
D
eparrtm

ent oof Electr Chapter 7: Process Synchronizationrical Eng

Chapter 7: Process Synchronization

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

System Programming, Spring 2010

D
epar Producer-Consumer Problemrtm

ent o

Producer Consumer Problem

Concurrent access to shared data may result in data inconsistencyof Electr
Concurrent access to shared data may result in data inconsistency
Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes
Suppose that we wanted to provide a solution to the producer-rical Eng

Suppose that we wanted to provide a solution to the producer
consumer problem that fills all the buffers. We can do so by having an
integer count that keeps track of the number of full buffers. Initially,
count is set to 0. It is incremented by the producer after it produces a

b ff d i d t d b th ft itineering,

new buffer and is decremented by the consumer after it consumes a
buffer.

, Feng-Ch Producer Consumerhia U
nive

Producer Consumer
Buffer

System Programming, Spring 2010

ersity 2

D
epar Producerrtm

ent o

Producer

of Electr while (true) {rical Eng

/* produce an item and put in nextProduced */
while (count == BUFFER_SIZE)ineering,

; // do nothing

buffer [in] = nextProduced;, Feng-Ch

in = (in + 1) % BUFFER_SIZE;
count++;

hia U
nive

}

System Programming, Spring 2010

ersity 3

D
epar Consumerrtm

ent o

Consumer
of Electr

while (true) {
while (count == 0)

rical Eng

while (count == 0)
; // do nothing

ineering,

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;, Feng-Ch

count--;
/* consume the item in nextConsumed

}hia U
nive

}

System Programming, Spring 2010

ersity 4

D
epar Race Conditionrtm

ent o

Race Condition
count++ could be implemented asof Electr

register1 = count
register1 = register1 + 1
count = register1rical Eng count-- could be implemented as

ineering,

register2 = count
register2 = register2 - 1
count = register2, Feng-Ch

Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = count {register1 = 5}hia U

nive

S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }

System Programming, Spring 2010

ersity 5

S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

D
epar Definitionsrtm

ent o

Definitions
Synchronization: using atomic operations to ensure
cooperation between threadsof Electr
cooperation between threads
 For now, only loads and stores are atomic
 We are going to show that its hard to build anything

useful with only reads and writes

rical Eng

useful with only reads and writes

Mutual Exclusion: ensuring that only one thread does a ineering,

particular thing at a time
 One thread excludes the other while doing its task

, Feng-Ch

Critical Section: piece of code that only one thread can
execute at once. Only one thread at a time will get into this
section of codehia U

nive

section of code.
 Critical section is the result of mutual exclusion
 Critical section and mutual exclusion are two ways of

describing the same thing

System Programming, Spring 2010

ersity 6

describing the same thing.

D
epar Solution to Critical-Section Problemrtm

ent o

Solution to Critical Section Problem

1 Mutual Exclusion - If process Pi is executing in its criticalof Electr

1. Mutual Exclusion If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

rical Eng

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter theineering,

section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3 Bounded Waiting - A bound must exist on the number of times, Feng-Ch

3. Bounded Waiting A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section
and before that request is grantedhia U

nive

and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the N processes

System Programming, Spring 2010

ersity 7

D
epar Where are we going with synchronization?rtm

ent o

Where are we going with synchronization?

Shared ProgramsProgramsof Electr
g

Higher-

g
rical Eng

Locks Semaphores Monitors Send/Receive
g

level
API

ineering,

Load/Store Disable Ints Test&Set Comp&SwapHardware

, Feng-Ch

We are going to implement various higher-level
synchronization primitives using atomic operationshia U

nive

 Everything is pretty painful if only atomic primitives are
load and store

 Need to provide primitives useful at user-level

System Programming, Spring 2010

ersity 8

p p

