o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=8
m
>
e
>
)
(W
=.
>
S
-n
o®
=]
K
Q
=5
o
-
=
<
o
=3
o
-t
<

Chapter 4: Processes

F &% (Chen-Chieh Wang)
ccwang@mail.ee.ncku.edu.tw

System Programming, Spring 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Outline

% Process Concept

4 Process Scheduling

% Operations on Processes

Cooperating Processes

Interprocess Communication

Communication in Client-Server Systems

2
System Programming, Spring 2010

What happens during execution?

Addr 232-1

4 Execution sequence:
» Fetch Instruction at PC

» Decode PC
» Execute (possibly using registers) PC
» Write results to registers/mem PC
> PC = Next Instruction(PC) PC

» Repeat

Addr O

3
System Programming, Spring 2010

o
)
©
o
3
e
3
o
S
-t
(o]
—h
il
o
(9]
—
e
0
=
m
=
=
>
o
o
=
>
S
-n
o
>
<
Q
=7
o
-
=
<
o
-3
o,
-t
~<

Program’s Address Space

Address space = the set of
accessible addresses + state
associated with them:

> For a 32-bit processor there are 232 = l
4 billion addresses

% What happens when you read or

write to an address? 1
» Perhaps Nothing
» Perhaps acts like regular memory
» Perhaps ignores writes

» Perhaps causes I/O operation
® (Memory-mapped I/O)
» Perhaps causes exception (fault) 0

max
stack

heap

data

text

ALISu2A1UN DIYD-BU24 ‘bulua2u1bu] [0214492|3 JO fuawidpdaq

4
System Programming, Spring 2010

g Execution Stack Example

X

g'- ACint tmp) { A: tmp=1

=L ret=exit

%n 'rCtmp<2) B: ret=A+2

S BO:;

é printf(tmp); C: ret=b+1

én + Az tmp=2

§' BO { 51'0Ck ret=C+1

é' CO: Pointer 1

;',P 3} Stack Growth

>

L; C(Z(i)_ & Stack. holds temporary re.sults
S ’ & Permits recursive execution
% b & Crucial to modern languages
S A(1);

S 5

System Programming, Spring 2010

g Providing Illusion of Separate Address Space
o

o

5 Code | Data 2 Code

§ Data Stack 1 Bata

o 1

m Heap Heap Heap

S Stack Code 1 Stack
8 I Stack 2

iy Prog 1 Prog 2

>

S Virtual Data 1 Virtual

g Address Heap 2 Address
Eg' Space 1 Code 2 Space 2
-

S [OS code \

Q

g'. Translation Map 1 OS data | Tpranslation Map 2
- S heap &

< Stacks

= Physical Address Space 6

System Programming, Spring 2010

Process Concept

4 An operating system executes a variety of programs:
» Batch system — jobs
» Time-shared systems — user programs or tasks

% Textbook uses the terms job and process almost
interchangeably

% Process — a program in execution; process execution must
progress in sequential fashion max

A process includes:
» program counter !
» stack
» data section

stack

heap

data

text

0 7
System Programming, Spring 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Process State

admitted interrupt

1/O or event wait

As a process executes, it changes sfafe
» new: The process is being created
» running: Instructions are being executed
» waiting: The process is waiting for some event to occur
» ready: The process is waiting to be assigned to a processor
» terminated: The process has finished execution

8
System Programming, Spring 2010

AL1sdaAlun pIyH-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

o
)
o
o
3
—+
3
o
S
i
(o]
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
2.
o
-
=
<
o
-3
o,
—+
~<

How do we multiplex processes?

% The current state of process held in
a process control block (PCB) :

> This is a "snapshot"” of the execution
and protection environment

» Only one PCB active at a time

Give out CPU time to different
processes (Scheduling):
> Only one process "running” at a time
» Give more time to important processes

process state

process number

program counter

registers

memory limits

list of open files

System Programming, Spring

e @ @
4 Give pieces of resources to different Process
processes (Protection): Control
» Controlled access to non-CPU Block
resources oc
9
System Programming, Spring 2010
g
O °
:d CPU switch from process to process
=]
% process F operating system process P,
9h interrupt or system call
m executing“)
o " R l save state into PCB, | '
o
3". ' idle
o .
o [
= i reload state from PCB, | J
m
3
:(%. (e interrupt or system call Smciling
Eg:. | save state into PCB, |
- L idle
®
S
o [reload state from PCB,]
Q executing ‘\—l
= '
(- .) .
=8 < This is also called a "context switch"
-8 ¢ Code executed in kernel above is overhead
2. 10
~X

