
D
eparrtm

ent oof Electr Chapter 5: Threadsrical Eng

Chapter 5: Threads

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

System Programming, Spring 2010

D
epar Outlinertm

ent o

Outline

Overviewof Electr

Overview
Multithreading Modelsrical Eng

Threading Issues

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 2

D
epar Single and Multithreaded Processesrtm

ent o

Single and Multithreaded Processes

of Electrrical Engineering, , Feng-Ch

Benefits
 R i

Thread vs. Process
 Th d Li ht i ht P (LWP)hia U

nive

 Responsiveness
 Resource Sharing
 Economy

 Thread : Light-weight Process (LWP)
 Process : Heavy-weight Process (HWP)

System Programming, Spring 2010

ersity

3
 Utilization of MP

Architectures

D
epar Modern “Lightweight” Process with Threadsrtm

ent o

Modern Lightweight Process with Threads

Thread: a sequential execution stream withinof Electr

Thread: a sequential execution stream within
process (Sometimes called a “Lightweight process”)
 Process still contains a single Address Spacerical Eng

 No protection between threads

Multithreading: a single program made up of aineering,

Multithreading: a single program made up of a
number of different concurrent activities
 Sometimes called multitasking, as in Ada…, Feng-Ch

Why separate the concept of a thread from that of a
process?hia U

nive

process?
 Discuss the “thread” part of a process (concurrency)
 Separate from the “address space” (Protection)

System Programming, Spring 2010

ersity 4

D
epar Concurrencyrtm

ent o

Concurrency

“Thread” of executionof Electr

Thread of execution
 Independent Fetch/Decode/Execute loop
 Operating in some Address spacerical Eng Uni-programming: one thread at a time
 MS/DOS l M i h B h i

ineering,

 MS/DOS, early Macintosh, Batch processing
 Easier for operating system builder
 Does this make sense for personal computers?, Feng-Ch

p p

Multi-programming: more than one thread at a timehia U
nive

 Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X

System Programming, Spring 2010

ersity 5

D
epar The Basic Problem of Concurrencyrtm

ent o

The Basic Problem of Concurrency

The basic problem of concurrency involves resources:of Electr

The basic problem of concurrency involves resources:
 Hardware: single CPU, single DRAM, single I/O devices
 Multiprogramming API: users think they have exclusive

t h d

rical Eng

access to shared resources

OS Has to coordinate all activityineering,

OS Has to coordinate all activity
 Multiple users, I/O interrupts, …
 How can it keep all these things straight?, Feng-Ch

Basic Idea: Use Virtual Machine abstraction
 Decompose hard problem into simpler oneshia U

nive

 Decompose hard problem into simpler ones
 Abstract the notion of an executing program
 Then, worry about multiplexing these abstract machines

System Programming, Spring 2010

ersity 6

D
epar Modern Technique: SMT/Hyperthreadingrtm

ent o

Hardware technique
 Exploit natural propertiesof Electr

of superscalar processors
to provide illusion of
multiple processorsrical Eng

 Higher utilization of
processor resources

Can schedule each threadineering,

as if were separate CPU
 However, not linear

speedup!, Feng-Ch

speedup!
 If have multiprocessor,

should schedule each
processor firsthia U

nive

processor first
Original technique called “Simultaneous Multithreading” (SMT)
 See http://www.cs.washington.edu/research/smt/

“ ”

System Programming, Spring 2010

ersity 7
 Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5

D
epar Single-Threaded Examplertm

ent o

Single Threaded Example

Imagine the following C program:of Electr

Imagine the following C program:

main() {rical Eng

ComputePI(“pi.txt”);
PrintClassList(“clist.text”);

}ineering,

}

What is the behavior here?, Feng-Ch

 Program would never print out class list
 Why? ComputePI would never finish

hia U
nive

System Programming, Spring 2010

ersity 8

D
epar Use of Threadsrtm

ent o

Use of Threads

Version of program with Threads:of Electr

Version of program with Threads:

main() {
CreateThread(ComputePI(“pi txt”));rical Eng

CreateThread(ComputePI(pi.txt));
CreateThread(PrintClassList(“clist.text”));

}

ineering,

What does “CreateThread” do?
 Start independent thread running given procedure

Wh t i th b h i h ?, Feng-Ch

What is the behavior here?
 Now, you would actually see the class list
 This should behave as if there are two separate CPUs hia U

nive

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

System Programming, Spring 2010

ersity 9
Time

D
epar Memory Footprint of Two-Thread Examplertm

ent o

Memory Footprint of Two Thread Example

If we stopped this program andof Electr

If we stopped this program and
examined it with a debugger, we
would see

Stack 1

rical Eng

 Two sets of CPU registers
 Two sets of Stacks

Questions:
Stack 2

A
ddrineering,

Questions:
 How do we position stacks relative to

each other?

ress Spa, Feng-Ch

 What maximum size should we choose
for the stacks?

