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Chapter 4
The Processor (Part 2)

F &% (Chen-Chieh Wang)
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Outline

4 A Multicycle Implementation

4 Mapping Control to Hardware (D.3, D.4)

4 Microprogramming: Simplifying Control Design (D.5)
% Concluding Remarks
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Where we are headed

4 Single Cycle Problems:

» what if we had a more complicated instruction like floating point?

> wasteful of area

4 One Solution:
» use a “smaller” cycle time

» have different instructions take different numbers of cycles

» a “multicycle” datapath:

Instruction
ister
Address Ieu Data H
Instruction Register #
Memory O data Registers b= ALUOuUt H
Register #
Memory H
Datz data ¢ Register #
register

3
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Multicycle Approach

4 We will be reusing functional units
» ALU used to compute address and to increment PC
» Memory used for instruction and data

¢ Our control signals will not be determined directly by instruction
» e.g., what should the ALU do for a “subtract” instruction?

% We'll use a finite state machine for control

» This is a sequential circuit.

4
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Multicycle Approach

4 Break up the instructions into steps, each step takes a cycle
» balance the amount of work to be done
» restrict each cycle to use only one major functional unit
4 At the end of a cycle
» store values for use in later cycles (easiest thing to do)
» introduce additional “internal” registers

V]

e '] [ Read
: | Address | [25-21] | register 1 Read
1

Instruction Read data 1

[20-18] ' register 2
Instruction | E Registers

Memory
MemData

[15-0] | |Instruction Write
register

| Write [15-11]

data Instruction | 1

register Write
data
Instruction
[15-0]
|__.

Memory Jﬁ
data
register

5
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Instructions from ISA perspective

4 Consider each instruction from perspective of ISA.
4 Example:
» The add instruction changes a register.
» Register specified by bits 15:11 of instruction.
> Instruction specified by the PC.
» New value is the sum (“op”) of two registers.
» Registers specified by bits 25:21 and 20:16 of the instruction

Reg[Memory[PC][15:11]] <=
Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

» In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)

6
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Breaking down an instruction

4 |SA definition of arithmetic:

Reg[Memory[PC][15:11]] <=
Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

4 Could break down to:
» IR <= Memory[PC]
> A <= Reg[IR[25:21]]
» B <= Reg[IR[20:16]]
» ALUOut <= A op B
» Reg[IR[15:11]] <= ALUOut

4 We forgot an important part of the definition of arithmetic!
»PC <= PC + 4

7
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Idea behind multicycle approach

4 We define each instruction from the ISA perspective (do this!)

4 Break it down into steps following our rule that data flows
through at most one major functional unit
(e.g., balance work across steps)

# Introduce new registers as needed
(e.g, A, B, ALUOut, MDR, etc.)

% Finally try and pack as much work into each step
(avoid unnecessary cycles)
while also trying to share steps where possible
(minimizes control, helps to simplify solution)

4 Result: Our book’s multicycle Implementation!

ALisdaAlun piIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq
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PCWriteCond /_\ PCSource

PCWrite / Oulputs\ ALUOp
101 \ ALUSIcB

MemRead | Control

= ALUSrcA
MemWrite J Mot
MemtoReg [C'D] RegWrite

IRWrite RegDst 0
[ Jump 1 M
o6 [ Shift) o address[™| :
Instruction [25-0] \I:f_tj & T [31-0] 2
o PC [31-28) —
Address '::
x
Memory 1
MemData (9 I_"
]
Instruction z
Write [15-11]
data 1 t‘
it O 2x
Instruction t‘
[15-0] x
1

Wi

=

16 Q” Shift
left 2

Instruction [5-0]
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Five Execution Steps

Instruction Fetch

Instruction Decode and Register Fetch

Execution, Memory Address Computation, or Branch Completion
Memory Access or R-type instruction completion

Write-back step

a kb=

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

ALIsdaAlun pIYH-bua4 ‘buluaauibul |p214422|] 40 Juawidpdaq

10

Computer Organization and Architecture, Fall 2010




Step 1: Instruction Fetch

4 Use PC to get instruction and put it in the Instruction Register.
4 Increment the PC by 4 and put the result back in the PC.

4 Can be described succinctly using RTL "Register-Transfer
Language"

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

1
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Step 2 :
Instruction Decode and Register Fetch
4 Read registers rs and rt in case we need them

4 Compute the branch address in case the instruction is a branch
4 RTL:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]]:
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

% We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq
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Step 3 :
Execution (instruction dependent)

4 ALU is performing one of three functions, based on
instruction type

% Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

+ R-type:
ALUOut <= A op B;

4 Branch:
iIT (A==B) PC <= ALUOut;

13
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Step 4 : R-type or memory-access

% Loads and stores access memory

MDR <= Memory[ALUOut];
or
Memory[ALUOut] <= B;

% R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

14

Computer Organization and Architecture, Fall 2010




o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
-n
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Step 5 : Write-back step

4 Write-back

Reg[IR[20:16]] <= MDR;

Which instruction needs this?

