
D
eparrtm

ent oof Electr Chapter 4: Processesrical Eng

Chapter 4: Processes

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

System Programming, Spring 2010

D
epar Outlinertm

ent o

Outline

Process Conceptof Electr

Process Concept
Process Scheduling
Operations on Processesrical Eng

Operations on Processes
Cooperating Processes
Interprocess Communicationineering,

Interprocess Communication
Communication in Client-Server Systems

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 2

D
epar

What happens during execution?

rtm
ent o

R0
… …

Addr 232-1

of Electr

Fetch
Exec

R31
F0
…

Data1
Data0

I t237

rical Eng

F30
PC

Inst237
Inst236

ineering,

…
Inst5
Inst4Execution sequence:

 Fetch Instruction at PC, Feng-Ch

Inst3
Inst2
I t1

 Fetch Instruction at PC
 Decode
 Execute (possibly using registers)

PC
PC
PC

hia U
nive

Inst1
Inst0

 Write results to registers/mem
 PC = Next Instruction(PC)
 Repeat

PC
PC

System Programming, Spring 2010

ersity 3
Addr 0 Repeat

D
epar Program’s Address Spacertm

ent o

Program s Address Space

Address space  the set ofof Electr

Address space  the set of
accessible addresses + state
associated with them:rical Eng

 For a 32-bit processor there are 232 =
4 billion addresses

What happens when you read orineering,

What happens when you read or
write to an address?
 Perhaps Nothing
 P h lik l

, Feng-Ch

 Perhaps acts like regular memory
 Perhaps ignores writes
 Perhaps causes I/O operationhia U

nive

p / p
 (Memory-mapped I/O)

 Perhaps causes exception (fault)

System Programming, Spring 2010

ersity 4

D
epar Execution Stack Examplertm

ent o A(int tmp) {
A: tmp=1

ret=exitof Electr

if (tmp<2)

B();

ret exit

B: ret=A+2

rical Eng

printf(tmp);

} A: tmp=2
1

C: ret=b+1

ineering,

B() {

C();

ret=C+1Stack
Pointer

k G h

, Feng-Ch

}

C() {

Stack Growth

Stack holds temporary resultshia U
nive

A(2);

}

A(1)

Permits recursive execution
Crucial to modern languages

System Programming, Spring 2010

ersity 5

A(1);

D
epar

Providing Illusion of Separate Address Space

rtm
ent o

Code
Data

Code
Data

Data 2

Stack 1of Electr

Heap
Stack

Data
Heap
Stack

Heap 1

Code 1rical Eng Prog 1
Virtual

Prog 2
Virtual

Stack
Stack 2

Data 1ineering,

Virtual
Address
Space 1

Virtual
Address
Space 2

Heap 2

Code 2, Feng-Ch

Code 2

OS code

OS dataT n l ti n M p 1 T n l ti n M p 2hia U
nive

OS heap &
Stacks

OS dataTranslation Map 1 Translation Map 2

System Programming, Spring 2010

ersity 6Physical Address Space

D
epar Process Conceptrtm

ent o

Process Concept

An operating system executes a variety of programs:of Electr

An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasksrical Eng

Textbook uses the terms job and process almost
interchangeably
Process a program in execution; process execution mustineering,

Process – a program in execution; process execution must
progress in sequential fashion
A process includes:, Feng-Ch

 program counter
 stack
 d t ti

hia U
nive

 data section

System Programming, Spring 2010

ersity 7

D
epar Process Statertm

ent o

Process State
of Electrrical Engineering, As a process executes it changes state, Feng-Ch

As a process executes, it changes state
 new: The process is being created
 running: Instructions are being executedhia U

nive

 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned to a processor
 terminated: The process has finished execution

System Programming, Spring 2010

ersity 8

 terminated: The process has finished execution

D
epar How do we multiplex processes?rtm

ent o The current state of process held in
a process control block (PCB) :of Electr

a process control block (PCB) :
 This is a “snapshot” of the execution

and protection environmentrical Eng

 Only one PCB active at a time

Give out CPU time to differentineering,

Give out CPU time to different
processes (Scheduling):
 Only one process “running” at a time, Feng-Ch

