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Where we are headed

Single Cycle Problems:of Electr

Single Cycle Problems:
 what if we had a more complicated instruction like floating point?
 wasteful of arearical Eng

One Solution:
 use a “smaller” cycle time
 have different instructions take different numbers of cyclesineering,

 have different instructions take different numbers of cycles
 a “multicycle” datapath:

, Feng-Chhia U
nive
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Multicycle Approach

We will be reusing functional unitsof Electr

We will be reusing functional units
 ALU used to compute address and to increment PC
 Memory used for instruction and datarical Eng

Our control signals will not be determined directly by instruction
 e.g., what should the ALU do for a “subtract” instruction?ineering,

g ,

We’ll use a finite state machine for control
 This is a sequential circuit, Feng-Ch

 This is a sequential circuit. 

hia U
nive
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Multicycle Approach

Break up the instructions into steps each step takes a cycleof Electr

Break up the instructions into steps, each step takes a cycle
 balance the amount of work to be done
 restrict each cycle to use only one major functional unitrical Eng

At the end of a cycle
 store values for use in later cycles (easiest thing to do)
 introduce additional “internal” registersineering,

 introduce additional internal registers

, Feng-Chhia U
nive
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Instructions from ISA perspective

Consider each instruction from perspective of ISAof Electr

Consider each instruction from perspective of ISA.
Example:  
 The add instruction changes a register.  rical Eng

 Register specified by bits 15:11 of instruction.  
 Instruction specified by the PC.  
 New value is the sum (“op”) of two registersineering,

 New value is the sum ( op ) of two registers.  
 Registers specified by bits 25:21 and 20:16 of the instruction

R [M [PC][15 11]] <

, Feng-Ch

Reg[Memory[PC][15:11]] <=  
Reg[Memory[PC][25:21]] op 
Reg[Memory[PC][20:16]]hia U

nive

 In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)
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Breaking down an instruction

ISA definition of arithmetic:of Electr

ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <=  
Reg[Memory[PC][25:21]] op rical Eng

g[ y[ ][ ]] p
Reg[Memory[PC][20:16]]

Could break down to:ineering,

 IR <= Memory[PC]
 A <= Reg[IR[25:21]]
 B <= Reg[IR[20:16]], Feng-Ch

 B <= Reg[IR[20:16]]
 ALUOut <= A op B
 Reg[IR[15:11]] <= ALUOut

hia U
nive

We forgot an important part of the definition of arithmetic!
 PC <= PC + 4
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Idea behind multicycle approach

We define each instruction from the ISA perspective (do this!)of Electr
We define each instruction from the ISA perspective  (do this!)

Break it down into steps following our rule that data flows 
through at most one major functional unitrical Eng

through at most one major functional unit  
(e.g., balance work across steps)

Introduce new registers as neededineering,

Introduce new registers as needed  
(e.g, A, B, ALUOut, MDR, etc.)

Finally try and pack as much work into each step, Feng-Ch

Finally try and pack as much work into each step 
(avoid unnecessary cycles)

while also trying to share steps where possible
(minimizes control helps to simplify solution)hia U

nive

(minimizes control, helps to simplify solution)

Result:  Our book’s multicycle Implementation!
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Five Execution Steps

1 Instruction Fetchof Electr

1. Instruction Fetch
2. Instruction Decode and Register Fetch
3. Execution, Memory Address Computation, or Branch Completionrical Eng

4. Memory Access or R-type instruction completion
5. Write-back step

ineering,

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

, Feng-Chhia U
nive
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Step 1:  Instruction Fetch

Use PC to get instruction and put it in the Instruction Registerof Electr

Use PC to get instruction and put it in the Instruction Register.
Increment the PC by 4 and put the result back in the PC.
Can be described succinctly using RTL "Register-Transferrical Eng

Can be described succinctly using RTL Register Transfer 
Language"

IR M [PC]

ineering,

IR <= Memory[PC];
PC <= PC + 4;

, Feng-Ch

Can we figure out the values of the control signals?

Wh t i th d t f d ti th PC ?hia U
nive

What is the advantage of updating the PC now?
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Instruction Decode and Register Fetch

Read registers rs and rt in case we need themof Electr

Read registers rs and rt in case we need them
Compute the branch address in case the instruction is a branch
RTL:rical Eng

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];ineering,

g[ [ ]]
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

We aren't setting any control lines based on the instruction type, Feng-Ch

We aren t setting any control lines based on the instruction type 
(we are busy "decoding" it in our control logic)

hia U
nive
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Execution (instruction dependent)
ALU is performing one of three functions based onof Electr

ALU is performing one of three functions, based on 
instruction type

Memory Reference:

rical Eng

Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

ineering,

R-type:

ALUOut <= A op B;, Feng-Ch

Branch:

if (A==B) PC <= ALUOut;hia U
nive

if (A==B) PC <= ALUOut;
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Step 4 : R type or memory access

