ALisdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Chapter 9 ~ 10:
Memory Management

F &% (Chen-Chieh Wang)
ccwang@mail.ee.ncku.edu.tw

System Programming, Spring 2010

o
)
o
o
3
—
3
o®
S
-t
(@)
—h
D
o
(@]
-t
=
0
=L
m
>
=,
>
(W
o
=y
>
S
-
o
>
<
Q
=5
o
-
=
<
o
=3
a8,
-t
~<

Outline

4 Background (address translation)
4 Segmentation

% Paging

4 Virtual Memory

4 Page Replacement

2
System Programming, Spring 2010

ALisdaAlun piyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Virtualizing Resources

% Physical Reality: Different Processes/Threads
share the same hardware
» Need to multiplex CPU (CPU scheduling)
> Need to multiplex use of Memory (Today)
» Need to multiplex disk and devices

4 Why worry about memory sharing?
» The complete working state of a process and/or kernel is
defined by its data in memory (and registers)
» Consequently, cannot just let different threads of control
use the same memory

> Probably don't want different threads to even have

access to each other's memory (protection) 5

System Programming, Spring 2010

o
)
o
o
3
—+
3
o®
S
-t
(@)
—h
A
o
(@]
—+
=
0
=L
m
>
=,
>
o
o
=y
>
S
-
o
=3
Y
()
=
o
-
=
<
o®
=3
o
—+
~<

Multi-step Processing of a Program for Execution

4 Preparation of a program for source

program

execution involves components at:
» Compile time (i.e. “"gcc”) }
caompiler or compile

» Link/Load time (unix "Id" does link) assembler time

» Execution time (e.g. dynamic libs)
module

4 Addresses can be bound to final
values anywhere in this path e

modules

» Depends on hardware support Inkage
> Also depends on operating system it
4 Dynamic Libraries
. . . . load load
> Linking postponed until execution ; time
system
» Small piece of code, stub, used to ibrary
locate the appropriate memory- o
resident library routine dynanical
> Stub replaces itself with the il ' l
i sl TN executio
address of the routine, and dynamic | binary precuter
. linking memory Lo
executes routine image time) 4

System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—h
oy
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
By
o
3
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Dynamic Loading

4 Routine is not loaded until it is called

4 Better memory-space utilization; unused routine is
never loaded

Useful when large amounts of code are needed to
handle infrequently occurring cases

No special support from the operating system is
required implemented through program design

5

System Programming, Spring 2010

AL1sdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Dynamic Linking

4 Linking postponed until execution time

4 Small piece of code, sfub, used to locate the
appropriate memory-resident library routine

Stub replaces itself with the address of the routine,
and executes the routine

4 Operating system needed to check if routine is in
processes’ memory address

4 Dynamic linking is particularly useful for libraries
4 System also known as shared libraries

6

System Programming, Spring 2010

Recall: Uniprogramming

% Uniprogramming (no Translation or Protection)

> Application always runs at same place in physical
memory since only one application at a time

» Application can access any physical address

. OXFFFFFFFF
Operating
System x 7))
<%
N wn
™ 9
T O
L
>
Application
0x00000000

» Application given illusion of dedicated machine by giving
it reality of a dedicated machine

4 Of course, this doesn't help us with multithreading -

System Programming, Spring 2010

ALisdaAun piIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Multiprogramming (First Version)

Multiprogramming without Translation or Protection
» Must somehow prevent address overlap between threads

. OXFFFFFFFF
Operating %

System
Application2 | 0x00020000

Applicationt | 00000000

» Trick: Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)

® Everything adjusted to memory location of program
® Translation done by a linker-loader
® \Was pretty common in early days

With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS

o
)
o
o
3
—
3
o
S
-t
o
—+
oy
(W
(@]
=t
=
0
=
m
>
=,
>
o
o
=y
>
S
-
()
=3
Y
Q
=3
o
-
=
<
o
=3
o
—
~<

