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Text Book : P220

Multiplication

4 More complicated than addition
» accomplished via shifting and addition
4 More time and more area
% Let's look at 3 versions based on a gradeschool algorithm

0010 (multiplicand)
_ x 1011 (multiplier)

# See if the right most bit of the multiplier is 1.
» Shift 1 bit right for the multiplier
» Note the position of placement - Multiplicand is shifted left.
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Text Book . P221 ~ P222

Multiplication: First Version
Implementation
P D

b,

Multiplier0 = 1

1. Test Multiplier0 = 0

Multiplier0

A,

la. Add multiplicand to product and
place the result in Product register

— |
Mutipicand l l
Shift left [¢—
6Akits ‘ 2. Shift the Multiplicand register left 1 bit |

l

‘ 3. Shift the Multiplier register right 1 bit |

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

4
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A Multipl

Using 4-bit numbers to save space, multiply 2, x 3,,, or 0010,,, x 0011

y Algorithm

Text Book : P224

Initial values 0014) 0000 0010 0000 0000

1 1a: 1 = Prod = Prod + Mcand 0011 0000 0010 0000 0010

2: Shift left Multiplicand 0011 0000 0100 000076010

3: Shift right Multiplier 000@) | 00000100 0000 0010 |

2 1a: 1 = Prod = Prod + Mcand 0001 0000 0100 0000 0110
2: Shift left Multiplicand 0001 0000 1000 0000 0110 |

3: Shift right Multiplier " 0000 0000 1000 0000 0110

3 1: 0 = no operation | 0000 0000 1000 0000 0110

2: Shift left Multlpllcand - 0000 0001 0000 0000 0110

3: Shift right Multlpher 000@ 0001 0000 0000 0110

4 1: 0 = no operation 0000 0001 0000 0000 0110

2: Shift left Multiplicand 0000 0010 0000 0000 0110

3: Shift right Multiplier I 0000 0010 0000 0000 0110

two-

5
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Multiplication: Second Version

Multiplier0 = 1

i, Tesk
Multiplier0

la. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

Multiplier0 = 0

L
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I 2. Shift the Product register right 1 bit |
Multiplicand l
32 bits I 3. Shift the Multiplier register right 1 bit |
—
Multiplier
32-bit ALU/™ ift ri
Skift right e No: < 32 repetitions
32 bits 32nd repetition?
—
it i Yes: 32 repetitions
Product Shif ”g.ht Control test
Write
o4t 6
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Text Book : P223

Multiplication: Final Version

‘ Start ’

Y

Product0 =1 1. Test Product0 =0

ProductO

A

la. Add multiplicand to the left half of
the product and place the result in

Multiplicand

the left half of the Product register

32 bits

v v

2. Shift the Product register right 1 bit

N/
32-bit ALU/

No: < 32 repetitions

oS
32nd repetition?

Shift right . "
Product Wite @ Yes: 32 repetitions

r
7
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4 Uses

Text Book : P225

Faster Multiplier

multiple adders

» Cost/performance tradeoff

Mplier31 = Mcurd Mplar30 =Mcand  Mphor28 « Mownd: Mplior2i = hicend Wpliw3=Moand  Mplior2 «Mosmd ~ Riphar? = Mo Mplior() = Mot

“

1 bit =~ 1 bl

R R B =

Thit=t~ T bit-r-

Producttld Procucls? Produc?..16 Product!  Froductn

4 Can be pipelined

» Several multiplication performed in parallel

8
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Signed Multiplication : Booth’'s Algorithm

00104,
$- 2 X 6 A 01104y
+ 0000 shift (0 in multiplier)
+ 0010 add (1 in multiplier)
+ 0010 add (1 in multiplier)
+ 0000 shift (0 in multiplier)
0000110044

Booth observed that an ALU that could add or subtract could get the same
result in more than one way. For example, since

