
D
eparrtm

ent oof Electr Chapter 6: CPU Schedulingrical Eng

Chapter 6: CPU Scheduling

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

System Programming, Spring 2010

D
epar Outlinertm

ent o

Outline

Basic Conceptsof Electr

Basic Concepts
Scheduling Criteria
S h d li Al ith

rical Eng

Scheduling Algorithms
Other Issues

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 2

D
epar CPU Schedulingrtm

ent o

CPU Scheduling

of Electrrical Engineering,

Earlier, we talked about the life-cycle of a thread
 Active threads work their way from Ready queue to

Running to various waiting queues, Feng-Ch

Running to various waiting queues.
Question: How is the OS to decide which of several
tasks to take off a queue?hia U

nive

 Obvious queue to worry about is ready queue
 Others can be scheduled as well, however

Scheduling: deciding which threads are given

System Programming, Spring 2010

ersity 3

Scheduling: deciding which threads are given
access to resources from moment to moment

D
epar Scheduling Assumptionsrtm

ent o

Scheduling Assumptions

CPU scheduling big area of research in early 70’sof Electr
CPU scheduling big area of research in early 70 s
Many implicit assumptions for CPU scheduling:
 One program per user
 One thread per program

rical Eng

 One thread per program
 Programs are independent

Clearly, these are unrealistic but they simplify the problem so it
b l dineering,

can be solved
 For instance: is “fair” about fairness among users or

programs? , Feng-Ch

 If I run one compilation job and you run five, you get five times
as much CPU on many operating systems

The high-level goal: Dole out CPU time to optimize some
desired parameters of systemhia U

nive

desired parameters of system

USER1 USER2 USER3 USER1 USER2

System Programming, Spring 2010

ersity 4Time

D
epar CPU Burstsrtm

ent oof Electrrical Engineering,, Feng-Ch

Execution model: programs alternate between
bursts of CPU and I/O
 Program typically uses the CPU for some period of timehia U

nive

 Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

 Each scheduling decision is about which job to give to the
CPU f b it t CPU b t

System Programming, Spring 2010

ersity 5
CPU for use by its next CPU burst

D
epar CPU Schedulerrtm

ent o

CPU Scheduler
of Electrrical Engineering,

Selects from among the processes in memory that are ready
to execute, and allocates the CPU to one of them, Feng-Ch

CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready statehia U

nive

g y
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is nonpreemptive

System Programming, Spring 2010

ersity 6

Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive

D
epar Outlinertm

ent o

Outline

Basic Conceptsof Electr

Basic Concepts
Scheduling Criteria
S h d li Al ith

rical Eng

Scheduling Algorithms
Other Issues

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 7

D
epar Scheduling Criteriartm

ent o

Scheduling Criteria

CPU utilization keep the CPU as busy as possibleof Electr

CPU utilization – keep the CPU as busy as possible
Throughput – # of processes that complete their
execution per time unitrical Eng

execution per time unit
Turnaround time – amount of time to execute a
particular processineering,

particular process
Waiting time – amount of time a process has been
waiting in the ready queue, Feng-Ch

g y q
Response time – amount of time it takes from when
a request was submitted until the first response is hia U

nive

produced, not output (for time-sharing environment)

System Programming, Spring 2010

ersity 8

D
epar Optimization Criteriartm

ent o

Optimization Criteria

Maximize CPU utilizationof Electr

Maximize CPU utilization
Maximize throughput
 Throughput related to response time but not identical:rical Eng

 Throughput related to response time, but not identical:
 Minimizing response time will lead to more context

switching than if you only maximized throughput
 T i i i h h

ineering,

 Two parts to maximizing throughput
 Minimize overhead (for example, context-switching)
 Efficient use of resources (CPU, disk, memory, etc), Feng-Ch

(, , y,)

Minimize turnaround time
Minimize waiting time hia U

nive

g
Minimize response time

System Programming, Spring 2010

ersity 9

D
epar Outlinertm

ent o

Outline

Basic Conceptsof Electr

Basic Concepts
Scheduling Criteria
S h d li Al ith

rical Eng

Scheduling Algorithms
Other Issues

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 10

D
epar

First-Come, First-Served (FCFS) Scheduling

rtm
ent o

First-Come, First-Served (FCFS)
 Also “First In, First Out” (FIFO) or “Run until done”of Electr