 Give more time to important processes

Give pieces of resources to differenthia U
nive

Give pieces of resources to different
processes (Protection):
 Controlled access to non-CPU

Process
Control
Block

System Programming, Spring 2010

ersity 9
resources Block

D
epar CPU switch from process to processrtm

ent o

CPU switch from process to process
of Electrrical Engineering,, Feng-Chhia U

nive This is also called a “context switch”
C d t d i k l b i h d

System Programming, Spring 2010

ersity 10
Code executed in kernel above is overhead

D
epar Outlinertm

ent o

Outline

Process Conceptof Electr

Process Concept
Process Scheduling
Operations on Processesrical Eng

Operations on Processes
Cooperating Processes
Interprocess Communicationineering,

Interprocess Communication
Communication in Client-Server Systems

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 11

D
epar Process Schedulingrtm

ent o

Process Scheduling

Multiprogramming :of Electr

Multiprogramming :
 To have some process running at all times
 To maximize CPU utilizationrical Eng Time-sharing : ineering,

 To switch the CPU among processes so frequently
 User can interact with each program, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 12

D
epar Process Scheduling Queuesrtm

ent o

Process Scheduling Queues

Scheduling Queuesof Electr

Scheduling Queues
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in mainrical Eng

 Ready queue – set of all processes residing in main
memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O ineering,

device

, Feng-Ch

Processes migrate among the various queues

hia U
nive

System Programming, Spring 2010

ersity 13

D
epar Representation of Process Schedulingrtm

ent oof Electrrical Engineering,, Feng-Ch PCBs move from queue to queue as they change statehia U
nive

PCBs move from queue to queue as they change state
 Decisions about which order to remove from queues are

Scheduling decisions

System Programming, Spring 2010

ersity 14
 Many algorithms possible (few weeks from now)

D
epar Ready Queue and various I/O Device

Q

rtm
ent o

Queues

of Electrrical Engineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 15

D
epar Schedulersrtm

ent o

Schedulers

Long-term scheduler (or job scheduler) – selects whichof Electr

Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue

rical Eng

Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU

ineering,

Medium-term scheduler

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 16

D
epar Schedulers (Cont)rtm

ent o

Schedulers (Cont.)

Short-term scheduler is invoked very frequently (milliseconds) of Electr

S o t te sc edu e s o ed e y eque t y (seco ds)
 (must be fast)

Long-term scheduler is invoked very infrequently (seconds, rical Eng

g y q y (,
minutes)  (may be slow)

The long-term scheduler controls the degree of ineering,

g g
multiprogramming

Processes can be described as either:, Feng-Ch

 I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

 CPU-bound process – spends more time doing hia U
nive

p p g
computations; few very long CPU bursts

System Programming, Spring 2010

ersity 17

D
epar Context Switchrtm

ent o
When CPU switches to another process, the system must
save the state of the old process and load the saved state forof Electr
save the state of the old process and load the saved state for
the new process
Context-switch time is overhead; the system does no useful
work while switching

rical Eng

work while switching
Time dependent on hardware support

P POSineering,

P0 P1OS

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 18

D
epar Outlinertm

ent o

Outline

Process Conceptof Electr

Process Concept
Process Scheduling
Operations on Processesrical Eng

Operations on Processes
Cooperating Processes
Interprocess Communicationineering,

Interprocess Communication
Communication in Client-Server Systems

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 19

D
epar Process =? Programrtm

ent o

Process ? Program

main () main () Heap

of Electr

main ()
{

…;

main ()
{

…;

Heap

rical Eng

}

A() {

}

A() {

Stack

A

ineering,

A() {

…

}

A() {

…

}

A
main

Program Process, Feng-Ch More to a process than just a program:

} }Program Process

hia U
nive

More to a process than just a program:
 Program is just part of the process state

System Programming, Spring 2010

ersity 20

D
epar Process Creationrtm

ent o

Process Creation
Parent process create children processes, which, in turn
create other processes, forming a tree of processesof Electr Resource sharing
 P t d hild

create other processes, forming a tree of processes

rical Eng

 Parent and children
share all resources

 Children share subset of
’

ineering,

parent’s resources
 Parent and child share

no resources, Feng-Ch

Execution
 Parent and childrenhia U

nive

 Parent and children
execute concurrently

 Parent waits until
children terminate

System Programming, Spring 2010

ersity 21

children terminate

D
epar Process Creation (Cont)rtm

ent o

Process Creation (Cont.)