2010

o
)
o
o
3
%
3
o
S
—+
(o]
—h
il
o
(9]
—
=y
0
=1
m
>
=
>
)
o
3.
>
S
-n
o®
=]
<
Q
=5
o
-
=
<
o
=3
a,
-t
~<

Outline

% Process Concept

4 Process Scheduling

% Operations on Processes

% Cooperating Processes

Interprocess Communication

¢ Communication in Client-Server Systems

1
System Programming, Spring 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Process Scheduling

4 Multiprogramming :
» To have some process running at all times
» To maximize CPU utilization

Time-sharing :
» To switch the CPU among processes so frequently
» User can interact with each program

12
System Programming, Spring 2010

Process Scheduling Queues

#$ Scheduling Queues
» Job queue — set of all processes in the system

» Ready queue — set of all processes residing in main
memory, ready and waiting to execute

» Device queues — set of processes waiting for an 1/0
device

% Processes migrate among the various queues

13
System Programming, Spring 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Representation of Process Scheduling

—_—
»| ready queue » CPU }
I/0 queue

A
[Y

I/0 request

time slice
expired

interrupt wait for an
occurs interrupt

child fork a
executes child

% PCBs move from queue to queue as they change state

» Decisions about which order to remove from queues are
Scheduling decisions
» Many algorithms possible (few weeks from now)
14

System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

o o o
i Ready Queue and various I/O Device
=

5 Queues

o

3- queue header PCB, PCB,

(o]

=n ready head > > T
m queue izfll registers registers

g L] L]

—+ . .

= . J

I mag head +—=

= tape e

m unit 0 tail =

>

Q.

® {nag head +—=

g. tape w1 PCB PCB,, PCB,

=3 > > "
=2 /

(-{' disk head 1

Lg| unit 0]

()

= PCB;

2 terminal head > —=

g unit 0 tail 1"

< .

o .

o

0n .

= 15
~<

System Programming, Spring 2010

Schedulers

% Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

4 Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU

€ Medium-term scheduler

swap in partially executed swap out
swapped-out processes

—> ready queue » CPU » NG

@1 1/O waiting
N

queues

F

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

16
System Programming, Spring 2010

Schedulers (Cont.)

Short-term scheduler is invoked very frequently (milliseconds)
= (must be fast)

Long-term scheduler is invoked very infrequently (seconds,
minutes) = (may be slow)

% The long-term scheduler controls the degree of
multiprogramming

4 Processes can be described as either:

» |/O-bound process — spends more time doing 1/O than
computations, many short CPU bursts

» CPU-bound process — spends more time doing
computations; few very long CPU bursts

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

17
System Programming, Spring 2010

Context Switch

4 When CPU switches to another process, the system must
save the state of the old process and load the saved state for
the new process

% Context-switch time is overhead; the system does no useful
work while switching

4 Time dependent on hardware support
process Py operating system process P, P o OS P 1

interrupt or system call
eeeee hn_qi : l -

save state into PCB,

reload state from PCB. | ‘

i iy
[idie interrupt or system call executing

ELBM SR L L T
| save state into PCB,]

Ty T - 18

System Programming, Spring 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
-n
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Outline

% Process Concept

4 Process Scheduling

% Operations on Processes

% Cooperating Processes

Interprocess Communication

¢ Communication in Client-Server Systems

19
System Programming, Spring 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Process =? Program

main main Heap

{ {

ks s Stack

AO { AO { A
main

} Program } Process

% More to a process than just a program:

» Program is just part of the process state

20
System Programming, Spring 2010

Process Creation

4 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

¥ Resource sharing

» Parent and children
share all resources

» Children share subset of
parent’s resources
» Parent and child share '

o
o

~.

_—)
fsllush
pid =2 pid=3

dilogin
pld = 251

Xsession

=4
;

Nno resources . pid = 294
sdt_shel
pid = 7778 pld =340
4 Execution / \

pid = 1400

» Parent and children e
execute concurrently

» Parent waits until
children terminate

21
System Programming, Spring 2010

o
)
o
o
3
—+
3
o
S
i
(o]
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
2.
o
-
=
<
o
-3
o,
—+
~<

Process Creation (Cont.)

