
D
eparrtm

ent oof Electr Chapter 4rical Eng

The Processor (Part 4)

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

Computer Organization and Architecture, Fall 2010

D
epar Outlinertm

ent o

Outline

4.9 Exceptionsof Electr

4.10 Parallelism and Advanced ILP
4.14 Concluding Remarksrical Eng

g

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 2

D
epar Exception rtm

ent o

Exception

What is an exception ? I1of Electr

What is an exception ?
 Unexpected events
 Change PC

I2
I3

INT

rical Eng Interrupt
 External usually

I4
I5
I6

taken

ineering,

 External, usually
 I/O devices wish to

communicate with CPU

I6
I7
I9

J1
J2, Feng-Ch

Exception
 Internal or external

J3
.returnhia U

nive

 Internal or external
.
JR

Computer Organization and Architecture, Fall 2010

ersity 3

JR

D
epar Vector interrupt vs status registerrtm

ent o

Vector interrupt vs. status register

Use a status register to hold exception causesof Electr

Use a status register to hold exception causes
 Single entry point: 0x8000_0180

rical Eng

Use vectored interrupt
 The address to which the control is transferred is determined

by the cause of the exceptionineering,

by the cause of the exception

Exception type Exception vector address (in hex), Feng-Ch

undefined instruction 0x8000_0000
arithmetic overflow 0x8000_0180

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 4

D
epar Additional registersrtm

ent o

Additional registers

Exception Program Counter (EPC):of Electr

Exception Program Counter (EPC):
a 32-bit register used to hold the address of the

affected instructionrical Eng

affected instruction

Cause:ineering,

Cause:
a register used to record the cause of the

exception, Feng-Ch

p
 0: undefined instruction (can not recognize the opcode)
 1: arithmetic overflow

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 5

D
epar Exceptions in a Pipelinertm

ent o

Exceptions in a Pipeline
Another form of control hazardof Electr

Consider overflow on add in EX stage
 Prevent $1 from being clobberedrical Eng

 Prevent $1 from being clobbered
 Complete previous instructions
 Flush add and subsequent instructions
 Set Cause and EPC register values

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1 $2 $1ineering,

 Set Cause and EPC register values
 Transfer control to handler

Si il t i di t d b h

4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…, Feng-Ch

Similar to mispredicted branch
 Use much of the same hardware

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 6

D
epar Pipeline with Exceptionsrtm

ent o

Pipeline with Exceptions

of Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 7

D
epar Exception Propertiesrtm

ent o

Exception Properties

Restartable exceptionsof Electr

Pipeline can flush the instruction
Handler executes, then returns to the instructionrical Eng

Refetched and executed from scratch

ineering,

PC saved in EPC register
 Identifies causing instruction, Feng-Ch

g
Actually PC + 4 is saved
Handler must adjusthia U

nive

Handler must adjust

Computer Organization and Architecture, Fall 2010

ersity 8

D
epar Exception Examplertm

ent o

Exception Example

Exception on add inof Electr

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13 $2 $6

rical Eng

48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7ineering,

54 lw $16, 50($7)
…

H dl, Feng-Ch

Handler
80000180 sw $25, 1000($0)
80000184 sw $26 1004($0)hia U

nive

80000184 sw $26, 1004($0)
…

Computer Organization and Architecture, Fall 2010

ersity 9

D
epar Exception Examplertm

ent o

Exception Example
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity

D
epar Exception Examplertm

ent o

Exception Example

of Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity
D

epar Multiple Exceptionsrtm
ent o

Multiple Exceptions

Pipelining overlaps multiple instructionsof Electr

 Could have multiple exceptions at once

rical Eng

Simple approach: deal with exception from earliest
instruction
 Flush subsequent instructionsineering,

 Flush subsequent instructions
 “Precise” exceptions

, Feng-Ch

In complex pipelines
 Multiple instructions issued per cyclehia U

nive

 Out-of-order completion
 Maintaining precise exceptions is difficult!