Address spaceof Electr

Address space
 Child duplicate of parent
 Child has a program loaded into itrical Eng UNIX examples
 f k t ll t

ineering,

 fork system call creates new process
 exec system call used after a fork to replace the process’

memory space with a new program, Feng-Ch

y p p g

hia U
nive

System Programming, Spring 2010

ersity 22

D
epar C Program Forking Separate Processrtm

ent o

C Program Forking Separate Process
int main()
{

of Electr

{
pid_t pid;
/* fork a child process */
pid = fork();rical Eng

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);ineering,

exit(-1);
}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);, Feng-Ch

}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);hia U

nive

wait (NULL);
printf ("Child Complete");
exit(0);

}

System Programming, Spring 2010

ersity 23
}

D
epar Process Terminationrtm

ent o

Process Termination

Process executes last statement and asks the operatingof Electr

Process executes last statement and asks the operating
system to delete it (exit)
 Output data from child to parent (via wait)rical Eng

 Process’ resources are deallocated by operating system

Parent may terminate execution of children processes (abort)ineering,

Parent may terminate execution of children processes (abort)
 Child has exceeded allocated resources
 Task assigned to child is no longer required, Feng-Ch

g g q
 If parent is exiting

Some operating system do not allow child to continue
if it t t i t

hia U
nive

if its parent terminates
- All children terminated - cascading termination

System Programming, Spring 2010

ersity 24

D
epar Outlinertm

ent o

Outline

Process Conceptof Electr

Process Concept
Process Scheduling
Operations on Processesrical Eng

Operations on Processes
Cooperating Processes
Interprocess Communicationineering,

Interprocess Communication
Communication in Client-Server Systems

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 25

D
epar Cooperating Processesrtm

ent o

Cooperating Processes

Independent process cannot affect or be affectedof Electr

Independent process cannot affect or be affected
by the execution of another process

rical Eng

Cooperating process can affect or be affected by
the execution of another process

ineering,

Advantages of process cooperation
 Information sharing, Feng-Ch

 Information sharing
 Computation speed-up
 Modularityhia U

nive

 Convenience

System Programming, Spring 2010

ersity 26

D
epar Producer-Consumer Problemrtm

ent o

Producer Consumer Problem

Paradigm for cooperating processes producer processof Electr

Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the

b ff

rical Eng

buffer
 bounded-buffer assumes that there is a fixed buffer size

ineering,, Feng-Ch

Producer Consumer
Bufferhia U

nive

Buffer

System Programming, Spring 2010

ersity 27

D
epar Bounded-Buffer – Shared-Memory Solutionrtm

ent o

Bounded Buffer Shared Memory Solution

Shared dataof Electr
Shared data

#define BUFFER_SIZE 10
t d f t t {

rical Eng

typedef struct {
. . .

} item;ineering,

} ;

item buffer[BUFFER_SIZE];
i t i 0, Feng-Ch

int in = 0;
int out = 0;

hia U
nive

Solution is correct, but can only use BUFFER_SIZE-1 elements

System Programming, Spring 2010

ersity 28

D
epar Bounded-Buffer – Insert() Methodrtm

ent o

Bounded Buffer Insert() Method

of Electr

item nextProduced;

rical Eng

while (true) {

/* Produce an item in nextProduced */ineering,

/ Produce an item in nextProduced /

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */, Feng-Ch

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;hia U
nive

}

System Programming, Spring 2010

ersity 29

D
epar Bounded Buffer – Remove() Methodrtm

ent o

Bounded Buffer Remove() Method
of Electr

item nextConsumed;

rical Eng

while (true) {
while (in == out)

