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Chapter 9 ~ 10:
Memory Management

F &% (Chen-Chieh Wang)
ccwang@mail.ee.ncku.edu.tw
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Outline

4 Background (address translation)
4 Segmentation

% Paging

4 Virtual Memory

4 Page Replacement
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Virtualizing Resources

% Physical Reality: Different Processes/Threads
share the same hardware
» Need to multiplex CPU (CPU scheduling)
> Need to multiplex use of Memory (Today)
» Need to multiplex disk and devices

4 Why worry about memory sharing?
» The complete working state of a process and/or kernel is
defined by its data in memory (and registers)
» Consequently, cannot just let different threads of control
use the same memory

> Probably don't want different threads to even have

access to each other's memory (protection) 5
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Multi-step Processing of a Program for Execution

4 Preparation of a program for source

program

execution involves components at:
» Compile time (i.e. “"gcc”) }
caompiler or compile

» Link/Load time (unix "Id" does link) assembler time

» Execution time (e.g. dynamic libs)
module

4 Addresses can be bound to final
values anywhere in this path e

modules

» Depends on hardware support Inkage
> Also depends on operating system it
4 Dynamic Libraries
. . . . load load
> Linking postponed until execution ; time
system
» Small piece of code, stub, used to ibrary
locate the appropriate memory- o
resident library routine dynanical
> Stub replaces itself with the il ' l
i sl TN executio
address of the routine, and dynamic |  binary precuter
. linking memory Lo
executes routine image time) 4
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Dynamic Loading

4 Routine is not loaded until it is called

4 Better memory-space utilization; unused routine is
never loaded

# Useful when large amounts of code are needed to
handle infrequently occurring cases

# No special support from the operating system is
required implemented through program design

5
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Dynamic Linking

4 Linking postponed until execution time

4 Small piece of code, sfub, used to locate the
appropriate memory-resident library routine

# Stub replaces itself with the address of the routine,
and executes the routine

4 Operating system needed to check if routine is in
processes’ memory address

4 Dynamic linking is particularly useful for libraries
4 System also known as shared libraries

6
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Recall: Uniprogramming

% Uniprogramming (no Translation or Protection)

> Application always runs at same place in physical
memory since only one application at a time

» Application can access any physical address

. OXFFFFFFFF
Operating
System x 7))
<%
N wn
™ 9
T O
L
>
Application
0x00000000

» Application given illusion of dedicated machine by giving
it reality of a dedicated machine

4 Of course, this doesn't help us with multithreading -
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Multiprogramming (First Version)

# Multiprogramming without Translation or Protection
» Must somehow prevent address overlap between threads

. OXFFFFFFFF
Operating %

System
Application2 | 0x00020000

Applicationt | 00000000

» Trick: Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)

® Everything adjusted to memory location of program
® Translation done by a linker-loader
® \Was pretty common in early days

# With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS
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Multiprogramming (Version with Protection)

4 Can we protect programs from each other without
translation?

_ OXFFFFFFFF
Operating

System

«———]LimitAddr=0x10000

Application2| 0x00020000— BaseAddr=0x20000

Applicationl

0x00000000

> Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area

® [f user tries to access an illegal address, cause an error
» During switch, kernel loads new base/limit from TCB
® User not allowed to change base/limit registers

9
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Simple Segmentation: Base and Bounds

Base
Virtual |

Address

DRAM

Physical
Limit —> Address

Yes: Error!

# Can use base & bounds/limit for dynamic address
translation (Simple form of "segmentation”):
> Alter every address by adding "base”
» Generate error if address bigger than limit
4 This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
» Program gets continuous region of memory

» Addresses within program do not have to be relocated when
program placed in different region of DRAM
10
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Memory-Management Unit (MMU)

4 Hardware device that maps virtual to physical address

4 In MMU scheme, the value in the relocation register is added
to every address generated by a user process at the time it is

sent to memory

4 The user program deals with /ogical addresses; it never sees
the real/physical addresses

logical
address

relocation
register

physical
address

CPU
346

()

w

MMU

14346

memory

1
System Programming, Spring 2010

ALisdaAlun piIyn-bua4 ‘buiuaauibul |p214492|3 40 Juawidpdaq

Issues with simple segmentation method

4 Fragmentation problem
» Not every process is the same size
» Over time, memory space becomes fragmented
#4 Hard to do inter-process sharing
» Want to share code segments when possible
» Want to share memory between processes
» Helped by providing multiple segments per process