Computer Organization and Architecture, Fall 2010

ersity 12

D
epar Imprecise Exceptionsrtm

ent o

Imprecise Exceptions

Just stop pipeline and save stateof Electr

 Including exception cause(s)
Let the handler work outrical Eng

 Which instruction(s) had exceptions
 Which to complete or flushineering,

 May require “manual” completion

Simplifies hardware, but more complex handler , Feng-Ch

software
Not feasible for complex multiple-issuehia U

nive

out-of-order pipelines

Computer Organization and Architecture, Fall 2010

ersity 13

D
epar Outlinertm

ent o

Outline

4.9 Exceptionsof Electr

4.10 Parallelism and Advanced ILP
4.14 Concluding Remarksrical Eng

g

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 14

D
epar Instruction Level Parallelism (ILP)rtm

ent o

Instruction Level Parallelism (ILP)
Two methods to increase ILPof Electr

 Increase the pipeline depth
 More operations being overlappedrical Eng

 Multiple issue
 Static multiple issue: determined at compile timeineering,

p p
 VLIW: Very Long Instruction Word

(relies more on compiler technology)
 EPIC: Explicitly Parallel Instruction Computer, Feng-Ch

 p y p
 Dynamic multiple issue: determined during execution

 Superscalar

hia U
nive

All modern processors are superscalar and issue
multiple instructions usually with some limitations

Computer Organization and Architecture, Fall 2010

ersity 15

D
epar A static two-issue datapathrtm

ent o

A static two issue datapath
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 16

D
epar Hazards in the Dual-Issue MIPSrtm

ent o

Hazards in the Dual Issue MIPS

More instructions executing in parallelof Electr

EX data hazard
 Forwarding avoided stalls with single-issuerical Eng

 Now can’t use ALU result in load/store in same packet
 add $t0, $s0, $s1
load $s2, 0($t0)ineering,

$, ($)

 Split into two packets, effectively a stall

Load-use hazard, Feng-Ch

 Still one cycle use latency, but now two instructions
More aggressive scheduling requiredhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 17

D
epar Scheduling Examplertm

ent o

Scheduling Example
Schedule this for dual-issue MIPSof Electr

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2rical Eng

sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0ineering,

ALU/branch Load/store cycle

Loop: nop lw $t0 0($s1) 1

, Feng-Ch

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3hia U
nive

bne $s1, $zero, Loop sw $t0, 4($s1) 4

IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Computer Organization and Architecture, Fall 2010

ersity 18

(p)

D
epar Loop Unrollingrtm

ent o

Loop Unrolling

Replicate loop body to expose more parallelismof Electr

Reduces loop-control overhead

rical Eng

Use different registers per replication
Called “register renaming”ineering,

g g
Avoid loop-carried “anti-dependencies”
Store followed by a load of the same register, Feng-Ch

y g
Aka “name dependence”

- Reuse of a register namehia U
nive

Reuse of a register name

Computer Organization and Architecture, Fall 2010

ersity 19

D
epar Loop Unrolling Examplertm

ent o

Loop Unrolling Example

ALU/branch Load/store cycle

of Electr

ALU/branch Load/store cycle

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2rical Eng

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2 $t2 $s2 sw $t0 16($s1) 5ineering,

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7, Feng-Ch IPC = 14/8 = 1 75

bne $s1, $zero, Loop sw $t3, 4($s1) 8

hia U
nive

IPC = 14/8 = 1.75
 Closer to 2, but at cost of registers and code size

Computer Organization and Architecture, Fall 2010

ersity 20

D
epar Out-of-order executionrtm

ent o

Out of order execution

of Electrrical Engineering,, Feng-Chhia U
nive

Reorder Buffer
Branch Prediction

Computer Organization and Architecture, Fall 2010

ersity 21
Speculation

D
epar Register Renamingrtm

ent o

Register Renaming
Reservation stations and reorder buffer effectively

id i t i

of Electr

provide register renaming

On instr ction iss e to reser ation station

rical Eng

On instruction issue to reservation station
 If operand is available in register file or reorder buffer

Copied to reservation stationineering,

p
No longer required in the register; can be overwritten

 If operand is not yet available
 It ill be pro ided to the reser ation station b a, Feng-Ch

 It will be provided to the reservation station by a
function unit

Register update may not be requiredhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 22