; // do nothingineering,

; // do nothing

nextConsumed = buffer[out];, Feng-Ch

out = (out + 1) % BUFFER_SIZE;

/* consume the item in nextConsumed */hia U
nive

/ consume the item in nextConsumed /
}

System Programming, Spring 2010

ersity 30

D
epar Outlinertm

ent o

Outline

Process Conceptof Electr

Process Concept
Process Scheduling
Operations on Processesrical Eng

Operations on Processes
Cooperating Processes
Interprocess Communicationineering,

Interprocess Communication
Communication in Client-Server Systems

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 31

D
epar Communications Models rtm

ent o

Communications Models
of Electrrical Engineering,, Feng-Chhia U

nive Message-passing Shared Memory

System Programming, Spring 2010

ersity 32

g p g Shared Memory

D
epar

Shared Memory Communication

rtm
ent o

Data 2
Stack 1

Code
Data

Code
Dataof Electr

Heap 1
Code 1

Data
Heap
St k

Data
Heap
Stackrical Eng

Stack 2
Data 1

Stack
Shared

Stack
Shared

ineering,

Prog 1
Virtual
Address

Prog 2
Virtual
Address

Data 1
Heap 2
Code 2, Feng-Ch

Address
Space 1

Address
Space 2

Code 2
Shared

C i ti b “ i l ” di / itihia U
nive

Communication occurs by simply” reading/writing
to shared address page
 Really low overhead communication

System Programming, Spring 2010

ersity 33

 Really low overhead communication
 Introduces complex synchronization problems

D
epar Interprocess Communication (IPC)rtm

ent o

Interprocess Communication (IPC)

Mechanism for processes to communicate and toof Electr

Mechanism for processes to communicate and to
synchronize their actions
Message system – processes communicate with each other

ith t ti t h d i bl

rical Eng

without resorting to shared variables
IPC facility provides two operations:
 send(message) – message size fixed or variableineering,

 send(message) message size fixed or variable
 receive(message)

If P and Q wish to communicate, they need to:, Feng-Ch

 establish a communication link between them
 exchange messages via send/receive

I l t ti f i ti li k

hia U
nive

Implementation of communication link
 physical (e.g., shared memory, hardware bus)
 logical (e g logical properties)

System Programming, Spring 2010

ersity 34

 logical (e.g., logical properties)

D
epar Implementation Questionsrtm

ent o

Implementation Questions

How are links established?of Electr

How are links established?
Can a link be associated with more than two processes?
How many links can there be between every pair ofrical Eng

How many links can there be between every pair of
communicating processes?
What is the capacity of a link?ineering,

Is the size of a message that the link can accommodate fixed
or variable?
I li k idi ti l bi di ti l?, Feng-Ch

Is a link unidirectional or bi-directional?

hia U
nive

System Programming, Spring 2010

ersity 35

D
epar Direct Communicationrtm

ent o

Direct Communication

Processes must name each other explicitly:of Electr

Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive (Q, message) – receive a message from process Qrical Eng Properties of communication link
 Li k t bli h d t ti ll

ineering,

 Links are established automatically
 A link is associated with exactly one pair of communicating

processes, Feng-Ch

p
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directionalhia U

nive

System Programming, Spring 2010

ersity 36

D
epar Indirect Communication (1/3)rtm

ent o

Indirect Communication (1/3)

Messages are directed and received from mailboxes (alsoof Electr

Messages are directed and received from mailboxes (also
referred to as ports)
 Each mailbox has a unique idrical Eng

 Processes can communicate only if they share a mailbox

Properties of communication linkineering,

Properties of communication link
 Link established only if processes share a common

mailbox, Feng-Ch

 A link may be associated with many processes
 Each pair of processes may share several

communication linkshia U
nive

communication links
 Link may be unidirectional or bi-directional

System Programming, Spring 2010

ersity 37

D
epar Indirect Communication (2/3)rtm

ent o

Indirect Communication (2/3)

Operationsof Electr

Operations
 create a new mailbox
 send and receive messages through mailboxrical Eng

 destroy a mailbox

P i iti d fi d

ineering,

Primitives are defined as:
 send (A, message) – send a message to mailbox A
 receive (A, message) – receive a message from mailbox A, Feng-Ch

(, g) g

hia U
nive

System Programming, Spring 2010

ersity 38

D
epar Indirect Communication (3/3)rtm

ent o

Indirect Communication (3/3)

Mailbox sharingof Electr

Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receiverical Eng

 Who gets the message?