Address space
» Child duplicate of parent
» Child has a program loaded into it

4 UNIX examples
» fork system call creates new process

» exec system call used after a fork to replace the process’
memory space with a new program

=/;vait

parent resumes

child exec()

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

22
System Programming, Spring 2010

C Program Forking Separate Process

int main()

{
pid_t pid;
[* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);

}

else if (pid == 0) { /* child process */
execlp("/bin/ls", "Is", NULL);

}

else { /* parent process */
[* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
(W
2.
>
S
-
)
>
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

23
System Programming, Spring 2010

Process Termination

4 Process executes last statement and asks the operating
system to delete it (exit)

» Output data from child to parent (via wait)
» Process’ resources are deallocated by operating system

% Parent may terminate execution of children processes (abort)
» Child has exceeded allocated resources
» Task assigned to child is no longer required
» If parent is exiting

® Some operating system do not allow child to continue
if its parent terminates

- All children terminated - cascading termination

ALisdaAlun piIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

24
System Programming, Spring 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
-n
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Outline

% Process Concept

4 Process Scheduling

% Operations on Processes

Cooperating Processes

Interprocess Communication

¢ Communication in Client-Server Systems

25
System Programming, Spring 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Cooperating Processes

% Independent process cannot affect or be affected
by the execution of another process

4 Cooperating process can affect or be affected by
the execution of another process

% Advantages of process cooperation
» Information sharing
» Computation speed-up
» Modularity
» Convenience

26
System Programming, Spring 2010

Producer-Consumer Problem

4 Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer process

» unbounded-bufferplaces no practical limit on the size of the
buffer

» bounded-buffer assumes that there is a fixed buffer size

Producer

27
System Programming, Spring 2010

o
)
o
o
3
%
3
o
S
—+
(o]
—h
il
o
(9]
—
=y
0
=1
m
>
=
>
)
o
3.
>
S
-n
o®
=]
<
Q
=5
o
-
=
<
o
=3
a,
-t
~<

Bounded-Buffer — Shared-Memory Solution

% Shared data

#define BUFFER_SIZE 10
typedef struct {

}item;

item bufferlBUFFER_SIZE];

intin =0;
int out = 0;

4 Solution is correct, but can only use BUFFER_SIZE-1 elements

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

28
System Programming, Spring 2010

Bounded-Buffer — Insert() Method

item nextProduced;

while (true) {
[* Produce an item in nextProduced */
while (((in + 1) % BUFFER_SIZE) == out)
; [* do nothing */
buffer[in] = nextProduced,;
in = (in + 1) % BUFFER_SIZE;

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
(W
2.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

}
29
System Programming, Spring 2010
&
©
‘3 Bounded Buffer — Remove() Method
3
=
&L
%ﬂ item nextConsumed;
S
g while (true) {
m while (in == out)
E ; // do nothing
8
3 nextConsumed = buffer[out];
T out = (out + 1) % BUFFER_SIZE;
Q /* consume the item in nextConsumed */
=.
- }
=3
<
3
3 30

System Programming, Spring 2010

Outline

% Process Concept

4 Process Scheduling

% Operations on Processes

% Cooperating Processes

Interprocess Communication

¢ Communication in Client-Server Systems

31
System Programming, Spring 2010

o
)
o
o
3
%
3
o
S
—+
(o]
—h
il
o
(9]
—
=y
0
=1
m
>
=
>
)
o
3.
>
S
-n
o®
=]
<
Q
=5
o
-
=
<
o
=3
a,
-t
~<

o

o

= Communications Models

=

=

= process A M process A -
AL 'k
8,_ shared —
g' process B M process B d 2
o

m

S

=~ of §1

o

é.

-

S -

o kernel M kernel

Q

‘z (a) (b)

=3 o

3 Message-passing Shared Memory
f_fg 32

System Programming, Spring 2010

Shared Memory Communication

4 Communication occurs by "simply” reading/writing
to shared address page
» Really low overhead communication
» Introduces complex synchronization problems 33

o

()

8

5 Data 2

S Code I

=+ Stack 1

= Data

m Heap 1

8 Heap Code 1

g- Stack oce

o Shared |Stack 2 Shared
5 Data 1 Droq 2
8 Prog 1 rog

;g;' V?:1'gual Heap 2 Virtual
5?" Address Code 2 Address
3 Space 1 Shared Space 2
S

=

S

é.

2

System Programming, Spring 2010

Interprocess Communication (IPC)

Mechanism for processes to communicate and to
synchronize their actions

% Message system — processes communicate with each other
without resorting to shared variables

% |PC facility provides two operations:
» send(message) — message size fixed or variable
> receive(message)
4 If Pand Qwish to communicate, they need to:
» establish a communication link between them
» exchange messages via send/receive
Implementation of communication link
» physical (e.g., shared memory, hardware bus)
» logical (e.g., logical properties)

ALisdaAlun piIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

34
System Programming, Spring 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Implementation Questions

4 How are links established?
Can a link be associated with more than two processes?

4 How many links can there be between every pair of
communicating processes?

4 What is the capacity of a link?

% Is the size of a message that the link can accommodate fixed
or variable?

