o
)
o
o
-3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=8
m
>
e
>
)
(W
=.
>
S
-n
o®
=]
K
Q
=5
o
-
=
<
o
=3
o
-t
<

Chapter 4
The Processor (Part 4)

F &% (Chen-Chieh Wang)
ccwang@mail.ee.ncku.edu.tw

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Outline

4.9 EXxceptions

4.10 Parallelism and Advanced ILP

4.14 Concluding Remarks

2

Computer Organization and Architecture, Fall 2010

o

o

O °

| Exception

3

> . .

8 ¥ Whatis an exception ? 11

AL > Unexpected events 12 INT
—

S > Change PC 13

8 14 taken

ull # Interrupt 15

L%- > External, usually 16

o > 1/0 devices wish to |7 J1

3 communicate with CPU 19 J2

ay J3

& ¢ Exception

L return

) > Internal or external

[a]

% -

S JR

)

9,

Qa- 3

Computer Organization and Architecture, Fall 2010

Vector interrupt vs. status register

Use a status register to hold exception causes
» Single entry point: 0x8000_0180

¥ Use vectored interrupt

> The address to which the control is transferred is determined
by the cause of the exception

Exception type Exception vector address (in hex)
undefined instruction 0x8000_0000
arithmetic overflow 0x8000_0180

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

4

Computer Organization and Architecture, Fall 2010

Additional registers

$ Exception Program Counter (EPC):

» a 32-bit register used to hold the address of the
affected instruction

& Cause:

» a register used to record the cause of the
exception

® 0: undefined instruction (can not recognize the opcode)
® 1: arithmetic overflow

5

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Exceptions in a Pipeline

Another form of control hazard

4 Consider overflow on add in EX stage
> Prevent $1 from being clobbered

. . , 40 sub $11, $2, $4
» Complete previous instructions 44 and $12. $2. $5
> Flush add and subsequent instructions 48 or $13, $2, $6
> Set Cause and EPC register values 4C add $1, $2, $1
> Transfer control to handler 50 slt $15, $6, $7

54 Iw $16, 50($7)

4 Similar to mispredicted branch
» Use much of the same hardware

6

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Pipeline with Exceptions

FX.Flush

IF.Flush

fm\

|
NE U@g&w' =] Ul &

Iy =19 *5
i

=] =&

. —
>M.l.l
20002180 —1— Pe| Instruction
Dala
-
reaToTy
Sig -

L L] — L _"|

N Lo

@

o
)
o
o
=3
—+
3
o
>
-t
(e}
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
(W
2.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

7
Computer Organization and Architecture, Fall 2010
&
E Exception Properties
3
%* 4 Restartable exceptions
Fn: » Pipeline can flush the instruction
§+ » Handler executes, then returns to the instruction
3 ®Refetched and executed from scratch
§ 4 PC saved in EPC register
3 > ldentifies causing instruction
S » Actually PC + 4 is saved
LE_ ®Handler must adjust
c
=

Computer Organization and Architecture, Fall 2010

% Exception on add in

Exception Example

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

IF.Flush

o
o
g
3
S
m 40 sub $11, $2, $4
8 44 and $12, $2, $5
2 48 or $13, $2, $6
2 4C add $1, $2, $1
3 50 st $15, $6, $7
§ o4 fw $16, 50(%$7)
B 4 Handler
g 80000180 sw $25, 1000($0)
Q 80000184 sw $26, 1004($0)
c
é.
E: ;
Computer Organization and Architecture, Fall 2010
Exception Example
lw $16, 50($7) slt $15, $6, $7

add §1, $2, 1 ! ar$i1s,... and$12, ...

EX.Flush .

AL

Clock &

EXY/MEM
] 10

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Exception Example

sw 525, 1000{$0) . bubble (nmop) ! bubble , bubble ,ar$13,...
! : EX.Flush i
IF.Aush :
ID.Rust !
] 1
1 ' i
|D;'Ex r::I 0 I i
g L

':f [l loos M

= u

8 lo—{ox] o0~

N

[FEr

Computer Organization and Architecture, Fall 2010

o
)
o
o
-3
—+
=]
o®
S
i
(o]
—h
o
o
(9]
—+
3.
0
=
m
>
=
>
o
o
=.
>
S
m
o
>
<
Q
=5
o
-
=
<
o
-3
o,
—+
~<

Multiple Exceptions

% Pipelining overlaps multiple instructions
» Could have multiple exceptions at once

4 Simple approach: deal with exception from earliest
instruction
» Flush subsequent instructions
> “Precise” exceptions

% |In complex pipelines
» Multiple instructions issued per cycle
» Out-of-order completion
» Maintaining precise exceptions is difficult!