S l ti

ineering,

Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive, Feng-Ch

 Allow only one process at a time to execute a receive
operation

 Allow the system to select arbitrarily the receiver. Sender
i tifi d h th i

hia U
nive

is notified who the receiver was.

System Programming, Spring 2010

ersity 39

D
epar Synchronizationrtm

ent o

Synchronization

Message passing may be either blocking or non-blockingof Electr

Message passing may be either blocking or non-blocking
Blocking is considered synchronous
 Blocking send has the sender block until the message isrical Eng

 Blocking send has the sender block until the message is
received

 Blocking receive has the receiver block until a message is ineering,

available
Non-blocking is considered asynchronous
 N bl ki d h th d d th d, Feng-Ch

 Non-blocking send has the sender send the message and
continue

 Non-blocking receive has the receiver receive a validhia U
nive

 Non blocking receive has the receiver receive a valid
message or null

System Programming, Spring 2010

ersity 40

D
epar Bufferingrtm

ent o

Buffering

Queue of messages attached to the link;of Electr

Queue of messages attached to the link;
implemented in one of three ways
1 Zero capacity 0 messagesrical Eng

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messagesineering,

p y g g
Sender must wait if link full

3. Unbounded capacity – infinite length
S d it

, Feng-Ch

Sender never waits

hia U
nive

System Programming, Spring 2010

ersity 41

D
epar Outlinertm

ent o

Outline

Process Conceptof Electr

Process Concept
Process Scheduling
Operations on Processesrical Eng

Operations on Processes
Cooperating Processes
Interprocess Communicationineering,

Interprocess Communication
Communication in Client-Server Systems

, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 42

D
epar Client-Server Communicationrtm

ent o

Client Server Communication

Socketsof Electr

Sockets
Remote Procedure Callsrical Eng

Remote Method Invocation (Java)

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 43

D
epar Socketsrtm

ent o

Sockets

A socket is defined as an endpoint for communicationof Electr

A socket is defined as an endpoint for communication
Concatenation of IP address and port
The socket 161.25.19.8:1625 refers to port 1625 on host rical Eng

161.25.19.8
Communication consists between a pair of sockets

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 44

D
epar Remote Procedure Callsrtm

ent o

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedureof Electr

Remote procedure call (RPC) abstracts procedure
calls between processes on networked systems.
Stubs client side proxy for the actual procedure

rical Eng

Stubs – client-side proxy for the actual procedure
on the server.
The client side st b locates the ser er andineering,

The client-side stub locates the server and
marshalls the parameters.
Th id t b i thi, Feng-Ch

The server-side stub receives this message,
unpacks the marshalled parameters, and performs
the procedure on the serverhia U

nive

the procedure on the server.

System Programming, Spring 2010

ersity 45

D
epar Execution of RPCrtm

ent o

Execution of RPC
of Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 46

D
epar Remote Method Invocationrtm

ent o

Remote Method Invocation

Remote Method Invocation (RMI) is a Javaof Electr

Remote Method Invocation (RMI) is a Java
mechanism similar to RPCs.
RMI allows a Java program on one machine torical Eng

RMI allows a Java program on one machine to
invoke a method on a remote object.

ineering,, Feng-Chhia U
nive

System Programming, Spring 2010

ersity 47

D
epar Marshalling Parametersrtm

ent o

Marshalling Parameters
of Electrrical Engineering,, Feng-Chhia U

nive

System Programming, Spring 2010

ersity 48

