

RANDOM:hia U
nive

 Pick random page for every replacement
 Typical solution for TLB’s. Simple hardware
 Pretty unpredictable – makes it hard to make real-time

System Programming, Spring 2010

ersity 41

y
guarantees

D
epar Replacement Policies (Con’t)rtm

ent o
LRU (Least Recently Used):
 Replace page that hasn’t been used for the longest timeof Electr

 Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

 Seems like LRU should be a good approximation to MIN.rical Eng

How to implement LRU? Use a list!

Page 6 Page 7 Page 1 Page 2Headineering,

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU), Feng-Ch

 On each use, remove page from list and place at head
 LRU page is at tail

Problems with this scheme for paging?

()

hia U
nive

Problems with this scheme for paging?
 Need to know immediately when each page used so that can

change position in list…
 Many instructions for each hardware access

System Programming, Spring 2010

ersity 42

 Many instructions for each hardware access
In practice, people approximate LRU (more later)

D
epar Example: FIFOrtm

ent o

Suppose we have 3 page frames, 4 virtual pages,
and following reference stream: of Electr

g
 A B C A B D A D B C B

Consider FIFO Page replacement:rical Eng

A B C A B D A D B C B
A A A A A D D D D C Cineering,

A A A A A D D D D C C
B B B B B A A A A A

C C C C C C B B B, Feng-Ch  FIFO: 7 faultshia U
nive

 FIFO: 7 faults.
 When referencing D, replacing A is bad choice, since

need A again right away

System Programming, Spring 2010

ersity 43

D
epar Example: MIN (Optimal)rtm

ent o
Suppose we have the same reference stream:
 A B C A B D A D B C Bof Electr

Consider MIN Page replacement:

rical Eng

A B C A B D A D B C B
A A A A A A A A A C C

B B B B B B B B B B

ineering,

B B B B B B B B B B
C C C D D D D D D

, Feng-Ch

 MIN: 5 faults
 Where will D be brought in? Look for page not referenced hia U

nive

g p g
farthest in future.

What will LRU do?
 Same decisions as MIN here but won’t always be true!

System Programming, Spring 2010

ersity 44

 Same decisions as MIN here, but won t always be true!

D
epar When will LRU perform badly?rtm

ent o

Consider the following: A B C D A B C D A B C D
LRU Performs as follows (same as FIFO here):of Electr

()

A B C D A B C D A B C D
A A A D D D C C C B B B

rical Eng

A A A D D D C C C B B B
B B B A A A D D D C C

C C C B B B A A A Dineering,

 Every reference is a page fault!
MIN Does much better:

C C C B B B A A A D

, Feng-Ch

MIN Does much better:

A B C D A B C D A B C D

hia U
nive

A A A A A A A A A B B B
B B B B B C C C C C C

C D D D D D D D D D

System Programming, Spring 2010

ersity 45

C D D D D D D D D D

D
epar

Graph of Page Faults Versus The
Number of Framesrtm

ent o

Number of Frames
of Electrrical Eng ineering, One desirable property: When you add memory, Feng-Ch

One desirable property: When you add memory
the miss rate goes down
 Does this always happen?
 Seems like it should right?hia U

nive

 Seems like it should, right?
No: BeLady’s anomaly
 Certain replacement algorithms (FIFO) don’t have this

b i t !

System Programming, Spring 2010

ersity

obvious property!
46

D
epar Adding Memory Doesn’t Always Help Fault Ratertm

ent o

Does adding memory reduce number of page faults?
 Yes for LRU and MINof Electr

 Yes for LRU and MIN
 Not necessarily for FIFO! (Called Belady’s anomaly)

1 2 3 4 1 2 5 1 2 3 4 5

rical Eng

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 4 4 4 5 5 5 5 5 5

2 2 2 1 1 1 1 1 3 3 3 9 page faultsineering,

2 2 2 1 1 1 1 1 3 3 3
3 3 3 2 2 2 2 2 4 4

, Feng-Ch

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 5 5 5 5 4 4hia U

nive

10 page faults2 2 2 2 2 2 1 1 1 1 5
3 3 3 3 3 3 2 2 2 2

System Programming, Spring 2010

ersity 47
4 4 4 4 4 4 3 3 3

D
epar Thrashingrtm

ent o
If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:of Electr

 low CPU utilization
 operating system thinks that it needs to increase the degree of

multiprogrammingrical Eng

 another process added to the system

Thrashing  a process is busy swapping pages in and outineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 48