12

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—+
3
o
S
i
(o]
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
o
3.
>
S
-n
o
>
<
Q
2.
o
-
=
<
o
-3
o,
—+
~<

Imprecise Exceptions

% Just stop pipeline and save state
» Including exception cause(s)
% Let the handler work out
» Which instruction(s) had exceptions
» Which to complete or flush
® May require “manual” completion

% Simplifies hardware, but more complex handler
software

Not feasible for complex multiple-issue
out-of-order pipelines

13

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Outline

4.9 Exceptions
4.10 Parallelism and Advanced ILP
4.14 Concluding Remarks

14

Computer Organization and Architecture, Fall 2010

Instruction Level Parallelism (ILP)

Two methods to increase ILP

» Increase the pipeline depth
® More operations being overlapped

» Multiple issue

® Static multiple issue: determined at compile time

€ VLIW: Very Long Instruction Word
(relies more on compiler technology)

€ EPIC: Explicitly Parallel Instruction Computer
® Dynamic multiple issue: determined during execution
€ Superscalar

4 All modern processors are superscalar and issue
multiple instructions usually with some limitations

15

Computer Organization and Architecture, Fall 2010

o
)
o
o
-3
—+
3
o
S
i
(o]
—h
il
o
(9]
—+
=y
0
=1
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
=7
o
-
=
<
o
-3
o,
—+
~<

A static two-issue datapath

|
* | 3 “ . 1 T
u
: I .
LU~
[M
wld Registers u .

10 501l u Lo |pell| Istruction L — 2] ;

memory =

La! X | While
data
/ \ B i Data
memory

sign el

i ox it U 1

\ || sign T

T |extend) e———

U Addrass

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

16

Computer Organization and Architecture, Fall 2010

Hazards in the Dual-Issue MIPS

% More instructions executing in parallel

¢ EX data hazard

» Forwarding avoided stalls with single-issue

» Now can’t use ALU result in load/store in same packet

® add $t0, $sO0, $si
load $s2, 0($t0)

® Split into two packets, effectively a stall
4 Load-use hazard
> Still one cycle use latency, but now two instructions

% More aggressive scheduling required

17

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Scheduling Example

4 Schedule this for dual-issue MIPS

Loop: Iw $tO0, 0($sl) # $tO=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer

bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: Iw $t0, 0(%$sl) 1
addi $s1, $s1,-4
addu $t0, $t0, $s2
bne $sl1, $zero, Loop |sw $t0, 4($sl)

IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

hlW|N

ALIsdaAlun piIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

18

Computer Organization and Architecture, Fall 2010

Loop Unrolling

% Replicate loop body to expose more parallelism
» Reduces loop-control overhead

Use different registers per replication
» Called “register renaming”
» Avoid loop-carried “anti-dependencies”
@ Store followed by a load of the same register
®Aka “name dependence”
- Reuse of a register name

19

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Loop Unrolling Example

ALU/branch Load/store cycle
Loop: | addi $s1, $s1,-16 Iw $t0, 0($sl) 1
nop Iw $tl, 12($sl) 2
addu $t0, $t0, $s2 Iw $t2, 8($sl) 3
addu $t1, $tl, $s2 Iw $t3, 4($sl) 4
addu $t2, $t2, $s2 sw $t0, 16($sl) 5
addu $t3, $t4, $s2 sw $t1, 12($sl) 6
nop sw $t2, 8(%$sl) 7
bne $sl1, $zero, Loop |sw $t3, 4($sl) 8

IPC=14/8 =1.75

» Closer to 2, but at cost of registers and code size

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

20

Computer Organization and Architecture, Fall 2010

Out-of-order execution

Instruction Data
EY cache cache
: C——
Branch Instruction queue
prediction
pe Register file
Decode/dispatch unit
Reservation Reservation Reservation Reservation Reservation Reservation
station station station station station station

Store
Branch Integer Integer FIua}ir:g Complex
sl integer
1

Commit
unit

% Reorder Buffer
% Branch Prediction i
Speculation

21

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=3
m
>
=
>
)
(W
=.
>
S
-n
o®
=]
<
Q
=7
o
-
=
<
o
-3
o,
—+
~<

Register Renaming

% Reservation stations and reorder buffer effectively
provide register renaming

¢ On instruction issue to reservation station
> If operand is available in register file or reorder buffer
® Copied to reservation station
® No longer required in the register; can be overwritten
> If operand is not yet available

® |t will be provided to the reservation station by a
function unit

® Register update may not be required

22

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Speculation

“Guess” what to do with an instruction
» Start operation as soon as possible

» Check whether guess was right
® |f so, complete the operation
@ If not, roll-back and do the right thing

% Common to static and dynamic multiple issue

4 Examples
» Speculate on branch outcome
® Roll back if path taken is different

» Speculate on load
® Roll back if location is updated

23

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Compiler/Hardware Speculation

4 Compiler can reorder instructions
» e.g., move load before branch

» Can include “fix-up” instructions to recover from incorrect
guess

4 Hardware can look ahead for instructions to execute
» Buffer results until it determines they are actually needed
» Flush buffers on incorrect speculation

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

24

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Speculation and Exceptions

% What if exception occurs on a speculatively
executed instruction?