 What happens if threads violate this?
Gl b l D t

Heap

ace

hia U
nive

 How might you catch violations?
Code

Global Data

System Programming, Spring 2010

ersity 10

D
epar Per Thread Statertm

ent o

Per Thread State

Each Thread has a Thread Control Block (TCB)of Electr

Each Thread has a Thread Control Block (TCB)
 Execution State: CPU registers, program counter,

pointer to stackrical Eng

 Scheduling info: State (more later), priority, CPU time
 Accounting Info
 V i P i t (f i l ti h d li)

ineering,

 Various Pointers (for implementing scheduling queues)
 Pointer to enclosing process? (PCB)?
 Etc (add stuff as you find a need), Feng-Ch

 Etc (add stuff as you find a need)

OS Keeps track of TCBs in protected memoryhia U
nive

p p y
 In Array, or Linked List, or …

System Programming, Spring 2010

ersity 11

D
epar Lifecycle of a Thread (or Process)rtm

ent oof Electrrical Eng ineering,

As a thread executes, it changes state:
 new: The thread is being created, Feng-Ch

 new: The thread is being created
 ready: The thread is waiting to run
 running: Instructions are being executed
 iti Th d iti f t thia U

nive

 waiting: Thread waiting for some event to occur
 terminated: The thread has finished execution

“Active” threads are represented by their TCBs

System Programming, Spring 2010

ersity 12

p y
 TCBs organized into queues based on their state

D
epar

Multiprocessing vs Multiprogramming

rtm
ent o

Remember Definitions:
 Multiprocessing  Multiple CPUsof Electr

 Multiprocessing  Multiple CPUs
 Multiprogramming  Multiple Jobs or Processes
 Multithreading  Multiple threads per Processrical Eng

What does it mean to run two threads “concurrently”?
 Scheduler is free to run threads in any order and

i t l i FIFO R dineering,

interleaving: FIFO, Random, …
 Dispatcher can choose to run each thread to completion or

time-slice in big chunks or small chunks, Feng-Ch

A
B
C

Multiprocessinghia U
nive

A B C

BA ACB C BM lti i

C

System Programming, Spring 2010

ersity 13

BA ACB C BMultiprogramming

D
epar Outlinertm

ent o

Outline

Overviewof Electr

Overview
Multithreading Modelsrical Eng

Threading Issues

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 14

D
epar User and Kernel Threadsrtm

ent o

User and Kernel Threads

User Threadsof Electr

User Threads
 Thread management done by user-level threads library
 Three primary thread libraries:rical Eng

 POSIX Pthreads
 Win32 threads
 Java threadsineering,

 Java threads

Kernel Threads, Feng-Ch

 Supported by the Kernel
 Examples : Windows XP/2000, Solaris, Linux, Tru64

UNIX, Mac OS Xhia U
nive

UNIX, Mac OS X

System Programming, Spring 2010

ersity 15

D
epar Multithreading Modelsrtm

ent o

Multithreading Models
of Electr

Simple One-to-One
Threading Modelrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 16
Many-to-One Many-to-Many

D
epar Many-to-One Modelrtm

ent o

Many to One Model

Many user level threads mapped to single kernelof Electr

Many user-level threads mapped to single kernel
thread
Examples:rical Eng

Examples:
Solaris Green Threads
GNU Portable Threadsineering,

GNU Portable Threads

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 17

D
epar One-to-one Modelrtm

ent o

One to one Model

Each user level thread maps to kernel threadof Electr

Each user-level thread maps to kernel thread
Examples
Windows NT/XP/2000rical Eng

Windows NT/XP/2000
Linux
Solaris 9 and laterineering,

Solaris 9 and later

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 18

D
epar Many-to-Many Modelrtm

ent o

Many to Many Model

Allows many user level threads to be mapped toof Electr

Allows many user level threads to be mapped to
many kernel threads
Allows the operating system to create a sufficientrical Eng

Allows the operating system to create a sufficient
number of kernel threads

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 19

D
epar Outlinertm

ent o

Outline

Overviewof Electr

Overview
Multithreading Modelsrical Eng

Threading Issues

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 20

D
epar Threading Issuesrtm

ent o

Threading Issues

1) Semantics of fork() and exec() system callsof Electr

1) Semantics of fork() and exec() system calls
2) Thread cancellation
3) Signal handlingrical Eng