% |s a link unidirectional or bi-directional?

35
System Programming, Spring 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Direct Communication

4 Processes must name each other explicitly:
» send (P, message) — send a message to process P
> receive (Q, message) — receive a message from process Q

4 Properties of communication link
» Links are established automatically

» A link is associated with exactly one pair of communicating
processes

» Between each pair there exists exactly one link
» The link may be unidirectional, but is usually bi-directional

36
System Programming, Spring 2010

Indirect Communication (1/3)

4 Messages are directed and received from mailboxes (also
referred to as ports)

» Each mailbox has a unique id
» Processes can communicate only if they share a mailbox

4 Properties of communication link

» Link established only if processes share a common
mailbox

» A link may be associated with many processes

» Each pair of processes may share several
communication links

» Link may be unidirectional or bi-directional

37
System Programming, Spring 2010

o
)
o
o
3
—+
3
o
S
i
(o]
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
2.
o
-
=
<
o
-3
o,
—+
~<

Indirect Communication (2/3)

Operations
» create a new mailbox
» send and receive messages through mailbox
» destroy a mailbox

4 Primitives are defined as:
» send (A, message) — send a message to mailbox A
» receive (A, message) — receive a message from mailbox A

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

38
System Programming, Spring 2010

o
)
o
o
3
—+
3
o
S
i
(o]
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
2.
o
-
=
<
o
-3
o,
—+
~<

Indirect Communication (3/3)

4 Mailbox sharing
» P, P, and P;share mailbox A
» P, sends; P,and P;receive
» Who gets the message?

% Solutions

» Allow a link to be associated with at most two processes
» Allow only one process at a time to execute a receive

operation

> Allow the system to select arbitrarily the receiver. Sender

is notified who the receiver was.

39
System Programming, Spring 2010

ALisdaAlun piIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Synchronization

% Message passing may be either blocking or non-blocking

% Blocking is considered synchronous

» Blocking send has the sender block until the message is

received

» Blocking receive has the receiver block until a message is

available
4 Non-blocking is considered asynchronous

» Non-blocking send has the sender send the message and

continue

» Non-blocking receive has the receiver receive a valid

message or null

40
System Programming, Spring 2010

o
)
o
o
3
%
3
o
S
—+
(o]
—h
il
o
(9]
—
=y
0
=1
m
>
=
>
)
o
3.
>
S
T
o
>
<
Q
=7
o
-
=
<
o
=3
a,
-t
~<

Buffering

Queue of messages attached to the link;
implemented in one of three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of 7 messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

41
System Programming, Spring 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Outline

% Process Concept

4 Process Scheduling

% Operations on Processes

% Cooperating Processes

Interprocess Communication

¢ Communication in Client-Server Systems

42
System Programming, Spring 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o
2.
>
o
-n
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Client-Server Communication

Sockets
Remote Procedure Calls
¥ Remote Method Invocation (Java)

43
System Programming, Spring 2010

ALIsdaAluN DIYH-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Sockets

A socket is defined as an enadpoint for communication
4 Concatenation of IP address and port

4 The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

4 Communication consists between a pair of sockets

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80) 4

44
System Programming, Spring 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
-n
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure
calls between processes on networked systems.

Stubs — client-side proxy for the actual procedure

on the server.

The client-side stub locates the server and
marshalls the parameters.

% The server-side stub receives this message,
unpacks the marshalled parameters, and performs

the procedure on the server.

45
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

messages

From: client
To: server
Port: matchmaker|
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server
Port: port P
<contents>

From: RPC
Port: P
To: client
Port: kernel
<output>

serve

r

matchmaker

receives
message,

up answer

looks

matchmaker
replies to client
with port P

daemon

listening to
port P receives

message

daemon
processes

request and

processes
output

send

46
System Programming, Spring 2010

Remote Method Invocation

$ Remote Method Invocation (RMI) is a Java
mechanism similar to RPCs.

4 RMI allows a Java program on one machine to
invoke a method on a remote object.

JVM

JVM

Java -
program

@ remote
object

47
System Programming, Spring 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o
2.
>
o
-n
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Marshalling Parameters

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

‘, P |

stub skeleton
A F 3

A, B, someMethod

boolean return value

48
System Programming, Spring 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