Bten =~ Zten * 8Bten
or
011040 == 001044 + 100045
we could replace a string of 1s in the multiplier with an initial subtract when
we first see a 1 and then later add when we see the bit after the last 1. For
example,
0010+y,
X OllOthO
+ 0000 shift (0 in multiplier)
= 0010 sub (first 1 in multiplier)
+ 0000 shift (middle of string of 1s)
+ 0010 add (prior step had last 1)
000011004y, 9
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Booth’s Algorithm

Middle of run

0(1 11 1)0

End of run

Beginning of run

Current bit  Bit to the right Explanation Example n

1 0 Beginning of a run of 1s | 00001111000, 0 0 Do nothing
1 1. Middle of a run of 1s 00001111000y, 0 1 Add b

0 1 End of @ run of 1s 00001111000y, 1 0 Subtract b
0 0 Middle of a run of Os 00001111000y, 1 1 Do nathing

1. Depending on the current and previous bits, do one of the following:
00: Middle of a string of Os, so no arithmetic operation.

01: End of a string of 1s, so add the multiplicand to the left half of the
product.

10:  Beginning of a string of 1s, so subtract the multiplicand from the
left half of the product.

11:  Middle of a string of 1s, so no arithmetic operation.

10
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Booth’s Algorithm Example

#2X6

Itera- | Multi- Original algorithm Booth’s algorithm
tion |piicand [ Step | Produt |  step | Product |

6] 0010 Initial values D000 0110 Initial values 0000 01100
1 0010 1: 0 —> no operation 0000 0110 1a: QO —> no operation 0000 01100
0010 2: shift right Product D000 0011 | 2: Shift right Product 0000 0011 0
2 0010 1a: 1 = Prod = Prod + Mcand 0010 0011 1c: 10 = Prod = Prod — Mcand 1110 0011 0
0010 2: Shift right Product 0001 0001 | 2: Shift right Product 1111 0001 1
3 0010 1a: 1 = Prod = Prod + Mcand 0011 0001 1d: 11 = no operation 1111 0001 1
0010 2: Shift right Product 0001 1000 2: Shift right Product 1111 1000 1
4 0010 1: 0 = no operation 0001 1000 1b: 01 = Prod = Prod + Mcand 0001 1000 1
0010 2: Shift right Product 0000 1100 2: Shift right Product 0000 11000
11
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Booth’s Algorithm Example

Booth’s Algorithm

Let’s try Booth’s algorithm with negative numbers: 2., X =3, = —6eyp OT
00104, X 11014, = 1111 1010,,,,-

two two —

1 I
0 Initial values 0010 0000 1101 0
1 1c: 10 = Prod = Prod — Mcand 0010 111011010
2: Shift right Product 0010 1111 0110 1
2 1b: 01 = Prod = Prod + Mcand 0010 00010110 1
2: Shift right Product 0010 0000 1011 0
3 1c: 10 = Prod = Prod — Mcand 0010 11101011 0
2: Shift right Product 0010 1111 0101 1
4 1d: 11 => no operation 0010 11110101 1
2: Shift right Product 0010 1111 10101
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MIPS Multiplication

$ Two 32-bit registers for product
» HI: most-significant 32 bits
» LO: least-significant 32-bits

# |nstructions
»mult rs, rt / multu rs, rt
® 64-bit product in HI/LO
»mfht rd / mflo rd
® Move from HI/LO to rd
® Can test HI value to see if product overflows 32 bits
»mul rd, rs, rt
® |_east-significant 32 bits of product —> rd

13
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Outline

3.3 Multiplication

3.4 Division

3.5 Floating Point

3.9 Concluding Remarks
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Division

Text Book . P226 ~ P227

> If divisor < dividend bits

_ 4 Check for O divisor
\ # Long division approach

1001 ® 1 bit in quotient, subtract
1000 )1001010 > Otherwise
/' -1000 ® 0 bit in quotient, bring down
- 10 next dividend bit
101 % Restoring division

1010
-1000 divisor back

_ » 10 ¢ Signed division

» Do the subtract, and if
remainder goes < 0, add

» Divide using absolute values

n-bit operands yield n-bit > Adjust sign of quotient and
quotient and remainder remainder as required