> e.g., speculative load before null-pointer check

¢ Static speculation
» Can add ISA support for deferring exceptions

% Dynamic speculation

» Can buffer exceptions until instruction
completion (which may not occur)

25

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Speculation

4 Predict branch and continue issuing
» Don’t commit until branch outcome determined
4 Load speculation
» Avoid load and cache miss delay
®Predict the effective address
®Predict loaded value
@ oad before completing outstanding stores
®Bypass stored values to load unit
» Don’t commit load until speculation cleared

26

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Why Do Dynamic Scheduling?

% Why not just let the compiler schedule code?
% Not all stalls are predicable

» e.g., cache misses
% Can’t always schedule around branches

» Branch outcome is dynamically determined

Different implementations of an ISA have different
latencies and hazards

27

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 JO Juawidodaq

Does Multiple Issue Work?

% Yes, but not as much as we’d like
% Programs have real dependencies that limit ILP
Some dependencies are hard to eliminate
» e.g., pointer aliasing
% Some parallelism is hard to expose
» Limited window size during instruction issue

% Memory delays and limited bandwidth
» Hard to keep pipelines full

% Speculation can help if done well

28

Computer Organization and Architecture, Fall 2010

Power Efficiency

$ Complexity of dynamic scheduling and speculations
requires power

4 Multiple simpler cores may be better

Microprocessor | Year Clock Pipeline | Issue [Out-of-order/ | Cores | Power
Rate Stages | width | Speculation
i486 1989 25MHz 5 1 No 1 5w
Pentium 1993 66MHz 5 2 No 1 10w
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 | 2,000MHz 22 3 Yes 1 75W
P4 Prescott 2004 | 3,600MHz 31 3 Yes 1 103w
Core 2006 | 2,930MHz 14 4 Yes 2 75W
UltraSparc IlI 2003 | 1,950MHz 14 4 No 1 90w
UltraSparc T1 2005 | 1,200MHz 6 1 No 8 70W

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o
2.
>
o
-n
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

29

Computer Organization and Architecture, Fall 2010

The Opteron X4 Microarchitecture

Intruction prefsch
Baanch 'mu:““ 72 ph);sical
| - N | registers
¥

| |

Floating
Irﬁ‘iﬂcr Integer Integer point
Muli Ii-cr ALU ALU Adder
P /SSE

|] I I

I Load'Sions quews I

Data

cachs

Commit

30

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

o
)
o
o
3
—+
3
o
S
i
(o]
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
2.
o
-
=
<
o
-3
o,
—+
~<

The Opteron X4 Pipeline Flow

% For integer operations

RISGC-operation Reorder
gueus Reorder buffer
Instruction Decode buffer Scheduling
Fet:h ana allocation + H—n + dispatch Execution
= translate roqister unit
renaming
Number of ©
cock cydes 2 3 2 2 1 2

FP is 5 stages longer

Up to 106 RISC-ops in progress
Bottlenecks

Complex instructions with long dependencies

Branch mispredictions

Memory access delays

31

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Outline

4.9 Exceptions
410 Parallelism and Advanced ILP
4.14 Concluding Remarks

32

Computer Organization and Architecture, Fall 2010

Concluding Remarks

% ISA influences design of datapath and control
¢ Datapath and control influence design of ISA
4 Pipelining improves instruction throughput
using parallelism
» More instructions completed per second
» Latency for each instruction not reduced
% Hazards: structural, data, control
% Multiple issue and dynamic scheduling (ILP)

» Dependencies limit achievable parallelism
» Complexity leads to the power wall

33

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
%
3
o
S
—+
(o]
—h
il
o
(9]
—
=y
0
=1
m
>
=
>
)
o
3.
>
S
T
o
>
<
Q
=7
o
-
=
<
o
=3
a,
-t
~<

Summary

Pipelining does not improve latency, but does improve throughput

o

o
©

o

S

-+

3

o

S

-+

o

b 0 A

m 3 L Multi-issue with

o o & beeply pipelined deep pipelined

Q s

g- § Multicycle Pipelined Multi-issue pipelined
=N O 3

g'l @ Single-cycle

(Y} >
S’ Slower =1 Faster

8 Instructions per cycle (IPC = 1/CPI)

L

=

((a] A

- E Multi-issue with deep pipelined
() I

Lg © § L. .

i @ Multi-issue pipelined
- 3
o £ Single-cycle Pipefined Deeply pipelined
=]

(- 5

= & Muiticycle

(§ N
a 1 Several "
= Use latency in instructions 34
~

Computer Organization and Architecture, Fall 2010