, ()
Example: Process Burst Time

P1 24
P 3rical Eng

P2 3
P3 3

 Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:ineering,

The Gantt Chart for the schedule is:

P1 P2 P3, Feng-Ch Waiting time for P1 = 0; P2 = 24; P3 = 27
24 27 300

hia U
nive

g 1 2 3
 Average waiting time: (0 + 24 + 27)/3 = 17
 Average turnaround time: (24 + 27 + 30)/3 = 27

C ff t h t b hi d l

System Programming, Spring 2010

ersity 11
Convoy effect: short process behind long process

D
epar FCFS Scheduling (Cont.)rtm

ent o
Example continued:
 Suppose that processes arrive in order: P2 , P3 , P1

Now the Gantt chart for the schedule is:

of Electr

Now, the Gantt chart for the schedule is:

P1P3P2rical Eng Waiting time for P1 = 6; P2 = 0; P3 = 3

63 300

ineering,

 Average waiting time: (6 + 0 + 3)/3 = 3
 Average turnaround time: (3 + 6 + 30)/3 = 13

In second case:, Feng-Ch

In second case:
 average waiting time is much better (before it was 17)
 Average turnaround time is better (before it was 27) hia U

nive

g ()
FIFO Pros and Cons:
 Simple (+)

System Programming, Spring 2010

ersity 12
 Short jobs get stuck behind long ones (-)

D
epar Round Robin (RR)rtm

ent o

FCFS Scheme: Potentially bad for short jobs!
 Depends on submit orderof Electr

 If you are first in line at supermarket with milk, you don’t care
who is behind you, on the other hand…

Round Robin Schemerical Eng

 Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

 After quantum expires, the process is preempted ineering,

q p , p p p
and added to the end of the ready queue.

 n processes in ready queue and time quantum is q
 Each process gets 1/n of the CPU time , Feng-Ch

p g
 In chunks of at most q time units
 No process waits more than (n-1)q time units

Performancehia U
nive

Performance
 q large FCFS
 q small q must be large with respect to context switch,

otherwise overhead is too high (all overhead)

System Programming, Spring 2010

ersity 13

otherwise overhead is too high (all overhead)

D
epar Example of RR with Time Quantum = 20rtm

ent o
Example: Process Burst Time

P1 53
P2 8of Electr

2
P3 68
P4 24

 The Gantt chart is:rical Eng

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153ineering,

 Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P (28 0) (88 48) (125 108) 85

, Feng-Ch

P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

 Average waiting time = (72+20+85+88)/4=66¼
 A t d ti (125+28+153+112)/4 104½hia U

nive

 Average turnaround time = (125+28+153+112)/4 = 104½

Thus, Round-Robin Pros and Cons:
 Better for short jobs, Fair (+)

System Programming, Spring 2010

ersity 14
 Context-switching time adds up for long jobs (-)

D
epar Comparisons between FCFS and Round Robinrtm

ent o

Assuming zero-cost context-switching time, is RR always better
than FCFS?of Electr

Simple example: 10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s
All jobs start at the same time

C l ti Ti

rical Eng

Completion Times: Job # FCFS RR
1 100 991
2 200 992ineering,

… … …
9 900 999

10 1000 1000, Feng-Ch

 Both RR and FCFS finish at the same time
 Average completion time is much worse under RR!

10 1000 1000

hia U
nive

 Bad when all jobs same length
Also: Cache state must be shared between all jobs with RR but
can be devoted to each job with FIFO

System Programming, Spring 2010

ersity 15
 Total time for RR longer even for zero-cost switch!

D
epar

What if we Knew the Future?

rtm
ent o

Shortest Job First (SJF):
 Run whatever job has the least amount of

computation to do

of Electr

computation to do
 Sometimes called “Shortest Time to

Completion First” (STCF)rical Eng

Shortest Remaining Time First (SRTF):
 Preemptive version of SJF: if job arrives and has a

shorter time to completion than the remaining time on theineering,

shorter time to completion than the remaining time on the
current job, immediately preempt CPU

 Sometimes called “Shortest Remaining Time to
C l ti Fi t” (SRTCF)

, Feng-Ch

Completion First” (SRTCF)
These can be applied either to a whole program or
the current CPU burst of each programhia U

nive

p g
 Idea is to get short jobs out of the system
 Big effect on short jobs, only small effect on long ones
 Result is better average response time

System Programming, Spring 2010

ersity 16

 Result is better average response time

D
epar Example of Non-Preemptive SJFrtm

ent o

Process Arrival Time Burst Time
P1 0.0 7
P 2 0 4

of Electr

P2 2.0 4
P3 4.0 1
P4 5.0 4rical Eng

SJF (non-preemptive)

ineering,, Feng-Chhia U
nive

Average waiting time = (0 + 6 + 3 + 7) / 4 = 4
Average turnaround time = (7+10+4+11) / 4 = 8

System Programming, Spring 2010

ersity 17

Average turnaround time = (7+10+4+11) / 4 = 8

D
epar Example of Preemptive SJFrtm

ent o
Process Arrival Time Burst Time

P1 0.0 7
P 2 0 4

of Electr

P2 2.0 4
P3 4.0 1
P4 5.0 4rical Eng

SJF (preemptive)

ineering,, Feng-Chhia U
nive

Average waiting time = (9 + 1 + 0 +2) / 4 = 3
Average turnaround time = (16+5+1+6) / 4 = 7

System Programming, Spring 2010

ersity 18

Average turnaround time = (16+5+1+6) / 4 = 7

D
epar Example to illustrate benefits of SRTFrtm

ent o

CA or B

of Electr C’s C’s C’s rical Eng Three jobs:
 A B b th CPU b d f k

C s
I/O

C s
I/O

C s
I/O

ineering,

 A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

 If only one at a time, C uses 90% of the disk, A or B could
100% f th CPU

, Feng-Ch

use 100% of the CPU
With FIFO:
 Once A or B get in keep CPU for two weekshia U

nive

 Once A or B get in, keep CPU for two weeks
What about RR or SRTF?
 Easier to see with a timeline

System Programming, Spring 2010

ersity 19

D
epar SRTF Example continued:rtm

ent o CA BC

Disk Utilization:
9/201 ~ 4.5%of Electr C’s C’s RR 100ms time slicerical Eng

CABAB C

I/OI/O Disk Utilization:
~90% but lots of

wakeups!ineering,

C’

CABAB… C

C’
RR 1ms time slice

p

, Feng-Ch

C’s
I/O

C’s
I/O

AC AA

Disk Utilization:
90%hia U

nive

C’

AC

C’

AA

SRTF

System Programming, Spring 2010

ersity 20

C’s
I/O

C’s
I/O

D
epar Determining Length of Next CPU Burstrtm

ent o

Determining Length of Next CPU Burst

Can only estimate the lengthof Electr

Can only estimate the length
Can be done by using the length of previous CPU
bursts using exponential averagingrical Eng

bursts, using exponential averaging

burstCPUnexttheforvaluepredicted2

burst CPU of length actual 1.

 1

th
n nt

ineering, :Define 4.

10 , 3.

burst CPU next the for value predicted 2.

 1n

, Feng-Ch

 nnn t 1 1

hia U
nive

System Programming, Spring 2010

ersity 21

D
epar Examples of Exponential Averagingrtm

ent o
 =0
 1 = of Electr

 n+1 = n

 Recent history does not count
 =1rical Eng

 n+1 = tn
 Only the actual last CPU burst countsineering,

If we expand the formula, we get:
n+1 = tn+(1 -) tn-1 + …

+(1)j t +, Feng-Ch

+(1 -)j tn -j + …
+(1 -)n +1 0

Si b th d (1) l th l t 1hia U
nive

Since both and (1 -) are less than or equal to 1,
each successive term has less weight than its
predecessor

System Programming, Spring 2010

ersity 22

p

D
epar Priority Schedulingrtm

ent o

Priority Scheduling
A priority number (integer) is associated with each of Electr

process
The CPU is allocated to the process with the
hi h t i it (ll t i t hi h t i it)

rical Eng

highest priority (smallest integer highest priority)
Preemptive
nonpreemptiveineering,

nonpreemptive
SJF is a priority scheduling where priority is the
predicted next CPU burst time, Feng-Ch

predicted next CPU burst time
Problem Starvation – low priority processes may
never executehia U

nive

never execute
Solution Aging – as time progresses increase the
priority of the process

System Programming, Spring 2010

ersity 23

p y p

D
epar Multilevel Queuertm

ent o

Multilevel Queue

Ready queue is partitioned into separate queues:of Electr

Ready queue is partitioned into separate queues:
 foreground (interactive)
 background (batch)rical Eng