Dividend = Quotient x Divisor + Remainder

15
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MIPS Division

4 Use HI/LO registers for result
» HI: 32-bit remainder
» LO: 32-bit quotient

% |Instructions
»>div rs, rt / divu rs, rt
» No overflow or divide-by-0 checking

@ Software must perform checks if required
» Use mFhi, mFlo to access result

16
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Outline

3.3 Multiplication

3.4 Division

3.5 Floating Point

3.9 Concluding Remarks
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Text Book : P232

Floating Point (a brief look)

# We need a way to represent
» numbers with fractions, e.g., 3.14159265... (pi)
> very small numbers, e.g., 0.000000001 = 1.0 x 10 -9
> very large numbers, e.g., 3,155,760,000 = 3.15576 x 10 °®

4 Representation:
> sign, exponent, significand: (—1)s9" x significand x 2exponent
» more bits for significand gives more accuracy

» more bits for exponent increases range

overflow underflow overflow
P | &« | « L | « | « | o
| 27 | X% | I | X% X% | i
-max -1 -min 0 +min 1 +max

18
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Text Book : P233 ~ P234

IEEE 754 floating-point standard

4 Single precision : 8 bit exponent, 23 bit significand

| S | Exponent | significand |
1 bit 8 bits 23 bits

4 Double precision : 11 bit exponent, 52 bit significand

| S | Exponent | significand ~ |
1 bit 11 bits 20 bits

| ~ significand |
32 bits
4 Leading “1” bit of significand is implicit
4 Exponent is “biased” to make sorting easier
» all Os is smallest exponent all 1s is largest
» bias of 127 for single precision and 1023 for double precision
> summary: (—1)89" x (1+significand) x 2exponent-bias

19
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Text Book . P236 ~ P237

IEEE 754 floating-point standard

# Example:

» decimal: -0.75=-(Y%+ %)
> binary: -0.11=-1.1 x 2"
» floating point: exponent = 126 = 01111110 (after add 127)

» |EEE single precision:

[ 1] 01111110 | 10000000000000000000000
1 bit 8 bits 23 bits

20
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Text Book : P235

TEEE 754 Encoding

Single precision Double precision Object represented
Exponent | Fraction | Exponent | Fraction

0 0 0 0 0

0 nonzero 0 nonzero | + denormalized number
1-254 anything | 1-2046 | anything | z floating-point number
255 0 2047 0 t infinity
255 nonzero 2047 nonzero NaN (Not a Number)

| S | Exponent | significand |

1 bit 8 bits 23 bits

21
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Text Book : P235

Denormalized Numbers

4 Exponent = 000...0 = hidden bit is O

X = (—1)° x (0 + Fraction) x 272

% Smaller than normal numbers

» allow for gradual underflow, with diminishing
precision

4 Denormal with fraction = 000...0
X = (—1)S x(0+0)x 27818 — 1+0.0
[ o epresematons o001 |
22
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Text Book : P235

Infinities and NaNs

% Exponent = 111...1, Fraction = 000...0
» xInfinity

» Can be used in subsequent calculations,
avoiding need for overflow check

4 Exponent = 111...1, Fraction # 000...0
» Not-a-Number (NaN)

> Indicates illegal or undefined result
®c.g,0.0/0.0

» Can be used in subsequent calculations

23
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TEEE 754 floating-point (32-bit)

# Maximum |[9] 11111110 [ M1111111111111111111111 |
1 bit 8 bits 23 bits

1.11111111111111111111111 x 2 *127)

(2- 0.00000000000000000000001) x 2(+127)
= 2 x 2(+127) _ 2(-23) x D(+127)
= D(+128) _ D(+104)

# Minimum | 0 | 00000000 | 00000000000000000000001
1 bit 8 bits 23 bits

=0.00000000000000000000001 x 2 -126)
= 2(-23) x 2(-126)
= D(-149)

24

Computer Organization and Architecture, Fall 2010




Floating-point
Addi"'ion 1. Compare the exponents of the two numbers.