15
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Summary

Step name

Action for R-type
instructions

Action for
memory-reference
instructions

Action for
branches

Action for jumps

Instruction fetch

IR <= Memory[PC]
PC<=PC+4

Instruction decode/
register fetch

A <= Reg[IR[25:21]]
B <= Reg[IR[20:16]]
ALUOut <= PC + (sign-extend(IR[15:0]) << 2)

Execution, ALUOut<=Aop B ALUOut <= A + if (A==B) PC <= {PC[31:28],
address computation, sign-extend(IR[15:0]) PC <= ALUOut IR[25:0], 2'b00}

branch/jump

completion

Memory access Reg[ IR[15:11] ] Load : MDR <=
or <= ALUOut Memory[ALUOut]
R-type completion or
Store : Memory[ALUOut]
<=B

Memory read Load:

completion

Reg[IR[20:16]] <= MDR

16
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Simple Questions

# How many cycles will it take to execute this code?

Iw $t2, 0($t3)
Iw $t3, 4($t3)
beqg $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)
Label: -

4 What is going on during the 8th cycle of execution?

% In whgt cycle does the actual addition of $t2 and $t3 takes
place”

17
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Outline

4 A Multicycle Implementation

4 Mapping Control to Hardware (D.3, D.4)

4 Microprogramming: Simplifying Control Design (D.5)
% Concluding Remarks

18
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Implementing the Control

# Value of control signals is dependent upon:
» what instruction is being executed
» which step is being performed

# Use the information we’ve accumulated to specify
a finite state machine
» specify the finite state machine graphically, or
» use microprogramming

4 Implementation can be derived from specification

19
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Review: Finite State Machines

4 Finite State Machines:
> a set of states and
» next state function (determined by current state and the input)
» output function (determined by current state and possibly input)

function

Clock
7 Qutput
function

» We’'ll use a Moore machine (output based only on current state)

Next
state

Inputs

20
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Text Book . D9

Graphical Specification of FSM

# Note: frirre)
. . oD =_ (1] ALUSr:&_= o
> don’t care if not mentioned stant Ao o, BTy

» asserted if name only
» otherwise exact value

ALUSreA = 1 = ALUSIEB = 00

ALUSTcA =1 ¢l
ALUSPCB = 10 ALUSICB = 00 ALUGp = 01 chﬁﬂT’i 10
ALUDp = 00 ALUOp= 10 PCWriteCond

4+ How many state
bits will we need?

PCSource = 01

MemRead
lorD =1

MemWrite
lorD=1

RegDst=0

g
MemioReg=1 )

N
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Text Book : D10~ D171

o
(O]
O ° . °
d Finite State Machine for Control
5 initTe are acnine rTor contro
3
S
—+ PCWrite
=8 ¢ Implementation: PCWriteCond
lorD
r_n MemRead
N .
o MemWrite
;l- ) IRWrite
= Control logic MemtoReg
o PCSource
m < [ALUOp
Lg Outputs | 4] UsrcB
3' ALUSrcA
o RegWrite
g RegDst
>
NS3
EQ NS2
) S NS1
o npuis NSO
3 . -
| L4 4
ﬁ Lg. E ra (EL ‘5. [=3 @ o™ — (=]
> o| O O o o © | o o ®
o instruction register i State register |
C opcode field
=3 b
<
o
-3
\,
—+ 22
~
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1 N
Output | current states o |

PCWrite state0 + state9
PCWriteCond state8

. lorD . state3 + stateb

. MemRead . stateQ + state3
MemWrite stateS

- IRWrite - stateD
MemtoReg stated

. PCSourcel . state9
PCSourcel stateB

. ALUOp1 | state6

[ ALUOPO | states
ALUSrcB1 statel +state2
ALUSIcBO stateO + statel
ALUSrcA state2 + state6 + state8

. RegWrite . stated + state7

. RegDst . state7
NextStateO stated4 + state5 + state7 + state8 + state9

. NextStatel . stateD

[ NextState2 | state1 (Op="Tw")+(Op="sw')
NexiStaie3 stateZ {Op="1u")
NextStated state3

| Nextstate5 state2 (Op="sw")
NextStates statel (Op = 'R-type’)
NextState7 statel