Loads and stores access memoryof Electr
y

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

rical Eng

Memory[ALUOut] <= B;

R-type instructions finish

ineering,

Reg[IR[15:11]] <= ALUOut;

, Feng-Ch

The write actually takes place at the end of the cycle on the edge

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 14



D
epar Step 5 : Write-back steprtm

ent o

Step 5 : Write back step

Write-backof Electr

Write-back

Reg[IR[20:16]] <= MDR;rical Eng

Which instruction needs this?

ineering,, Feng-Chhia U
nive
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Summary

Step name Action for R-type Action for Action for Action for jumpsof Electr
Step name Action for R type 

instructions
Action for 

memory-reference 
instructions

Action for 
branches

Action for jumps

Instruction fetch IR <= Memory[PC]
PC < PC + 4

rical Eng

PC <= PC + 4

Instruction decode/
register fetch

A <= Reg[IR[25:21]]
B <= Reg[IR[20:16]]

ALUOut <= PC + (sign-extend(IR[15:0]) << 2)ineering,

Execution, 
address computation, 

branch/jump 
completion

ALUOut <= A op B ALUOut <= A + 
sign-extend(IR[15:0])

if (A==B) 
PC <= ALUOut

PC <= {PC[31:28], 
IR[25:0], 2’b00}

, Feng-Ch

p

Memory access 
or 

R-type completion

Reg[ IR[15:11] ] 
<= ALUOut

Load : MDR <= 
Memory[ALUOut] 

or
Store : Memory[ALUOut] hia U

nive

y[ ]
<= B

Memory read 
completion

Load: 
Reg[IR[20:16]] <= MDR
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Simple Questions

How many cycles will it take to execute this code? of Electr

o a y cyc es t ta e to e ecute t s code
lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume notrical Eng

beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...ineering,

What is going on during the 8th cycle of execution?
In what cycle does the actual addition of $t2 and $t3 takes, Feng-Ch

In what cycle does the actual addition of $t2 and $t3 takes 
place?

hia U
nive
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A Multicycle Implementation 
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Implementing the Control

Value of control signals is dependent upon:of Electr

Value of control signals is dependent upon:
 what instruction is being executed
 which step is being performedrical Eng Use the information we’ve accumulated to specify 

a finite state machineineering,

a finite state machine
 specify the finite state machine graphically, or
 use microprogramming, Feng-Ch

Implementation can be derived from specification

hia U
nive
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Review:  Finite State Machines

Finite State Machines:of Electr

 a set of states and 
 next state function (determined by current state and the input)
 output function (determined by current state and possibly input)rical Eng

 output function (determined by current state and possibly input)

ineering,, Feng-Chhia U
nive

 We’ll use a Moore machine (output based only on current state)
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Text Book : D9

rtm
ent o

Graphical Specification of FSM

Note:of Electr

Note:
 don’t care if not mentioned
 asserted if name only
 otherwise exact value

rical Eng

 otherwise exact value

H t tineering,

How many state 
bits will we need?

, Feng-Chhia U
nive
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D
epar Finite State Machine for Control

Text Book : D10 ~ D11

rtm
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Finite State Machine for Control

Implementation:of Electr

Implementation:
rical Engineering,, Feng-Chhia U

nive
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D
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p
PLA: Programmed 
Logic Array of Electr If I picked a horizontal 
or vertical line could AND planerical Eng

or vertical line could 
you explain it?

ineering,, Feng-Ch OR planehia U
nive

O p a e
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ROM Implementation

ROM = "Read Only Memory"of Electr

y y
 values of memory locations are fixed ahead of time

A ROM can be used to implement a truth tablerical Eng

A ROM can be used to implement a truth table
 if the address is m-bits, we can address 2m entries in the ROM.
 our outputs are the bits of data that the address points to.

ineering, m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0, Feng-Ch

0 1 1 1 0 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 0 1
1 1 0 0 1 1 0hia U

nive 2m is the "height", and n is the "width"

1 1 1 0 1 1 1
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ROM Implementation

How many inputs are there?of Electr

How many inputs are there?
 6 bits for opcode, 4 bits for state = 10 address lines

(i.e., 210 = 1024 different addresses)rical Eng How many outputs are there?
 16 datapath control outputs 4 state bits = 20 outputsineering,

 16 datapath-control outputs, 4 state bits = 20 outputs

ROM is 210 x 20 = 20K bits    (and a rather unusual size), Feng-Ch

Rather wasteful, since for lots of the entries, the outputs are 
the samehia U

nive

the same
 i.e., opcode is often ignored
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ROM vs PLA

Break up the table into two partsof Electr

Break up the table into two parts
 4 state bits tell you the 16 outputs,    24 x 16 bits of ROM
 10 bits tell you the 4 next state bits,  210 x 4 bits of ROMrical Eng