Shift the smaller number to the right until its
exponent would match the larger exponent

4 guard and round ? ‘

2. Add the significands
|
'
3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

Overflow or ™~ Yes
underflow?

Mo ( Exception

4, Round the significand to the appropriate
~ number of bits

25
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Text Book : P243

FP Adder Hardware

I Sign | Exponent | Fraction | I Sign | Exponent | Fraction |
. |
¥ \
Small ALL
Exponent -
teroncs > -
4
23
Ehift smwllar
rmber ight
J
T | [sep2]

e ¢
Incremant or _..l Shi i l
™ dooromont Shifl left or ight Normeltze } - >
L M } -
| 1]—

Exponent | Fraction I

| Sign

26
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Text Book . P242 ~ P246

Floating-point
Multiplication T

numbers, subtracting the bias from the sum
to get the new biased exponent

!

[ 2. Multiply the significands
|

.

3. Normalize the product if necessary, shifting
It right and incrementing the exponent

Overflow or Yes

undearflow?
No Exception

4. Round the significand to the appropriate
number of bits

5. Set the sign of the product to positive if the
signs of the original operands are the same;
If they differ make the sign negative

Done 27
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FP Instructions in MIPS

% FP hardware is coprocessor 1
» Adjunct processor that extends the ISA

# Separate FP registers
> 32 single-precision: $f0, $f1, ... $f31
> Paired for double-precision: $f0/$f1, $f2/$f3, ...
® Release 2 of MIPs ISA supports 32 x 64-bit FP reg’s
% FP instructions operate only on FP registers

» Programs generally don’t do integer ops on FP data, or
vice versa

» More registers with minimal code-size impact
¥ FP load and store instructions

» lwcl, Idcl, swcl, sdcl
® c.g., Idcl $f8, 32($sp)

28
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FP Instructions in MIPS

% Single-precision arithmetic
» add.s, sub.s, mul.s, div.s
® c.g,add.s $f0, $f1, $f6
4 Double-precision arithmetic
» add.d, sub.d, mul.d, div.d
®cg.,mul.d $F4, $F4, $F6
4 Single- and double-precision comparison
> c.xx.s,c.xx.d (xxiseq, It, le, ...)
> Sets or clears FP condition-code bit
®cg.c.lt.s $f3, $f4
4 Branch on FP condition code true or false

> bclt, bclf
® c.g., bclt TargetLabel

29
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Floating Point Complexities

% Operations are somewhat more complicated (see text)
% In addition to overflow we can have “underflow”

4 Accuracy can be a big problem
> |EEE 754 keeps two extra bits, guard and round
» four rounding modes
» positive divided by zero yields “infinity”
» zero divide by zero yields “not a number”
» other complexities
# |Implementing the standard can be tricky

% Not using the standard can be even worse
> see text for description of 80x86 and Pentium bug!

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq
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Outline

3.3 Multiplication

3.4 Division

3.5 Floating Point

3.9 Concluding Remarks
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Summary

+

Computer arithmetic is constrained by limited precision

+

Bit patterns have no inherent meaning but standards do exist
» two’s complement
> |EEE 754 floating point
# Computer instructions determine “meaning” of the bit
patterns
4 Performance and accuracy are important so there are many
complexities in real machines

% Algorithm choice is important and may lead to hardware
optimizations for both space and time (e.g., multiplication)

32
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In More Depth IMD 3.11-1

In More Depth: Booth’s Algorithm

A more elegant approach to multiplying signed numbers than above is called
Booth’s algorithm. It starts with the observation that with the ability to both add
and subtract there are multiple ways to compute a product. Suppose we want
to multiply 2., by 6., or 0010,,,, by 0110

two tw0:

00104,
01104,

X
+ 0000 shift (0 in multiplier)
+ 0010 add (1 in multiplier)
+ 0010  add (1 in multiplier)
+ 0000 shift (0 in multiplier)

000011004,
Booth observed that an ALU that could add or subtract could get the same
result in more than one way. For example, since
bren = = