
D
eparrtm

ent oof Electr Chapter 4rical Eng

The Processor (Part 4)

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

Computer Organization and Architecture, Fall 2010

D
epar Outlinertm

ent o

Outline

4.9 Exceptionsof Electr

4.10 Parallelism and Advanced ILP
4.14 Concluding Remarksrical Eng

g

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 2

D
epar Exception rtm

ent o

Exception

What is an exception ? I1of Electr

What is an exception ?
 Unexpected events
 Change PC

I2
I3

INT

rical Eng Interrupt
 External usually

I4
I5
I6

taken

ineering,

 External, usually
 I/O devices wish to

communicate with CPU

I6
I7
I9

J1
J2, Feng-Ch

Exception
 Internal or external

J3
.returnhia U

nive

 Internal or external
.
JR

Computer Organization and Architecture, Fall 2010

ersity 3

JR

D
epar Vector interrupt vs status registerrtm

ent o

Vector interrupt vs. status register

Use a status register to hold exception causesof Electr

Use a status register to hold exception causes
 Single entry point: 0x8000_0180

rical Eng

Use vectored interrupt
 The address to which the control is transferred is determined

by the cause of the exceptionineering,

by the cause of the exception

Exception type Exception vector address (in hex), Feng-Ch

undefined instruction 0x8000_0000
arithmetic overflow 0x8000_0180

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 4

D
epar Additional registersrtm

ent o

Additional registers

Exception Program Counter (EPC):of Electr

Exception Program Counter (EPC):
a 32-bit register used to hold the address of the

affected instructionrical Eng

affected instruction

Cause:ineering,

Cause:
a register used to record the cause of the

exception, Feng-Ch

p
 0: undefined instruction (can not recognize the opcode)
 1: arithmetic overflow

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 5

D
epar Exceptions in a Pipelinertm

ent o

Exceptions in a Pipeline
Another form of control hazardof Electr

Consider overflow on add in EX stage
 Prevent $1 from being clobberedrical Eng

 Prevent $1 from being clobbered
 Complete previous instructions
 Flush add and subsequent instructions
 Set Cause and EPC register values

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1 $2 $1ineering,

 Set Cause and EPC register values
 Transfer control to handler

Si il t i di t d b h

4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…, Feng-Ch

Similar to mispredicted branch
 Use much of the same hardware

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 6

D
epar Pipeline with Exceptionsrtm

ent o

Pipeline with Exceptions

of Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 7

D
epar Exception Propertiesrtm

ent o

Exception Properties

Restartable exceptionsof Electr

Pipeline can flush the instruction
Handler executes, then returns to the instructionrical Eng

Refetched and executed from scratch

ineering,

PC saved in EPC register
 Identifies causing instruction, Feng-Ch

g
Actually PC + 4 is saved
Handler must adjusthia U

nive

Handler must adjust

Computer Organization and Architecture, Fall 2010

ersity 8

D
epar Exception Examplertm

ent o

Exception Example

Exception on add inof Electr

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13 $2 $6

rical Eng

48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7ineering,

54 lw $16, 50($7)
…

H dl, Feng-Ch

Handler
80000180 sw $25, 1000($0)
80000184 sw $26 1004($0)hia U

nive

80000184 sw $26, 1004($0)
…

Computer Organization and Architecture, Fall 2010

ersity 9

D
epar Exception Examplertm

ent o

Exception Example
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity

D
epar Exception Examplertm

ent o

Exception Example

of Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity
D

epar Multiple Exceptionsrtm
ent o

Multiple Exceptions

Pipelining overlaps multiple instructionsof Electr

 Could have multiple exceptions at once

rical Eng

Simple approach: deal with exception from earliest
instruction
 Flush subsequent instructionsineering,

 Flush subsequent instructions
 “Precise” exceptions

, Feng-Ch

In complex pipelines
 Multiple instructions issued per cyclehia U

nive

 Out-of-order completion
 Maintaining precise exceptions is difficult!