Each queue has its own scheduling algorithm
 foreground – RR
 background FCFSineering,

 background – FCFS
Scheduling must be done between the queues
 Fixed priority scheduling; (i.e., serve all from foreground , Feng-Ch

p y g; (, g
then from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e.,hia U

nive

time which it can schedule amongst its processes; i.e.,
 80% to foreground in RR
 20% to background in FCFS

System Programming, Spring 2010

ersity 24

D
epar Multilevel Feedback Queuertm

ent o

Multilevel Feedback Queue

A process can move between the various queues;of Electr

A process can move between the various queues;
aging can be implemented this way

rical Eng

Multilevel-feedback-queue scheduler defined by the
following parameters:ineering,

following parameters:
 number of queues
 scheduling algorithms for each queue, Feng-Ch

 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will enterhia U

nive

 method used to determine which queue a process will enter
when that process needs service

System Programming, Spring 2010

ersity 25

D
epar Example of Multilevel Feedback Queuertm

ent oof Electrrical Eng Three queues: ineering,

q
 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS, Feng-Ch

 Q2 FCFS
Scheduling
 A new job enters queue Q0 which is served FCFS. When it

gains CPU job receives 8 milliseconds If it does not finish in 8hia U
nive

gains CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and

System Programming, Spring 2010

ersity 26

p , p p
moved to queue Q2.

D
epar

Summary (Scheduling)

rtm
ent o

Scheduling:
 Selecting a waiting process from the ready queue and

allocating the CPU to itof Electr

allocating the CPU to it
FCFS Scheduling:
 Run threads to completion in order of submission
 Pros: Simple

rical Eng

 Pros: Simple
 Cons: Short jobs get stuck behind long ones

Round-Robin Scheduling:
 Gi h th d ll t f CPU ti h itineering,

 Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

 Pros: Better for short jobs
 C P h j b l th

, Feng-Ch

 Cons: Poor when jobs are same length
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
 Run whatever job has the least amount of computation to hia U

nive

do/least remaining amount of computation to do
 Pros: Optimal (average response time)
 Cons: Hard to predict future, Unfair

System Programming, Spring 2010

ersity 27

D
epar Outlinertm

ent o

Outline

Basic Conceptsof Electr

Basic Concepts
Scheduling Criteria
S h d li Al ith

rical Eng

Scheduling Algorithms
Other Issues

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 28

D
epar Multiple-Processor Schedulingrtm

ent o

Multiple Processor Scheduling

of Electrrical Eng

CPU scheduling more complex when multipleineering,

CPU scheduling more complex when multiple
CPUs are available
Homogeneous processors within a multiprocessor, Feng-Ch

Homogeneous processors within a multiprocessor
Load sharing
Asymmetric multiprocessing only one processorhia U

nive

Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating
the need for data sharing

System Programming, Spring 2010

ersity

g
29

D
epar Real-Time Schedulingrtm

ent o

Real Time Scheduling

Hard real time systems required to complete aof Electr

Hard real-time systems – required to complete a
critical task within a guaranteed amount of time
 Resource reservationrical Eng

 Resource reservation

Soft real-time computing – requires that criticalineering,

Soft real-time computing – requires that critical
processes receive priority over less fortunate ones

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 30

Exercises : CPU Scheduling

1. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Processes Burst Time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

(a) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a

nonpreemptive priority (a smaller priority number implies a higher priority), and RR (quantum=1)

scheduling.

(b) What is the turnaround time of each process for each of the scheduling algorithms in part(a)?

(c) What is the waiting time of each process for each of the scheduling algorithm in part(a)?

(d) Which of the schedules in part(a) results in the minimal average waiting time (over all processes)?

2. There are four processes that arrived at a computer at different time. The arrival time, burst time, and

the priority of each process is as the following table: (the time unit is millisecond and a lower priority

number means higher priority)

Process Arrival time Burst time Priority

A 2 6 4

B 0 9 3

C 3 10 2

D 5 5 1

(a) Draw five Gantt charts illustrating the execution of these processes using FCFS, SJF, SRTF,

nonpreemptive priority, and preemptive priority scheduling.

(b) What is the turnaround time of each process for each of the scheduling algorithms in part(a)?

(c) What is the waiting time of each process for each of the scheduling algorithm in part(a)?

(d) Which of the schedules in part(a) results in the minimal average waiting time (over all processes)?

	OS2010_CH06
	OS2010_CH06_Exercises