[ NextStates [ state1 {Op = "bheq")
NextState9 statel (Op="jmp") 23
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PLA: Programmed

Logic Array

If | picked a horizontal o >
or vertical line could
you explain it? =

Text Book : D20 ~ D21

PLA Implementation

Op5

Op4 ]_D
o0 —D>
opz —>

o LD AND plane
S3 ]_D

s1L[>
SGLD
Ly

PCWrite
PCWriteCond
lorD
MemRead
MemWrite
IRWrite
MemtoReg
PCSourcel
PCSourcel
OR plane Auom
ALUOpD
ALUSrcB1
ALUSrcBO
ALUSrcA
RegWiri
RegDst
NS3
NS2
NS1
NSO

24

Computer Organization and Architecture, Fall 2010




ROM Implementation

4% ROM = "Read Only Memory"
» values of memory locations are fixed ahead of time

# A ROM can be used to implement a truth table
» if the address is m-bits, we can address 2™ entries in the ROM.
» our outputs are the bits of data that the address points to.

000/0011

- ] 001(1100
010({1100

—F —— 011/1000
1000000

101/0001

1100110

111l0111

2" is the "height", and n is the "width"

25
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ROM Implementation

4 How many inputs are there?

» 6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

4 How many outputs are there?
» 16 datapath-control outputs, 4 state bits = 20 outputs

4¢ ROM is 270 x 20 = 20K bits  (and a rather unusual size)
4 Rather wasteful, since for lots of the entries, the outputs are

the same
> i.e., opcode is often ignored

26
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ROM vs PLA

% Break up the table into two parts

> 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM

> 10 bits tell you the 4 next state bits, 2!
> Total: 4.3K bits of ROM
4 PLA is much smaller

» can share product terms

0 x 4 bits of ROM

» only need entries that produce an active output

» can take into account don't cares

# Size is (#inputs x #product-terms) + (#outputs x #product-terms)

For this example = (10x17)+(20

4 PLA cells usually about the size of a R

x17) = 510 PLA cells

OM cell (slightly bigger)

27
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Text Book : D22 ~ D23

Another Implementation Style

4 Complex instructions: the "next state"

is often current state + 1

PCWrite

Control unit

PLA or ROM

Input

PCWriteCond
lorD
MemRead
MemWrite
IRVVrite

Outputs < | MemtoReg
FPCSource
ALUOp
ALUSIcB
ALUSrcA
RegWrite
RegDst

AddrCtl

|

Cp[5-0]

4
w‘
Adder
Address select logic  |-+——

Instruction register
opcode field

28
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Text Book : D24 ~ D26

PLA or ROM

Details |
L

State
Dispatch ROM 1
Adder
Valus ( M ~N AddrCt

[ opcod name | Vaius |
000000 R-format 0110 3 210/
000010 Jmp 1001 "‘ f
000100 beq 1000 0
100011 Tw 0010
101011 sw 0010 | Dispatch ROM 2 | | Dispatch ROM 1 |

'__t Address select logic

[«%

Op Opcode name Value o

100011 v 0011 " opeode ten
101011 sw | oto1 |

State number Address-control action Value of AddrCti

0 Use incremented state 3
Use dispatch ROM 1

[ Use dispatch ROM 2

[ Use incremented state

Dispatch ROM 2

Replace state number by O
Replace state number by O
Use incremented state

' Replace state number by O
Replace state number by O
Replace state number by O

W ~N®O o e W=
Qlojlowo|C|lW(NK

29

Computer Organization and Architecture, Fall 2010

o
)
©
o
3
e
3
o
>
-t
(o]
—h
il
o
(9]
—
e
0
=
m
=
=
>
)
(W
=.
>
S
-
o
=]
K
Q
=5
o
-
=
<
o
-3
a,
-t
~<

Outline

4 A Multicycle Implementation

4 Mapping Control to Hardware (D.3, D.4)

4 Microprogramming: Simplifying Control Design (D.5)
% Concluding Remarks
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Text Book : D28

Microprogramming

# What are the “microinstructions” ?

Control unit PCWrite
[ [PcwriteCond
ort
Microcode memary MemPRead Datapath
Mem\Write
IRWrite
BW/rite
Outputs < | MemtoReg
PCSource
ALUOD
ALUSICB
ALUSICA
RegWrite
|, | RegDst
Input AddrCtl
1
¢ Microprogram counter
Address Select 100IC | =t—
2
&
=
]
Instruction register
opcode field 3 1
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Microprogramming

% A specification methodology
> appropriate if hundreds of opcodes, modes, cycles, etc.
> signals specified symbolically using microinstructions

ALU Register PCWrite
Label control [SRC1| SRC2| control Memory control Sequencing
Fetch Add PC |4 Read PC |ALU Seq
Add PC  |Extshft |Read Dispatch 1
Meml  |Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformatl |Func code [A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond |Fetch
JUMP1 Jump address |Fetch

®  Will two implementations of the same architecture have the
same microcode?

