o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=8
m
>
e
>
)
(W
=.
>
S
-n
o®
=]
K
Q
=5
o
-
=
<
o
=3
o
-t
<

Chapter 5: Threads

F &% (Chen-Chieh Wang)
ccwang@mail.ee.ncku.edu.tw

System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Outline

¢ Overview
4 Multithreading Models
4 Threading Issues

2
System Programming, Spring 2010

Single and Multithreaded Processes

[ooce | dota W tee | [ovce B o [t |

registers

i stack | [registers registers ” registers l

[stack ‘ | stack [stack ‘

i
thread —» ; g | <+—— thread

single-threaded multithreaded

% Benefits % Thread vs. Process
» Responsiveness » Thread : Light-weight Process (LWP)
» Resource Sharing » Process : Heavy-weight Process (HWP)
» Economy

> Utilization of MP

Architectures 3

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=3
m
>
=
>
)
(W
=.
>
S
-n
o
3
<
Q
=
o
c
=
<
o®
=3
&2
—+
~<

System Programming, Spring 2010

Modern “Lightweight” Process with Threads

Thread: a sequential execution stream within
process (Sometimes called a "Lightweight process")
> Process still contains a single Address Space
» No protection between threads

Multithreading: a single program made up of a
number of different concurrent activities
» Sometimes called multitasking, as in Ada...

Why separate the concept of a thread from that of a
process?
> Discuss the “thread" part of a process (concurrency)
> Separate from the “address space” (Protection)

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

4
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-n
o
3
<
Q
2.
o
c
=
<
o
-3
a,
-t
~<

Concurrency

“Thread" of execution
» Independent Fetch/Decode/Execute loop
» Operating in some Address space

4 Uni-programming: one thread at a time
» MS/DOS, early Macintosh, Batch processing
> Easier for operating system builder
» Does this make sense for personal computers?

4 Multi-programming: more than one thread at a time

» Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X

5
System Programming, Spring 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

The Basic Problem of Concurrency

The basic problem of concurrency involves resources:
» Hardware: single CPU, single DRAM, single I/O devices

» Multiprogramming API: users think they have exclusive
access to shared resources

4 OS Has to coordinate all activity
» Multiple users, I/O interrupts, ...
» How can it keep all these things straight?

4 Basic ldea: Use Virtual Machine abstraction
» Decompose hard problem into simpler ones
> Abstract the notion of an executing program
» Then, worry about multiplexing these abstract machines

6
System Programming, Spring 2010

Modern Technique: SMT/Hyperthreading

¥ Hardware teChanue a) superscalar 6) multiprocessor B) Hyper-

> Exploit natural properties | 2rehitecture architecture Threading
of superscalar processors
to provide illusion of
multiple processors _I

» Higher utilization of
processor resources

4 Can schedule each thread
as if were separate CPU

Time {CPU cycles)

» However, not linear
speedup! | =
> If have multiprocessor, Threado mThread 1
should schedule each
processor first

4 Original technique called "Simultaneous Multithreading” (SMT)
> See http://www.cs.washington.edu/research/smt/

> Alpha, SPARC, Pentium 4 ("Hyperthreading"), Power 5
7
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o®
S
-t
o
—"
U
o
(@]
—+
-
0
2
m
>
=,
>
o
o
3.
>
S
-
o
3
<
()
=
o
c
=
<
o®
=3
&2
—+
~<

Single-Threaded Example

Imagine the following C program:

main() {
ComputeP 1 (“pi.txt”);
PrintClassList(“clist.text”);

}

What is the behavior here?

» Program would never print out class list
» Why? ComputeP| would never finish

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

8
System Programming, Spring 2010

AL1sdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Use of Threads

Version of program with Threads:

main() {
CreateThread(ComputePIl (“pi.txt”));

CreateThread(PrintClassList(“clist.text));
by

4 What does "CreateThread"” do?
» Start independent thread running given procedure

% What is the behavior here?