 Total:  4.3K bits of ROM

PLA is much smaller
 can share prod ct termsineering,

 can share product terms
 only need entries that produce an active output
 can take into account don't cares, Feng-Ch

Size is (#inputs x #product-terms) + (#outputs x #product-terms)
For this example  =  (10x17)+(20x17) = 510 PLA cells

hia U
nive

PLA cells usually about the size of a ROM cell (slightly bigger)
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Another Implementation Style

Complex instructions: the "next state" is often current state + 1of Electr
Complex instructions:  the next state  is often current state + 1

rical Engineering,, Feng-Chhia U
nive
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Text Book : D24 ~ D26

rtm
ent o

Details

of Electrrical Engineering,, Feng-Chhia U
nive
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Microprogramming

What are the “microinstructions” ?of Electr

What are the microinstructions ?

rical Engineering,, Feng-Chhia U
nive
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Microprogramming

A specification methodologyof Electr
spec cat o et odo ogy
 appropriate if hundreds of opcodes, modes, cycles, etc.
 signals specified symbolically using microinstructions

rical Eng

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2ineering,

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq, Feng-Ch Will t i l t ti f th hit t h th

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

hia U
nive

Will two implementations of the same architecture have the 
same microcode?
What would a microassembler do?
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Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

of Electr

p ; p p
branches.

Func code ALUOp = 10 Use the instruction's function code to determine ALU control.
SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.

A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.

rical Eng

p
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.ineering,

control MemtoReg = 0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and

RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR)., Feng-Ch

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC i l ALUO d PCS 01 If h Z f h ALU i i i h PC i h h

hia U
nive

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Di t h 1 Add Ctl 01 Di t h i th ROM 1
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Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.
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Maximally vs. Minimally Encoded

No encoding:of Electr

No encoding:
 1 bit for each datapath operation
 faster, requires more memory (logic)rical Eng

 used for Vax 780 — an astonishing 400K of memory!
Lots of encoding:

ineering,

 send the microinstructions through logic to get control signals
 uses less memory, slower

Historical context of CISC:, Feng-Ch

Historical context of CISC:
 Too much logic to put on a single chip with everything else
 Use a ROM (or even RAM) to hold the microcodehia U

nive

 It’s easy to add new instructions
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Microcode:  Trade offs

Distinction between specification and implementation isof Electr

Distinction between specification and implementation is 
sometimes blurred
Specification Advantages:rical Eng

 Easy to design and write
 Design architecture and microcode in parallel

Implementation (off-chip ROM) Advantagesineering,

Implementation (off chip ROM) Advantages
 Easy to change since values are in memory
 Can emulate other architectures, Feng-Ch

 Can make use of internal registers
Implementation Disadvantages,  SLOWER now  that:
 Control is implemented on same chip as processorhia U

nive

 Control is implemented on same chip as processor
 ROM is no longer faster than RAM
 No need to go back and make changes
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Historical Perspective

In the ‘60s and ‘70s microprogramming was very important forof Electr
In the 60s and 70s microprogramming was very important for 
implementing machines
This led to more sophisticated ISAs and the VAX
In the ‘80s RISC processors based on pipelining became popular

rical Eng

In the 80s RISC processors based on pipelining became popular
Pipelining the microinstructions is also possible!
Implementations of IA-32 architecture processors since 486 use:ineering,

 “hardwired control” for simpler instructions 
(few cycles, FSM control implemented using PLA or random logic)

 “microcoded control” for more complex instructions, Feng-Ch

p
(large numbers of cycles, central control store)

The IA-64 architecture uses a RISC-style ISA and can be implementedhia U
nive

The IA 64 architecture uses a RISC style ISA and can be implemented 
without a large central control store
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Pentium 4

Pipelining is important (last IA-32 without it was 80386 in 1985)of Electr
pe g s po a ( as 3 ou as 80386 985)

Pipelining is used for the simple instructions favored by compilers

Ch t 6

rical Eng

Control

Control

I/O
Interface

Chapter 5

Chapter 6

ineering,

Data cache
Instruction cache

Chapter 5

, Feng-Ch

Secondary 
cache and 
memory 
interface 

Enhanced
floating point 
and multimedia

Integer
datapath

hia U
nive ControlAdvanced pipelining

hyperthreading support

Control Chapter 4
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Summary

If we understand the instructions

of Electr

If we understand the instructions…

We can build a simple processor !
If instructions take different amounts of time multi-cycle is betterrical Eng

If instructions take different amounts of time, multi-cycle is better
Datapath implemented using:
 Combinational logic for arithmeticineering,

 Combinational logic for arithmetic
 State holding elements to remember bits

Control implemented using:, Feng-Ch

Control implemented using:
 Combinational logic for single-cycle implementation
 Fi it t t hi f lti l i l t tihia U

nive

 Finite state machine for multi-cycle implementation
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The Big Picture 
of Electrrical Engineering,, Feng-Chhia U

nive
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