3) Signal handling
4) Thread pools
5) Thread specific dataineering,

5) Thread specific data

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 21

D
epar 1 Semantics of fork() and exec()rtm

ent o

1. Semantics of fork() and exec()

Does fork() duplicate only the calling thread orof Electr

Does fork() duplicate only the calling thread or
all threads?

rical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 22

D
epar 2 Thread Cancellationrtm

ent o

2. Thread Cancellation

Terminating a thread before it has finishedof Electr

Terminating a thread before it has finished
Two general approaches:rical Eng

Asynchronous cancellation terminates the
target thread immediately

D f d ll ti ll th t t th d t

ineering,

Deferred cancellation allows the target thread to
periodically check if it should be cancelled

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 23

D
epar 3 Signal Handlingrtm

ent o

3. Signal Handling

Signals are used in UNIX systems to notify a processof Electr

Signals are used in UNIX systems to notify a process
that a particular event has occurred
A signal handler is used to process signalsrical Eng

A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a processineering,

3. Signal is handled
Options:, Feng-Ch

 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the processhia U

nive

 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process

System Programming, Spring 2010

ersity 24

D
epar High-level Example: Web Serverrtm

ent o

g p

of Electrrical Eng ineering, Server must handle many requests, Feng-Ch

Server must handle many requests
Non-cooperating version:

serverLoop() {hia U
nive

con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}

System Programming, Spring 2010

ersity 25
What are some disadvantages of this technique?

D
epar Threaded Web Serverrtm

ent o

Threaded Web Server

Now use a single processof Electr

Now, use a single process
Multithreaded (cooperating) version:
serverLoop() {

rical Eng

serverLoop() {

connection = AcceptCon();

ThreadFork(ServiceWebPage(),connection);ineering,

}

Looks almost the same, but has many advantages:, Feng-Ch

 Can share file caches kept in memory, results of CGI
scripts, other things

 Threads are much cheaper to create than processes sohia U
nive

 Threads are much cheaper to create than processes, so
this has a lower per-request overhead

System Programming, Spring 2010

ersity 26

D
epar 4 Thread Poolsrtm

ent o

4. Thread Pools

Create a number of threads in a pool where they await workof Electr

Create a number of threads in a pool where they await work
Problem with previous version: Unbounded Threads
 When web site becomes too popular – throughput sinksrical Eng

 When web-site becomes too popular – throughput sinks
Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogrammingineering,

representing the maximum level of multiprogramming

M t

q, Feng-Ch

Master
Thread

queue

hia U
nive

Thread Pool

System Programming, Spring 2010

ersity 27

D
epar 5 Thread Specific Datartm

ent o

5. Thread Specific Data

Allows each thread to have its own copy of dataof Electr

Allows each thread to have its own copy of data
Useful when you do not have control over the
thread creation process (i e when using a threadrical Eng

thread creation process (i.e., when using a thread
pool)

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 28

D
epar Pthreadsrtm

ent o

Pthreads

A POSIX standard (IEEE 1003 1c) API for threadof Electr

A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization
API specifies behavior of the thread libraryrical Eng

API specifies behavior of the thread library,
implementation is up to development of the library
Common in UNIX operating systems (Solaris,ineering,

Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 29

D
epar Windows XP Threadsrtm

ent o

Windows XP Threads

Implements the one-to-one mappingof Electr

Implements the one-to-one mapping
Each thread contains
 A thread idrical Eng

 Register set
 Separate user and kernel stacks
 Private data storage areaineering,

 Private data storage area
The register set, stacks, and private storage area
are known as the context of the threads, Feng-Ch

The primary data structures of a thread include:
 ETHREAD (executive thread block)hia U

nive

 KTHREAD (kernel thread block)
 TEB (thread environment block)

System Programming, Spring 2010

ersity 30

D
epar Linux Threadsrtm

ent o

Linux Threads

Linux refers to them as tasks rather than threadsof Electr

Linux refers to them as tasks rather than threads
Thread creation is done through clone() system call
clone() allows a child task to share the addressrical Eng

clone() allows a child task to share the address
space of the parent task (process)

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 31

D
epar Java Threadsrtm

ent o

Java Threads

Java threads are managed by the JVMof Electr

Java threads are managed by the JVM
Java threads may be created by:
Extending Thread classrical Eng

Extending Thread class
 Implementing the Runnable interface

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 32