» Now, you would actually see the class list
» This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

Time > ;

System Programming, Spring 2010

o
)
o
o
3
—+
3
o®
S
-t
(@)
—h
D
o
(@]
—+
=
0
=L
m
>
=,
>
(W
o
=y
>
S
-
o
=3
Y
()
=
o
-
=
<
o®
=3
a
—+
~<

Memory Footprint of Two-Thread Example

If we stopped this program and Stack 1
examined it with a debugger, we .
would see v
» Two sets of CPU registers
> Two sets of Stacks Stack 2 >
4 Questions: { ;35'
» How do we position stacks relative to “
each other? -:.g"
0
o®

» What maximum size should we choose
for the stacks?

» What happens if threads violate this?
» How might you catch violations?

Global Data

Code

10
System Programming, Spring 2010

Per Thread State

4 Each Thread has a Thread Control Block (TCB)

> Execution State: CPU registers, program counter,
pointer to stack

» Scheduling info: State (more later), priority, CPU time
» Accounting Info

» Various Pointers (for implementing scheduling queues)
» Pointer to enclosing process? (PCB)?

» Etc (add stuff as you find a need)

% OS Keeps track of TCBs in protected memory
> In Array, or Linked List, or ...

1
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-n
o
3
<
Q
2.
o
c
=
<
o
-3
a,
-t
~<

Lifecycle of a Thread (or Process)

I/0 or event completion schedumlerdlspatch IO or event wait

As a thread executes, it changes state:
» new: The thread is being created
» ready: The thread is waiting to run
» running: Instructions are being executed
» waiting: Thread waiting for some event to occur
» terminated: The thread has finished execution

"Active" threads are represented by their TCBs
» TCBs organized into queues based on their state

admitted

interrupt exi

ALisdaAlun piIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

12
System Programming, Spring 2010

Multiprocessing vs Multiprogramming

Remember Definitions:
» Multiprocessing = Multiple CPUs
» Multiprogramming = Multiple Jobs or Processes
» Multithreading = Multiple threads per Process

What does it mean to run two threads "“concurrently”?

» Scheduler is free to run threads in any order and
interleaving: FIFO, Random, ...

» Dispatcher can choose to run each thread to completion or
time-slice in big chunks or small chunks

A ﬁ
Multiprocessing g —

Multiprogramming | A | B I C | A | B | C | B |

13
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-n
o
3
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Outline

4 Overview
4 Multithreading Models
4 Threading Issues

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

14
System Programming, Spring 2010

o
)
o
o
3
—
=]
o®
S
-t
o
—"
U
o
(@]
=t
-
0
2
m
>
=,
>
o
o
3.
>
S
-
o
3
<
Q
=
o
c
=
<
o
=3
a,
-t
~<

User and Kernel Threads

User Threads
» Thread management done by user-level threads library
» Three primary thread libraries:
® POSIX Pthreads
® \Win32 threads
® Java threads

Kernel Threads
» Supported by the Kernel

» Examples : Windows XP/2000, Solaris, Linux, Tru64
UNIX, Mac OS X

15
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Multithreading Models

<«—— user thread

Simple One-to-One

Threading Model
<«—Kkernel thread

SR ;

«—— user thread ; ;4— user thread

k | +=—kemel thread <«—— kernel thread

Many-to-One Many-to-Many

16
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
=3
a,
-t
~<

Many-to-One Model

4 Many user-level threads mapped to single kernel
thread

% Examples:

» Solaris Green Threads ; ;
» GNU Portable Threads ; ;husermmd

k | <=— kernel thread

17
System Programming, Spring 2010

AL1sdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

One-to-one Model

% Each user-level thread maps to kernel thread
4 Examples

» Windows NT/XP/2000

» Linux

» Solaris 9 and later

<«—— user thread

18

System Programming, Spring 2010

Many-to-Many Model

Allows many user level threads to be mapped to
many kernel threads

Allows the operating system to create a sufficient
number of kernel threads

S

gq— user thread

<—— kernel thread

19
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=)
>
)
(W
2.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
=3
a,
-t
~<

Outline

Overview
4 Multithreading Models
Threading Issues

20
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

o
)
o
o
-3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=8
m
>
e
>
)
(W
=.
>
S
-n
o®
=]
K
Q
=5
o
-
=
<
o
=3
o
-t
<

Threading Issues

N —

Thread cancella
Signal handling
Thread pools

Thread specific

B~ W
N N N’ N’ N

)

tion

data

Semantics of fork() and exec() system calls

21

System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

1. Semantics of fork() and exec()

4 Does fork() duplicate only the calling thread or

all threads?