Computer Organization and Architecture, Fall 2010

ersity 12

D
epar Imprecise Exceptionsrtm

ent o

Imprecise Exceptions

Just stop pipeline and save stateof Electr

 Including exception cause(s)
Let the handler work outrical Eng

 Which instruction(s) had exceptions
 Which to complete or flushineering,

 May require “manual” completion

Simplifies hardware, but more complex handler , Feng-Ch

software
Not feasible for complex multiple-issuehia U

nive

out-of-order pipelines

Computer Organization and Architecture, Fall 2010

ersity 13

D
epar Outlinertm

ent o

Outline

4.9 Exceptionsof Electr

4.10 Parallelism and Advanced ILP
4.14 Concluding Remarksrical Eng

g

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 14

D
epar Instruction Level Parallelism (ILP)rtm

ent o

Instruction Level Parallelism (ILP)
Two methods to increase ILPof Electr

 Increase the pipeline depth
 More operations being overlappedrical Eng

 Multiple issue
 Static multiple issue: determined at compile timeineering,

p p
 VLIW: Very Long Instruction Word

(relies more on compiler technology)
 EPIC: Explicitly Parallel Instruction Computer, Feng-Ch

 p y p
 Dynamic multiple issue: determined during execution

 Superscalar

hia U
nive

All modern processors are superscalar and issue
multiple instructions usually with some limitations

Computer Organization and Architecture, Fall 2010

ersity 15

D
epar A static two-issue datapathrtm

ent o

A static two issue datapath
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 16

D
epar Hazards in the Dual-Issue MIPSrtm

ent o

Hazards in the Dual Issue MIPS

More instructions executing in parallelof Electr

EX data hazard
 Forwarding avoided stalls with single-issuerical Eng

 Now can’t use ALU result in load/store in same packet
 add $t0, $s0, $s1
load $s2, 0($t0)ineering,

$, ($)

 Split into two packets, effectively a stall

Load-use hazard, Feng-Ch

 Still one cycle use latency, but now two instructions
More aggressive scheduling requiredhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 17

D
epar Scheduling Examplertm

ent o

Scheduling Example
Schedule this for dual-issue MIPSof Electr

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2rical Eng

sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0ineering,

ALU/branch Load/store cycle

Loop: nop lw $t0 0($s1) 1

, Feng-Ch

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3hia U
nive

bne $s1, $zero, Loop sw $t0, 4($s1) 4

IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Computer Organization and Architecture, Fall 2010

ersity 18

(p)

D
epar Loop Unrollingrtm

ent o

Loop Unrolling

Replicate loop body to expose more parallelismof Electr

Reduces loop-control overhead

rical Eng

Use different registers per replication
Called “register renaming”ineering,

g g
Avoid loop-carried “anti-dependencies”
Store followed by a load of the same register, Feng-Ch

y g
Aka “name dependence”

- Reuse of a register namehia U
nive

Reuse of a register name

Computer Organization and Architecture, Fall 2010

ersity 19

D
epar Loop Unrolling Examplertm

ent o

Loop Unrolling Example

ALU/branch Load/store cycle

of Electr

ALU/branch Load/store cycle

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2rical Eng

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2 $t2 $s2 sw $t0 16($s1) 5ineering,

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7, Feng-Ch IPC = 14/8 = 1 75

bne $s1, $zero, Loop sw $t3, 4($s1) 8

hia U
nive

IPC = 14/8 = 1.75
 Closer to 2, but at cost of registers and code size

Computer Organization and Architecture, Fall 2010

ersity 20

D
epar Out-of-order executionrtm

ent o

Out of order execution

of Electrrical Engineering,, Feng-Chhia U
nive

Reorder Buffer
Branch Prediction

Computer Organization and Architecture, Fall 2010

ersity 21
Speculation

D
epar Register Renamingrtm

ent o

Register Renaming
Reservation stations and reorder buffer effectively

id i t i

of Electr

provide register renaming

On instr ction iss e to reser ation station

rical Eng

On instruction issue to reservation station
 If operand is available in register file or reorder buffer

Copied to reservation stationineering,

p
No longer required in the register; can be overwritten

 If operand is not yet available
 It ill be pro ided to the reser ation station b a, Feng-Ch

 It will be provided to the reservation station by a
function unit

Register update may not be requiredhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 22