System Programming, Spring 2010

o
)
o
o
3
—
=]
o
S
-t
o
=+
oy
®
(@]
=t
-
0
=
m
>
=,
>
o
o
3.
>
S
-
o
3
Y
Q
2.
o
c
=
<
o
=3
o
—+
~<

Multiprogramming (Version with Protection)

4 Can we protect programs from each other without
translation?

_ OXFFFFFFFF
Operating

System

«———]LimitAddr=0x10000

Application2| 0x00020000— BaseAddr=0x20000

Applicationl

0x00000000

> Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area

® [f user tries to access an illegal address, cause an error
» During switch, kernel loads new base/limit from TCB
® User not allowed to change base/limit registers

9
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Simple Segmentation: Base and Bounds

Base
Virtual |

Address

DRAM

Physical
Limit —> Address

Yes: Error!

Can use base & bounds/limit for dynamic address
translation (Simple form of "segmentation”):
> Alter every address by adding "base”
» Generate error if address bigger than limit
4 This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
» Program gets continuous region of memory

» Addresses within program do not have to be relocated when
program placed in different region of DRAM
10

System Programming, Spring 2010

o
)
©
o
3
—+
=]
o®
=3
=
(e}
—"
U
o
(9]
—t
2
(%)
2
m
=3
=
>
o
o
=
>
S
-n
o
=]
K
Q
=5
o
-
=
<
o
-3
o
-t
~<

Memory-Management Unit (MMU)

4 Hardware device that maps virtual to physical address

4 In MMU scheme, the value in the relocation register is added
to every address generated by a user process at the time it is

sent to memory

4 The user program deals with /ogical addresses; it never sees
the real/physical addresses

logical
address

relocation
register

physical
address

CPU
346

()

w

MMU

14346

memory

1
System Programming, Spring 2010

ALisdaAlun piIyn-bua4 ‘buiuaauibul |p214492|3 40 Juawidpdaq

Issues with simple segmentation method

4 Fragmentation problem
» Not every process is the same size
» Over time, memory space becomes fragmented
#4 Hard to do inter-process sharing
» Want to share code segments when possible
» Want to share memory between processes
» Helped by providing multiple segments per process

% Need enough physical memory for every process

12
System Programming, Spring 2010

o
)
o
o
3
—
=]
o®
S
-t
o
—h
il
o
(@]
=t
-
0
2
m
>
=,
>
o
o
3.
>
S
)
o
3
<
Q
=
o
c
=
<
o
=3
a,
-t
~<

Dynamic Storage-Allocation Problem

4 How to satisfy a request of size nfrom a list of free
holes
> First-fit: Allocate the firsthole that is big enough

> Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size
® Produces the smallest leftover hole

> Worst-fit: Allocate the /argesthole; must also search
entire list

® Produces the largest leftover hole

13

System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Fragmentation

¥4 External Fragmentation — total memory space
exists to satisfy a request, but it is not contiguous

Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

4 Reduce external fragmentation by compaction
» Shuffle memory contents to place all free memory
together in one large block
» Compaction is possible only if relocation is dynamic, and
is done at execution time

> 1/0O problem
® Latch job in memory while it is involved in 1/0
® Do 1/O only into OS buffers

14

System Programming, Spring 2010

o
)
o
o
3
—+
=]
o®
S
-t
o
—"
U
o
(@]
—+
-
0
2
m
>
=,
>
o
o
3.
>
S
-
o
3
<
()
=
o
c
=
<
o®
=3
&2
—+
~<

Multiprogr'amming (Translation and Protection version 2)

4 Problem: Run multiple applications in such a way
that they are protected from one another

4+ Goals:

> |Isolate processes and kernel from one another
> Allow flexible translation that:
® Doesn't lead to fragmentation
® Allows easy sharing between processes
® Allows only part of process to be resident in physical memory

4 (Some of the required) Hardware Mechanisms:

» General Address Translation

® Flexible: Can fit physical chunks of memory into arbitrary
places in users address space