[“coie [ota W oo |

‘ registers H registers ” registers ‘

[stack , ' stack ‘ [stack ‘

S 18] ¢

— thread

multithreaded

' multithreaded

[“coie [ota W oo |

‘ registers H registers ” registers ‘

[stack , ' stack ‘ [stack ‘

S 18] ¢

— thread

22

System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-
o
3
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

2. Thread Cancellation

Terminating a thread before it has finished

4 Two general approaches:

» Asynchronous cancellation terminates the
target thread immediately

» Deferred cancellation allows the target thread to
periodically check if it should be cancelled

23
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

3. Signal Handling

Signals are used in UNIX systems to notify a process
that a particular event has occurred

% A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled
4 Options:
» Deliver the signal to the thread to which the signal applies
» Deliver the signal to every thread in the process
» Deliver the signal to certain threads in the process
» Assign a specific thread to receive all signals for the process

24
System Programming, Spring 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=3
m
>
=
>
o
o
3.
>
S
-
o
3
<
Q
=
o
c
=
<
o®
=3
o
—+
~<

High-level Example: Web Server

Y\

——

L N

Server must handle many requests

4 Non-cooperating version:
serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}

4 What are some disadvantages of this technique? 2g

System Programming, Spring 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Threaded Web Server

% Now, use a single process

4 Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
Looks almost the same, but has many advantages:

» Can share file caches kept in memory, results of CGlI
scripts, other things

» Threads are much cheaper to create than processes, so
this has a lower per-request overhead

26
System Programming, Spring 2010

4. Thread Pools

4 Create a number of threads in a pool where they await work
4 Problem with previous version: Unbounded Threads
» When web-site becomes too popular - throughput sinks

4 Instead, allocate a bounded "pool” of worker threads,
representing the maximum level of multiprogramming

ananb

I/‘E\,%\

Thread Pool

27
System Programming, Spring 2010

o
)
o
o
3
—+
=]
o
S
-t
o
—"
Y
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

5. Thread Specific Data

4 Allows each thread to have its own copy of data

4 Useful when you do not have control over the
thread creation process (i.e., when using a thread
pool)

AL1sdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

28
System Programming, Spring 2010

Pthreads

4 A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

API specifies behavior of the thread library,
implementation is up to development of the library

4 Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

o
)
o
o
3
—+
=]
o
S
-t
o
—h
oy
®
(@]
—+
-
0
=
m
>
=,
>
o
o
=.
>
S
By
o
3
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

29
System Programming, Spring 2010

Windows XP Threads

Implements the one-to-one mapping

4 Each thread contains
» A thread id
> Register set
» Separate user and kernel stacks
» Private data storage area

4 The reqister set, stacks, and private storage area
are known as the context of the threads

4 The primary data structures of a thread include:
» ETHREAD (executive thread block)
» KTHREAD (kernel thread block)
» TEB (thread environment block)

30
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Linux Threads

Linux refers to them as tasks rather than threads
4 Thread creation is done through clone() system call

clone() allows a child task to share the address
space of the parent task (process)

31
System Programming, Spring 2010

o
)
o
o
3
—
3
o®
S
-t
(@)
—h
D
o
(@]
=t
=
0
=L
m
>
=)
>
)
o
=.
>
S
-
o
>
<
Q
=5
o
-
=
<
o
3
a8,
-t
~<

Java Threads

4 Java threads are managed by the JVM
4 Java threads may be created by:

» Extending Thread class

» Implementing the Runnable interface

e’Y f.{'s

1/0
is
available

32
System Programming, Spring 2010