D
epar Speculationrtm

ent o

Speculation

“Guess” what to do with an instructionof Electr

 Start operation as soon as possible
 Check whether guess was right

 If l t th ti

rical Eng

 If so, complete the operation
 If not, roll-back and do the right thing

Common to static and dynamic multiple issueineering,

Common to static and dynamic multiple issue
Examples
 Speculate on branch outcome, Feng-Ch

p
 Roll back if path taken is different

 Speculate on load
f

hia U
nive

 Roll back if location is updated

Computer Organization and Architecture, Fall 2010

ersity 23

D
epar Compiler/Hardware Speculationrtm

ent o

Compiler/Hardware Speculation

Compiler can reorder instructionsof Electr

 e.g., move load before branch
 Can include “fix-up” instructions to recover from incorrect

guess

rical Eng

guess

Hardware can look ahead for instructions to executeineering,

Hardware can look ahead for instructions to execute
 Buffer results until it determines they are actually needed
 Flush buffers on incorrect speculation, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 24

D
epar Speculation and Exceptionsrtm

ent o

Speculation and Exceptions
What if exception occurs on a speculatively

t d i t ti ?

of Electr

executed instruction?
e.g., speculative load before null-pointer check

rical Eng Static speculation
Can add ISA support for deferring exceptionsineering,

Can add ISA support for deferring exceptions

Dynamic speculation, Feng-Ch

Dynamic speculation
Can buffer exceptions until instruction

completion (which may not occur)hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 25

D
epar Speculationrtm

ent o

Speculation

Predict branch and continue issuingof Electr

Don’t commit until branch outcome determined
Load speculationrical Eng

Avoid load and cache miss delay
Predict the effective addressineering,

Predict loaded value
Load before completing outstanding stores, Feng-Ch

p g g
Bypass stored values to load unit

Don’t commit load until speculation clearedhia U
nive

Don t commit load until speculation cleared

Computer Organization and Architecture, Fall 2010

ersity 26

D
epar Why Do Dynamic Scheduling?rtm

ent o

Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?of Electr

Not all stalls are predicable
e.g., cache missesrical Eng

g
Can’t always schedule around branches
Branch outcome is dynamically determinedineering,

y y
Different implementations of an ISA have different
latencies and hazards, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 27

D
epar Does Multiple Issue Work?rtm

ent o

Does Multiple Issue Work?

Yes, but not as much as we’d likeof Electr

Programs have real dependencies that limit ILP
Some dependencies are hard to eliminaterical Eng

 e.g., pointer aliasing
Some parallelism is hard to exposeineering,

 Limited window size during instruction issue
Memory delays and limited bandwidth, Feng-Ch

 Hard to keep pipelines full
Speculation can help if done well

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 28

D
epar Power Efficiencyrtm

ent o

Power Efficiency

Complexity of dynamic scheduling and speculations of Electr

requires power
Multiple simpler cores may be betterrical Eng

Microprocessor Year Clock
Rate

Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

ineering,

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W, Feng-Ch

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2,000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3,600MHz 31 3 Yes 1 103W

C 2006 2 930MH 14 4 Y 2 75W

hia U
nive

Core 2006 2,930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1,950MHz 14 4 No 1 90W

UltraSparc T1 2005 1,200MHz 6 1 No 8 70W

Computer Organization and Architecture, Fall 2010

ersity 29

D
epar The Opteron X4 Microarchitecturertm

ent o

The Opteron X4 Microarchitecture
of Electr

72 physical
registers

rical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 30

D
epar The Opteron X4 Pipeline Flowrtm

ent o

The Opteron X4 Pipeline Flow

For integer operationsof Electrrical Engineering,

 FP is 5 stages longer
 Up to 106 RISC-ops in progress, Feng-Ch

 Bottlenecks
 Complex instructions with long dependencies

B h i di tihia U
nive

 Branch mispredictions
 Memory access delays

Computer Organization and Architecture, Fall 2010

ersity 31

D
epar Outlinertm

ent o

Outline

4.9 Exceptionsof Electr

4.10 Parallelism and Advanced ILP
4.14 Concluding Remarksrical Eng

g

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 32

D
epar Concluding Remarksrtm

ent o

Concluding Remarks

ISA influences design of datapath and controlof Electr

Datapath and control influence design of ISA
Pipelining improves instruction throughputrical Eng

g g
using parallelism
 More instructions completed per secondineering,

 Latency for each instruction not reduced
Hazards: structural, data, control
M lti l i d d i h d li (ILP)

, Feng-Ch

Multiple issue and dynamic scheduling (ILP)
 Dependencies limit achievable parallelism
 Complexity leads to the power wallhia U

nive

 Complexity leads to the power wall

Computer Organization and Architecture, Fall 2010

ersity 33

D
epar Summaryrtm

ent o

Summary
Pipelining does not improve latency, but does improve throughputof Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 34