® Not limited to small number of segments

® Think of this as providing a large number (thousands) of fixed-
sized segments (called "pages”)

» Dual Mode Operation
® Protection base involving kernel/user distinction 15

System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Example of General Address Translation

Code | Data 2 Code
Data Stack 1 Bata
Heap Heop Heap
STGCk Code 1 Sfack
I Stack 2
Prog 1 Prog 2
Virtual Data 1 Virtual
Address Heap 2 Address
Space 1 Code 2 Space 2
[OS code \
Translation Map 1 OS data | Tpanslation Map 2
S heap &
r Stacks
Physical Address Space 16

System Programming, Spring 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
e
0
2
m
>
=,
>
o
o
3.
>
S
-n
o
3
<
Q
=
o
c
=
<
o®
=3
&2
—+
~<

Two Views of Memory

Virtual Physical 4
Addresses Addresses
—>| MMU |

Untranslated read or write

4 Recall: Address Space:
» All the addresses and state a process can touch
» Each process and kernel has different address space
4 Consequently: two views of memory:
» View from the CPU (what program sees, virtual memory)
» View from memory (physical memory)
» Translation box converts between the two views
% Translation helps to implement protection

> If task A cannot even gain access to task B's data, no way for A
to adversely affect B

4 With translation, every program can be linked/loaded into
same region of user address space

» Overlap avoided through translation, not relocation
17

System Programming, Spring 2010

ALisdaAlun piIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Schematic View of Swapping

operating
system

process P,

@swap out

process P,

@SW&D in

user

ERact backing store

main memory

4 Extreme form of Context Switch: Swapping
» In order to make room for next process, some or all of the
previous process is moved to disk
® Likely need to send out complete segments
» This greatly increases the cost of context-switching
4 Desirable alternative?

» Some way to keep only active portions of a process in memory
at any one time

> Need finer granularity control over physical memory
18

System Programming, Spring 2010

Outline

¢ Background (address translation)
Segmentation

4 Paging

4 Virtual Memory

4 Page Replacement

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-n
o
3
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

19
System Programming, Spring 2010

More Flexible Segmentation

1
subroutine stack E 4
symbol
table
2
Sqgrt
oo 3
user view of physical
logical address : memory space memory space:

4 Logical View: multiple separate segments
> Typical: Code, Data, Heap, Stack
» Others: memory sharing, etc
4 Each segment is given region of contiguous memory
» Has a base and limit
» Can reside anywhere in physical memory

ALisdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

20
System Programming, Spring 2010

Implementation of Multi-Segment

Virtual re T Gfrser

Address Error

LimitO
Limitl

Physical
Address

Limi
Base4 |Limit4
Baseb | Limith
Baseb6 | Limit6
Base7 |Limit7

<ZZ<

4 Segment map resides in processor
» Segment number mapped into base/limit pair
» Base added to offset to generate physical address
» Error check catches offset out of range

4 As many chunks of physical memory as entries
» Segment addressed by portion of virtual address

» However, could be included in instruction instead:
® x86 Example: mov [es:bx],ax.

4 What is "V/N"?

» Can mark segments as invalid; requires check as well
21

System Programming, Spring 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=3
m
>
=
>
o
o
3.
>
S
-
o
3
<
Q
=
o
-
=
<
o
=3
Al
—+
<

k4 Example: Four Segments (16 bit addresses)
[a)

=3

3 Seg ID # Base Limit

S [Seg Offset 0 (code) 0x4000 | 0x0800

9 151413 0 1 (data) 0x4800 | 0x1400

%" Virtual Address Format 2 (shared) | OXFOOO | 0x1000

% 3 (stack) 0x0000 | 0x3000

S 0x0000 0x0000

L

m .