D
epar Speculationrtm

ent o

Speculation

“Guess” what to do with an instructionof Electr

 Start operation as soon as possible
 Check whether guess was right

 If l t th ti

rical Eng

 If so, complete the operation
 If not, roll-back and do the right thing

Common to static and dynamic multiple issueineering,

Common to static and dynamic multiple issue
Examples
 Speculate on branch outcome, Feng-Ch

p
 Roll back if path taken is different

 Speculate on load
f

hia U
nive

 Roll back if location is updated

Computer Organization and Architecture, Fall 2010

ersity 23

D
epar Compiler/Hardware Speculationrtm

ent o

Compiler/Hardware Speculation

Compiler can reorder instructionsof Electr

 e.g., move load before branch
 Can include “fix-up” instructions to recover from incorrect

guess

rical Eng

guess

Hardware can look ahead for instructions to executeineering,

Hardware can look ahead for instructions to execute
 Buffer results until it determines they are actually needed
 Flush buffers on incorrect speculation, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 24

D
epar Speculation and Exceptionsrtm

ent o

Speculation and Exceptions
What if exception occurs on a speculatively

t d i t ti ?

of Electr

executed instruction?
e.g., speculative load before null-pointer check

rical Eng Static speculation
Can add ISA support for deferring exceptionsineering,

Can add ISA support for deferring exceptions

Dynamic speculation, Feng-Ch

Dynamic speculation
Can buffer exceptions until instruction

completion (which may not occur)hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 25

D
epar Speculationrtm

ent o

Speculation

Predict branch and continue issuingof Electr

Don’t commit until branch outcome determined
Load speculationrical Eng

Avoid load and cache miss delay
Predict the effective addressineering,

Predict loaded value
Load before completing outstanding stores, Feng-Ch

p g g
Bypass stored values to load unit

Don’t commit load until speculation clearedhia U
nive

Don t commit load until speculation cleared

Computer Organization and Architecture, Fall 2010

ersity 26

D
epar Why Do Dynamic Scheduling?rtm

ent o

Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?of Electr

Not all stalls are predicable
e.g., cache missesrical Eng

g
Can’t always schedule around branches
Branch outcome is dynamically determinedineering,

y y
Different implementations of an ISA have different
latencies and hazards, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 27

D
epar Does Multiple Issue Work?rtm

ent o

Does Multiple Issue Work?

Yes, but not as much as we’d likeof Electr

Programs have real dependencies that limit ILP
Some dependencies are hard to eliminaterical Eng

 e.g., pointer aliasing
Some parallelism is hard to exposeineering,

 Limited window size during instruction issue
Memory delays and limited bandwidth, Feng-Ch

 Hard to keep pipelines full
Speculation can help if done well

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 28

D
epar Power Efficiencyrtm

ent o

Power Efficiency

Complexity of dynamic scheduling and speculations of Electr

requires power
Multiple simpler cores may be betterrical Eng

Microprocessor Year Clock
Rate

Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

ineering,

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W, Feng-Ch

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2,000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3,600MHz 31 3 Yes 1 103W

C 2006 2 930MH 14 4 Y 2 75W

hia U
nive

Core 2006 2,930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1,950MHz 14 4 No 1 90W

UltraSparc T1 2005 1,200MHz 6 1 No 8 70W

Computer Organization and Architecture, Fall 2010

ersity 29

D
epar The Opteron X4 Microarchitecturertm

ent o

The Opteron X4 Microarchitecture
of Electr

72 physical
registers

rical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 30

D
epar The Opteron X4 Pipeline Flowrtm

ent o

The Opteron X4 Pipeline Flow

For integer operationsof Electrrical Engineering,

 FP is 5 stages longer
 Up to 106 RISC-ops in progress, Feng-Ch

 Bottlenecks
 Complex instructions with long dependencies

B h i di tihia U
nive

 Branch mispredictions
 Memory access delays

Computer Organization and Architecture, Fall 2010

ersity 31

D
epar Outlinertm

ent o

Outline

4.9 Exceptionsof Electr

4.10 Parallelism and Advanced ILP
4.14 Concluding Remarksrical Eng

g

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 32

D
epar Concluding Remarksrtm

ent o

Concluding Remarks

ISA influences design of datapath and controlof Electr

Datapath and control influence design of ISA
Pipelining improves instruction throughputrical Eng

g g
using parallelism
 More instructions completed per secondineering,

 Latency for each instruction not reduced
Hazards: structural, data, control
M lti l i d d i h d li (ILP)

, Feng-Ch

Multiple issue and dynamic scheduling (ILP)
 Dependencies limit achievable parallelism
 Complexity leads to the power wallhia U

nive

 Complexity leads to the power wall

Computer Organization and Architecture, Fall 2010

ersity 33

D
epar Summaryrtm

ent o

Summary
Pipelining does not improve latency, but does improve throughputof Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 34