% Need enough physical memory for every process

12
System Programming, Spring 2010




o
)
o
o
3
—
=]
o®
S
-t
o
—h
il
o
(@]
=t
-
0
2
m
>
=,
>
o
o
3.
>
S
)
o
3
<
Q
=
o
c
=
<
o
=3
a,
-t
~<

Dynamic Storage-Allocation Problem

4 How to satisfy a request of size nfrom a list of free
holes
> First-fit: Allocate the firsthole that is big enough

> Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size
® Produces the smallest leftover hole

> Worst-fit: Allocate the /argesthole; must also search
entire list

® Produces the largest leftover hole

13

System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Fragmentation

¥4 External Fragmentation — total memory space
exists to satisfy a request, but it is not contiguous

# Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

4 Reduce external fragmentation by compaction
» Shuffle memory contents to place all free memory
together in one large block
» Compaction is possible only if relocation is dynamic, and
is done at execution time

> 1/0O problem
® Latch job in memory while it is involved in 1/0
® Do 1/O only into OS buffers

14
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Multiprogr'amming (Translation and Protection version 2)

4 Problem: Run multiple applications in such a way
that they are protected from one another

4+ Goals:

> |Isolate processes and kernel from one another
> Allow flexible translation that:
® Doesn't lead to fragmentation
® Allows easy sharing between processes
® Allows only part of process to be resident in physical memory

4 (Some of the required) Hardware Mechanisms:

» General Address Translation

® Flexible: Can fit physical chunks of memory into arbitrary
places in users address space

® Not limited to small number of segments

® Think of this as providing a large number (thousands) of fixed-
sized segments (called "pages”)

» Dual Mode Operation
® Protection base involving kernel/user distinction 15
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Example of General Address Translation

Code | Data 2 Code
Data Stack 1 Bata
Heap Heop Heap
STGCk Code 1 Sfack
I Stack 2
Prog 1 Prog 2
Virtual Data 1 Virtual
Address Heap 2 Address
Space 1 Code 2 Space 2
[ OS code \
Translation Map 1 OS data | Tpanslation Map 2
S heap &
r Stacks
Physical Address Space 16
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Two Views of Memory

Virtual Physical 4
Addresses Addresses
—>| MMU |

Untranslated read or write

4 Recall: Address Space:
» All the addresses and state a process can touch
» Each process and kernel has different address space
4 Consequently: two views of memory:
» View from the CPU (what program sees, virtual memory)
» View from memory (physical memory)
» Translation box converts between the two views
% Translation helps to implement protection

> If task A cannot even gain access to task B's data, no way for A
to adversely affect B

4 With translation, every program can be linked/loaded into
same region of user address space

» Overlap avoided through translation, not relocation
17
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Schematic View of Swapping

operating
system

process P,

@swap out

process P,

@SW&D in

user

ERact backing store

main memory

4 Extreme form of Context Switch: Swapping
» In order to make room for next process, some or all of the
previous process is moved to disk
® Likely need to send out complete segments
» This greatly increases the cost of context-switching
4 Desirable alternative?

» Some way to keep only active portions of a process in memory
at any one time

> Need finer granularity control over physical memory
18
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Outline

¢ Background (address translation)
# Segmentation

4 Paging

4 Virtual Memory

4 Page Replacement
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More Flexible Segmentation

1
subroutine stack E 4
symbol
table
2
Sqgrt
oo 3
user view of physical
logical address : memory space memory space:

4 Logical View: multiple separate segments
> Typical: Code, Data, Heap, Stack
» Others: memory sharing, etc
4 Each segment is given region of contiguous memory
» Has a base and limit
» Can reside anywhere in physical memory
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Implementation of Multi-Segment

Virtual re T Gfrser

Address Error

LimitO
Limitl

Physical
Address

Limi
Base4 |Limit4
Baseb | Limith
Baseb6 | Limit6
Base7 |Limit7

<ZZ<

4 Segment map resides in processor
» Segment number mapped into base/limit pair
» Base added to offset to generate physical address
» Error check catches offset out of range

4 As many chunks of physical memory as entries
» Segment addressed by portion of virtual address

» However, could be included in instruction instead:
® x86 Example: mov [es:bx],ax.