M 0x4000 0x4000 Might

S 8 0x4800 —~ be shared
S 0x5C00 ~

. 0x8000

§ - Space for
o 0xC000 Other Apps
=

- 0xF000 Shared with
3 Other Apps
§ Virtual Physical PP
é} Address Space Address Space 22

System Programming, Spring 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
-
on
o
(9]
—+
3.
0
=
m
>
=
>
)
(W
2.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Example of segment translation

0x240 main: la $a0, varx o

Ox244 jal strlen SegID# | Base Limit
0 (code) 0x4000 | 0x0800

0x360 strilen: li $v0, 0 ;count

0x364 loop: Ib $t0, ($ad) 1 (data) | 0x4800 | 0x1400

0x308 B S, B 2 (shared) | 0xFO0O | 0x1000

0x4050 varx dw 0x314159 3 (stack) 0x0000 | 0x3000

Let's simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx"
Move 0x4050 — $a0, Move PC+4—-PC

2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

3. Fetch 0x360. Translated to Physical=0x4360. Get "li $v0,0"
Move 0x0000 — $v0, Move PC+4—PC

4. Fetch 0x364. Translated to Physical=0x4364. Get “Ib $t0,($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050

Translate 0x4050. Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,

Load Byte from 0x4850—$t0, Move PC+4—PC 23

System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Observations about Segmentation

4 Virtual address space has holes
» Segmentation efficient for sparse address spaces

> A correct program should never address gaps (except as
mentioned in moment)

® [f it does, trap to kernel and dump core

4 When it is OK to address outside valid range:
» This is how the stack and heap are allowed to grow
» For instance, stack takes fault, system automatically

increases size of stack

4 Need protection mode in segment table
» For example, code segment would be read-only
» Data and stack would be read-write (stores allowed)
» Shared segment could be read-only or read-write

4 What must be saved/restored on context switch?
» Segment table stored in CPU, not in memory (small)

» Might store all of processes memory onto disk when
switched (called “"swapping")

24
System Programming, Spring 2010

Outline

¢ Background (address translation)
Segmentation

¢ Paging

4 Virtual Memory

4 Page Replacement

25
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-n
o
3
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Paging: Physical Memory in Fixed Size Chunks

4 Problems with segmentation?

» Must fit variable-sized chunks into physical memory

» May move processes multiple times to fit everything

» Limited options for swapping to disk
4 Fragmentation: wasted space

» External: free gaps between allocated chunks

> Internal: don't need all memory within allocated chunks
4 Solution to fragmentation from segments?

> Allocate physical memory in fixed size chunks (“pages”)

» Every chunk of physical memory is equivalent

® Can use simple vector of bits to handle allocation:
00110001110001101 ... 110010

® Each bit represents page of physical memory
1=allocated, 0=free

4 Should pages be as big as our previous segments?
» No: Can lead to lots of internal fragmentation
® Typically have small pages (1K-16K)

» Consequently: need multiple pages/segment ”

System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

How to Implement Paging?

Virtual Address: B/;LU% 1
PageTablePtr ST
- page #2 Physical Address
PageTableSize e 73 VR W e
A page #4 N
Ecrc;‘%srs page #5 |V, R,W Access

Error

% Page Table (One per process)
» Resides in physical memory
» Contains physical page and permission for each virtual page
® Permissions include: Valid bits, Read, Write, etc
% Virtual address mapping
» Offset from Virtual address copied to Physical Address
® Example: 10 bit offset = 1024-byte pages
» Virtual page # is all remaining bits
® Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
® Physical page # copied from table into physical address
» Check Page Table bounds and permissions 27

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
e
0
2
m
>
=
>
o
o
3.
>
S
-n
o
3
Q
Q
=
o
-
=
<
o®
=3
s
—+
<

System Programming, Spring 2010

o .

5 Free Frames (Physical Pages)
=

—+

=]

®

=

+

o free-frame list free-frame list

-+ 14 15

m 13 13 |page 1
o

) 14 14 [page 0
2

I 15 15

g-l 16 16

QO page 1

s page 2 17 17

8 page 3

g. new process 18 18 |page 2
=

- 19 19

®

=

o 20 20 |page 3
()

>

=% 21 new-process page table 21

C

=3 (a) (b)

R

a Before allocation After allocation
i,.‘ 28

System Programming, Spring 2010

What about Sharing?