&  What would a microassembler do?

32
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Text Book : D29

o
he) ° ° °

5 Microinstruction format

5

o

S Field name Value Signals active Comment

—+ Add ALUOp = 00 Cause the ALU to add.

o ALU control Subt ALUOp =01 Cause the ALU to subtract; this implements the compare for

— branches.

Func code ALUOp =10 Use the instruction's function code to determine ALU control.

m > .

—_— SRC1 PC ALUSIcA =0 Use the PC as the first ALU input.

o A ALUSICA = 1 Register A s the first ALU input.

9'_ B ALUSrcB = 00 Reqister B is the second ALU input.

-3 SRC2 4 ALUSICcB = 01 Use 4 as the second ALU input.

8' Extend ALUSICB = 10 Use output of the sign extension unit as the second ALU input.

o Extshft ALUSIcB = 11 Use the output of the shift-by-two unit as the second ALU input.

= Read Read two registers using the rs and rt fields of the IR as the register

m numbers and putting the data into registers A and B.

S Write ALU RegWrite, Write a register using the rd field of the IR as the register number and
({e] Register RegDst =1, the contents of the ALUOut as the data.

S control MemtoReg = 0

o Write MDR RegWrite, Write a register using the rt field of the IR as the register number and

o RegDst =0, the contents of the MDR as the data.

3 MemtoReg = 1

:5' Read PC MemRead, Read memory using the PC as address; write result into IR (and
(e lorD =0 the MDR).

= Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
) loD=1

g Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the

lorD=1 data.

L? ALU PCSource = 00 Write the output of the ALU into the PC.

(@) PCWrite

> PC write control ALUOut-cond PCSource =01, If the Zero output of the ALU is active, write the PC with the contents

P~ PCWriteCond of the register ALUOut.

2 jump address PCSource = 10, Write the PC with the jump address from the instruction.

PCWrite

> Seq AddrCtl = 11 Choose the next microinstruction sequentially.

< Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

o Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.

a Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

=+ 33
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Maximally vs. Minimally Encoded

% No encoding:

» 1 bit for each datapath operation

» faster, requires more memory (logic)

» used for Vax 780 — an astonishing 400K of memory!
% Lots of encoding:

16u3 |p214422|] JO yuaw4apdaq

» send the microinstructions through logic to get control signals
» uses less memory, slower
# Historical context of CISC:
» Too much logic to put on a single chip with everything else
» Use a ROM (or even RAM) to hold the microcode
» It's easy to add new instructions

‘buidaau

N o1y-buag

34
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Microcode: Trade-offs

Distinction between specification and implementation is
sometimes blurred
Specification Advantages:
» Easy to design and write
» Design architecture and microcode in parallel
Implementation (off-chip ROM) Advantages
» Easy to change since values are in memory
» Can emulate other architectures
» Can make use of internal registers
Implementation Disadvantages, SLOWER now that:
» Control is implemented on same chip as processor
» ROM is no longer faster than RAM
» No need to go back and make changes

35
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Historical Perspective

In the ‘60s and ‘70s microprogramming was very important for
implementing machines

This led to more sophisticated ISAs and the VAX

In the ‘80s RISC processors based on pipelining became popular
Pipelining the microinstructions is also possible!

Implementations of IA-32 architecture processors since 486 use:

» “hardwired control” for simpler instructions
(few cycles, FSM control implemented using PLA or random logic)

» “microcoded control” for more complex instructions
(large numbers of cycles, central control store)

The 1A-64 architecture uses a RISC-style ISA and can be implemented
without a large central control store
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Outline

4 A Multicycle Implementation

4 Mapping Control to Hardware (D.3, D.4)

# Microprogramming: Simplifying Control Design (D.5)
4 Concluding Remarks
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Pentium 4

# Pipelining is important (last 1A-32 without it was 80386 in 1985)
# Pipelining is used for the simple instructions favored by compilers
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Summary

4 If we understand the instructions...
We can build a simple processor !

4 If instructions take different amounts of time, multi-cycle is better
4 Datapath implemented using:

» Combinational logic for arithmetic

» State holding elements to remember bits
% Control implemented using:

» Combinational logic for single-cycle implementation

» Finite state machine for multi-cycle implementation
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