4 What is "V/N"?

» Can mark segments as invalid; requires check as well
21
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k4 Example: Four Segments (16 bit addresses)
[a)

=3

3 Seg ID # Base Limit

S [Seg Offset 0 (code) 0x4000 | 0x0800

9 151413 0 1 (data) 0x4800 | 0x1400

%" Virtual Address Format 2 (shared) | OXFOOO | 0x1000

% 3 (stack) 0x0000 | 0x3000

S 0x0000 0x0000

L

m .

M 0x4000 0x4000 Might

S 8 0x4800 —~ be shared
S 0x5C00 ~

. 0x8000

§ - Space for
o 0xC000 Other Apps
=

- 0xF000 Shared with
3 Other Apps
§ Virtual Physical PP
é} Address Space Address Space 22
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Example of segment translation

0x240 main: la $a0, varx o

Ox244 jal strlen SegID# | Base Limit
0 (code) 0x4000 | 0x0800

0x360 strilen: li $v0, 0 ;count

0x364 loop: Ib  $t0, ($ad) 1 (data) | 0x4800 | 0x1400

0x308 B S, B 2 (shared) | 0xFO0O | 0x1000

0x4050 varx dw 0x314159 3 (stack) 0x0000 | 0x3000

Let's simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx"
Move 0x4050 — $a0, Move PC+4—-PC

2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

3. Fetch 0x360. Translated to Physical=0x4360. Get "li $v0,0"
Move 0x0000 — $v0, Move PC+4—PC

4. Fetch 0x364. Translated to Physical=0x4364. Get “Ib $t0,($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050

Translate 0x4050. Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,

Load Byte from 0x4850—$t0, Move PC+4—PC 23
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Observations about Segmentation

4 Virtual address space has holes
» Segmentation efficient for sparse address spaces

> A correct program should never address gaps (except as
mentioned in moment)

® [f it does, trap to kernel and dump core

4 When it is OK to address outside valid range:
» This is how the stack and heap are allowed to grow
» For instance, stack takes fault, system automatically

increases size of stack

4 Need protection mode in segment table
» For example, code segment would be read-only
» Data and stack would be read-write (stores allowed)
» Shared segment could be read-only or read-write

4 What must be saved/restored on context switch?
» Segment table stored in CPU, not in memory (small)

» Might store all of processes memory onto disk when
switched (called “"swapping")

24
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Outline

¢ Background (address translation)
# Segmentation

¢ Paging

4 Virtual Memory

4 Page Replacement

25
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Paging: Physical Memory in Fixed Size Chunks

4 Problems with segmentation?

» Must fit variable-sized chunks into physical memory

» May move processes multiple times to fit everything

» Limited options for swapping to disk
4 Fragmentation: wasted space

» External: free gaps between allocated chunks

> Internal: don't need all memory within allocated chunks
4 Solution to fragmentation from segments?

> Allocate physical memory in fixed size chunks (“pages”)

» Every chunk of physical memory is equivalent

® Can use simple vector of bits to handle allocation:
00110001110001101 ... 110010

® Each bit represents page of physical memory
1=allocated, 0=free

4 Should pages be as big as our previous segments?
» No: Can lead to lots of internal fragmentation
® Typically have small pages (1K-16K)

» Consequently: need multiple pages/segment ”
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How to Implement Paging?

Virtual Address: B/;LU% 1
PageTablePtr ST
- page #2 Physical Address
PageTableSize e 73 VR W e
A page #4 N
Ecrc;‘%srs page #5 |V, R,W Access

Error

% Page Table (One per process)
» Resides in physical memory
» Contains physical page and permission for each virtual page
® Permissions include: Valid bits, Read, Write, etc
% Virtual address mapping
» Offset from Virtual address copied to Physical Address
® Example: 10 bit offset = 1024-byte pages
» Virtual page # is all remaining bits
® Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
® Physical page # copied from table into physical address
» Check Page Table bounds and permissions 27
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o .

5 Free Frames (Physical Pages)
=

—+

=]

®

=

+

o free-frame list free-frame list

-+ 14 15

m 13 13 |page 1
o

) 14 14 [page 0
2

I 15 15

g-l 16 16

QO page 1

s page 2 17 17

8 page 3

g. new process 18 18 |page 2
=

- 19 19

®

=

o 20 20 |page 3
()

>

=% 21 new-process page table 21

C

=3 (a) (b)

R

a Before allocation After allocation
i,.‘ 28
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What about Sharing?

Virtual Address irfua
(Process A): Page #

PageTablePtrA

page #0 | V.R
page #1

PageTablePtrB

This physical page
appears in address

space of both
processes

Process B Page #

29
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U Y ° °

S Simple Page Table Discussion

3

Egl £ oo : _

M 0x00 3 0x00 : % What needs to be switched on
=+ F b _ a context switch?

=N c = 0x04 : > Page table pointer and limit

Ul 04 |9 il i 4 Analysis

S F ; 3 kil : > Pros

= E 1 | oxos I : ® Simple memory allocation
ENE ?\ : ® Easy to Share

i 0x08 = Page oxoc s > Con: What if address space is
S j Table £ sparse?

a : k g ® E.g. on UNIX, code starts at 0,
S F I oxt0 L2 stack starts at (231-1).

= : . X ® With 1K pages, need 4 million
L‘_Qn Virtual ; page table entries!

o E Memory c| > Con: What if table really big?
o K d : ® Not all pages used all the time
Q K . : = would be nice to have

g- : Physwal : working set of page table in
- E Memor'y E memory

E. A NS NI NN NN NN NN NN NN NN NN NN NN EEEEEEEEEEEN $- HOWabOutCOmbining paging
 Example (4 byte pages) and segmentation?

_‘% 30
<
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Multi-level Translation

4 What about a tree of tables?
» Lowest level page table = memory still allocated with bitmap
» Higher levels often segmented

% Could have any number of levels. Example (top segment):

Virtual Virtual Virtual
# P

Address: [ 52 7 [ ofe |

Base4 | Limit4
Base5 | Limitb
Base6 | Limité
Base7 | Limit7

4 What must be saved/restored on context switch?
» Contents of top-level segment registers (for this example)
» Pointer to top-level table (page table) 31
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Paging Hardware With TLB

4 Making Address Translation Fast
4 A cache for address translations: Translation Lookaside Buffer

logical
address

CPU b

page frame
number number

TLB hit

physical
! address

TLB

p {
TLB miss

f
physical
memory

page table

32
System Programming, Spring 2010

ALIsdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq




Outline

¢ Background (address translation)
# Segmentation

4 Paging

4 Virtual Memory

4 Page Replacement

33
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Virtual Memory

Q)
-0 | ~
) SOX
. —
Tabi
able .
____________ Physical Disk
Virtual Mg:\g:r? 50068
Memory 512 M
4 GB

# lllusion of Infinite Memory

4 Disk is larger than physical memory =
> In-use virtual memory can be bigger than physical memory
» Combined memory of running processes much larger than
physical memory

34
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Page Tables

Virtual page
number
| Page table
Physical page or Physical memory
Valid disk address
1
1
1
1
.
i >
0|
1 Disk storage
1
[0
[1

35
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Translation Lookaside Buffer (TLB)

TLB

Virtual page Physical page
number Valid Dirty Ref Tag address

| l

Physical memory

alo|a|al—=|=
oo ==
Y [ | Y Y PR PR
Wdilss

Page table

Physical page
Valid Dirty Ref or disk address

—
A ::’
1]0(0 Disk storage
1/0]0 — S g
1]0][1 -
0[o[o
~[1]0]1 v =
1[0]1 L
0j0|0 e
11111 § 7/
1171 Y /
ololo]| R
1[1]1 ¢
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TLB Misses

4 If page is in memory
» Load the PTE from memory and retry
» Could be handled in hardware

® Can get complex for more complicated page table
structures

» Or in software
® Raise a special exception, with optimized handler

# If page is not in memory (page fault)
» OS handles fetching the page and updating the page table
» Then restart the faulting instruction
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o o °

$ Steps in Handling a Page Fault
3

=] page is on

g backing store

=+ h
o \

—h i w
m

o operating

) system

= ©

8 reference t

=L rap

m ®

Lol AN

= load M BE—

®

S ®

S restart | page table

s instruction

g’ free frame «

S

@ & @

() reset page bring in

g_. table missing page

C

=

<

) physical

0 memory

= 38
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Outline

4 Background (address translation)
# Segmentation

4 Paging

4 Virtual Memory

¢ Page Replacement
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What happens if there is no free frame?

% Page replacement — find some page in memory,
but not really in use, swap it out
» algorithm
» performance — want an algorithm which will result in
minimum number of page faults
4 Same page may be brought into memory several
times

40
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Page Replacement Policies

4 Why do we care about Replacement Policy?
» Replacement is an issue with any cache
» Particularly important with pages
® The cost of being wrong is high: must go to disk
® Must keep important pages in memory, not toss them out

€ FIFO (First In, First Out)

» Throw out oldest page. Be fair - let every page live in memory
for same amount of time.

» Bad, because throws out heavily used pages instead of
infrequently used pages

# MIN (Minimum, Optimal):

> Replace page that won't be used for the longest time

> Great, but can't really know future...

» Makes good comparison case, however
¢ RANDOM:

» Pick random page for every replacement

» Typical solution for TLB's. Simple hardware

» Pretty unpredictable - makes it hard to make real-time

guarantees
41
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Replacement Policies (Con't)

4 LRU (Least Recently Used):
> Replace page that hasn't been used for the longest time

» Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

» Seems like LRU should be a good approximation to MIN.
% How to implement LRU? Use a list!

Page 7

Page 1

Page 2

\ 4
\ 4

Head—|Page 6

\ 4

Tail (LRV)
» On each use, remove page from list and place at head
» LRU page is at tall
4 Problems with this scheme for paging?

» Need to know immediately when each page used so that can
change position in list...

» Many instructions for each hardware access
4 In practice, people approximate LRU (more later) 42
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Example: FIFO

4 Suppose we have 3 page frames, 4 virtual pages,
and following reference stream:
>»ABCABDADBCB

4 Consider FIFO Page replacement:

A|lB|C|A| B|D|/A|D|B|C|B
AlA AIA|AD DI/ D|D|C]|C
B|B|B|B|B|A|JA| A AA
c|cjc|jcj;jc|c|B|B|B

» FIFO: 7 faults.

» When referencing D, replacing A is bad choice, since
need A again right away
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Example: MIN (Optimal)

# Suppose we have the same reference stream:
>»ABCABDADBCB

4 Consider MIN Page replacement:

A|lB|C|A|B|D|A|D|B|C|B
A|lA|IA|/A|AIAA|IA|A|C|C
B|B|B|B|B|B|B|B|B|B
c|Cc|Cc|D| D|D|D|D|D

> MIN: 5 faults

» Where will D be brought in? Look for page not referenced
farthest in future.

# What will LRU do?

» Same decisions as MIN here, but won't always be true!
44
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When will LRU perform badly?

4 Consider the following: ABCDABCDABCD
4 LRU Performs as follows (same as FIFO here):

A/lB|C|DIA|B|C|D|/A|B|C|D
A/lA|lA|/ D/ D DjCc|C|C|B|B|B
B(B|B|A|lA|A|D/D|D|C|C
c|c|CcC|B|B|B|A|A|A|D
> Every reference is a page fault!
4 MIN Does much better:

A/lB|C| DIA|B|C|D|/A|B|C|D
AlA|lA/A/A/A/A|IA|/A|B|B|B
B(B|/B|B|B|C|C|C|C|C|C

C|D DD/ D|D|D|D|D|D
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Graph of Page Faults Versus The
Number of Frames

S N R >
— T T 1T

number of page faults

[ R N« T ¢

1 1 1 1 1 1
1 2 3 4 5 6
number of frames

4 One desirable property: When you add memory
the miss rate goes down
» Does this always happen?
» Seems like it should, right?

4 No: BeLady’s anomaly

» Certain replacement algorithms (FIFO) don’t have this
obvious property!
46
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Adding Memory Doesn't Always Help Fault Rate

4 Does adding memory reduce number of page faults?
» Yes for LRU and MIN
> Not necessarily for FIFO! (Called Belady's anomaly)
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Thrashing

4 If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:

> low CPU utilization

» operating system thinks that it needs to increase the degree of
multiprogramming

» another process added to the system

4 Thrashing = a process is busy swapping pages in and out

»

thrashing

CPU utilization
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degree of multiprogramming 48
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