Virtual Address irfua
(Process A): Page #

PageTablePtrA

page #0 | V.R
page #1

PageTablePtrB

This physical page
appears in address

space of both
processes

Process B Page #

29
System Programming, Spring 2010

o
)
o
o
3
—
3
o
>
-t
(e}
—h
il
o
(9]
—
3.
0
=3
m
>
=
>
)
(W
=.
=
S
-n
o®
=]
<
Q
=5
o
-
=
<
o
=3
a,
-t
~<

U Y ° °

S Simple Page Table Discussion

3

Egl £ oo : _

M 0x00 3 0x00 : % What needs to be switched on
=+ F b _ a context switch?

=N c = 0x04 : > Page table pointer and limit

Ul 04 |9 il i 4 Analysis

S F ; 3 kil : > Pros

= E 1 | oxos I : ® Simple memory allocation
ENE ?\ : ® Easy to Share

i 0x08 = Page oxoc s > Con: What if address space is
S j Table £ sparse?

a : k g ® E.g. on UNIX, code starts at 0,
S F I oxt0 L2 stack starts at (231-1).

= : . X ® With 1K pages, need 4 million
L‘_Qn Virtual ; page table entries!

o E Memory c| > Con: What if table really big?
o K d : ® Not all pages used all the time
Q K . : = would be nice to have

g- : Physwal : working set of page table in
- E Memor'y E memory

E. A NS NI NN NN NN NN NN NN NN NN NN NN EEEEEEEEEEEN $- HOWabOutCOmbining paging
 Example (4 byte pages) and segmentation?

_‘% 30
<

System Programming, Spring 2010

Multi-level Translation

4 What about a tree of tables?
» Lowest level page table = memory still allocated with bitmap
» Higher levels often segmented

% Could have any number of levels. Example (top segment):

Virtual Virtual Virtual
P

Address: [52 7 [ofe |

Base4 | Limit4
Base5 | Limitb
Base6 | Limité
Base7 | Limit7

4 What must be saved/restored on context switch?
» Contents of top-level segment registers (for this example)
» Pointer to top-level table (page table) 31

o
)
o
o
3
—+
=]
o®
S
-t
o
—"
U
o
(@]
—+
-
0
2
m
>
=,
>
o
o
3.
>
S
-n
o
3
<
Q
=
o
c
=
<
o®
=3
&2
—+
~<

System Programming, Spring 2010

Paging Hardware With TLB

4 Making Address Translation Fast
4 A cache for address translations: Translation Lookaside Buffer

logical
address

CPU b

page frame
number number

TLB hit

physical
! address

TLB

p {
TLB miss

f
physical
memory

page table

32
System Programming, Spring 2010

ALIsdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Outline

¢ Background (address translation)
Segmentation

4 Paging

4 Virtual Memory

4 Page Replacement

33
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-n
o
3
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Virtual Memory

Q)
-0 | ~
) SOX
. —
Tabi
able .
____________ Physical Disk
Virtual Mg:\g:r? 50068
Memory 512 M
4 GB

lllusion of Infinite Memory

4 Disk is larger than physical memory =
> In-use virtual memory can be bigger than physical memory
» Combined memory of running processes much larger than
physical memory

34
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

o
)
©
o
3
e
3
o
>
-t
(o]
—h
il
o
(9]
—
e
0
=
m
=
=
>
)
(W
=.
>
S
-
o
=]
K
Q
=5
o
-
=
<
o
-3
a,
-t
~<

Page Tables

Virtual page
number
| Page table
Physical page or Physical memory
Valid disk address
1
1
1
1
.
i >
0|
1 Disk storage
1
[0
[1

35
System Programming, Spring 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |p214422|] 40 Juawidpdaq

Translation Lookaside Buffer (TLB)

TLB

Virtual page Physical page
number Valid Dirty Ref Tag address

| l

Physical memory

alo|a|al—=|=
oo ==
Y [| Y Y PR PR
Wdilss

Page table

Physical page
Valid Dirty Ref or disk address

—
A ::’
1]0(0 Disk storage
1/0]0 — S g
1]0][1 -
0[o[o
~[1]0]1 v =
1[0]1 L
0j0|0 e
11111 § 7/
1171 Y /
ololo]| R
1[1]1 ¢

36
System Programming, Spring 2010

TLB Misses

4 If page is in memory
» Load the PTE from memory and retry
» Could be handled in hardware

® Can get complex for more complicated page table
structures

» Or in software
® Raise a special exception, with optimized handler

If page is not in memory (page fault)
» OS handles fetching the page and updating the page table
» Then restart the faulting instruction

o
)
o
o
3
—+
=]
o®
S
-t
o
—"
U
o
(@]
—+
-
0
2
m
>
=,
>
o
o
3.
>
S
-n
o
3
<
Q
=
o
c
=
<
o®
=3
&2
—+
~<

37
System Programming, Spring 2010

o o °

$ Steps in Handling a Page Fault
3

=] page is on

g backing store

=+ h
o \

—h i w
m

o operating

) system

= ©

8 reference t

=L rap

m ®

Lol AN

= load M BE—

®

S ®

S restart | page table

s instruction

g’ free frame «

S

@ & @

() reset page bring in

g_. table missing page

C

=

<

) physical

0 memory

= 38
~<

System Programming, Spring 2010

AL1sdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Outline

4 Background (address translation)
Segmentation

4 Paging

4 Virtual Memory

¢ Page Replacement

39
System Programming, Spring 2010

o
)
o
o
3
—
3
o®
S
-t
(@)
—h
D
o
(@]
=t
=
0
=L
m
>
=,
>
(W
o
=y
>
S
)
o
=3
<
Q
=5
o
-
=
<
o
3
a8,
-t
~<

What happens if there is no free frame?

% Page replacement — find some page in memory,
but not really in use, swap it out
» algorithm
» performance — want an algorithm which will result in
minimum number of page faults
4 Same page may be brought into memory several
times

40
System Programming, Spring 2010

Page Replacement Policies

4 Why do we care about Replacement Policy?
» Replacement is an issue with any cache
» Particularly important with pages
® The cost of being wrong is high: must go to disk
® Must keep important pages in memory, not toss them out

€ FIFO (First In, First Out)

» Throw out oldest page. Be fair - let every page live in memory
for same amount of time.

» Bad, because throws out heavily used pages instead of
infrequently used pages

MIN (Minimum, Optimal):

> Replace page that won't be used for the longest time

> Great, but can't really know future...

» Makes good comparison case, however
¢ RANDOM:

» Pick random page for every replacement

» Typical solution for TLB's. Simple hardware

» Pretty unpredictable - makes it hard to make real-time

guarantees
41

System Programming, Spring 2010

ALisdaAun piIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Replacement Policies (Con't)

4 LRU (Least Recently Used):
> Replace page that hasn't been used for the longest time

» Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

» Seems like LRU should be a good approximation to MIN.
% How to implement LRU? Use a list!

Page 7

Page 1

Page 2

\ 4
\ 4

Head—|Page 6

\ 4

Tail (LRV)
» On each use, remove page from list and place at head
» LRU page is at tall
4 Problems with this scheme for paging?

» Need to know immediately when each page used so that can
change position in list...

» Many instructions for each hardware access
4 In practice, people approximate LRU (more later) 42

System Programming, Spring 2010

o
)
o
o
3
—+
3
o
S
-t
(@)
—h
A
o
(@]
—+
=
0
=L
m
>
=,
>
o
o
=y
>
S
-
o
=3
Y
()
=
o
-
=
<
o®
=3
o
—+
~<

o
)
o
o
3
—
=]
)
S
-t
o
—h
il
o
(@]
=t
-
0
2
m
>
=,
>
o
o
3.
>
S
-
o
3
Y
Q
=
o
c
=
<
o
=3
a,
-t
~<

Example: FIFO

4 Suppose we have 3 page frames, 4 virtual pages,
and following reference stream:
>»ABCABDADBCB

4 Consider FIFO Page replacement:

A|lB|C|A| B|D|/A|D|B|C|B
AlA AIA|AD DI/ D|D|C]|C
B|B|B|B|B|A|JA| A AA
c|cjc|jcj;jc|c|B|B|B

» FIFO: 7 faults.

» When referencing D, replacing A is bad choice, since
need A again right away

43
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Example: MIN (Optimal)

Suppose we have the same reference stream:
>»ABCABDADBCB

4 Consider MIN Page replacement:

A|lB|C|A|B|D|A|D|B|C|B
A|lA|IA|/A|AIAA|IA|A|C|C
B|B|B|B|B|B|B|B|B|B
c|Cc|Cc|D| D|D|D|D|D

> MIN: 5 faults

» Where will D be brought in? Look for page not referenced
farthest in future.

What will LRU do?

» Same decisions as MIN here, but won't always be true!
44
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o®
S
-t
o
—h
il
o
(@]
—+
-
0
2
m
>
=,
>
o
o
3.
>
S
-
o
3
<
Q
=
o
c
=
<
o®
=3
o
—+
~<

When will LRU perform badly?

4 Consider the following: ABCDABCDABCD
4 LRU Performs as follows (same as FIFO here):

A/lB|C|DIA|B|C|D|/A|B|C|D
A/lA|lA|/ D/ D DjCc|C|C|B|B|B
B(B|B|A|lA|A|D/D|D|C|C
c|c|CcC|B|B|B|A|A|A|D
> Every reference is a page fault!
4 MIN Does much better:

A/lB|C| DIA|B|C|D|/A|B|C|D
AlA|lA/A/A/A/A|IA|/A|B|B|B
B(B|/B|B|B|C|C|C|C|C|C

C|D DD/ D|D|D|D|D|D

45
System Programming, Spring 2010

ALisdaAlun piIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Graph of Page Faults Versus The
Number of Frames

S N R >
— T T 1T

number of page faults

[R N« T ¢

1 1 1 1 1 1
1 2 3 4 5 6
number of frames

4 One desirable property: When you add memory
the miss rate goes down
» Does this always happen?
» Seems like it should, right?

4 No: BeLady’s anomaly

» Certain replacement algorithms (FIFO) don’t have this
obvious property!
46
System Programming, Spring 2010

Adding Memory Doesn't Always Help Fault Rate

4 Does adding memory reduce number of page faults?
» Yes for LRU and MIN
> Not necessarily for FIFO! (Called Belady's anomaly)

47
System Programming, Spring 2010

o

S

[a]

>

=

o

S

Q.

m

o

5

3, 1]12(3[af1]2]5[1|2]3]4]5
= 111114]4]4]5]5]5]5]5 |5
S 2 221]1|1]1]1]3]3]3]| Opragefals
8 3(3(3[2(2(2(2|2 |4 |4
:

g 1]121(3[4af1]2]5[1|2]3]4]5
by 11](1]1(1]1|5|5|5|5|4 |4
5 2 12221212 [1]1]1]1|5]| 10pagefauls
g 3(3(3|3(3(3[2]2]2]2
3 4 |4 |4 |4 (4143|333
E

Thrashing

4 If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:

> low CPU utilization

» operating system thinks that it needs to increase the degree of
multiprogramming

» another process added to the system

4 Thrashing = a process is busy swapping pages in and out

»

thrashing

CPU utilization

AL1sdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

degree of multiprogramming 48

System Programming, Spring 2010

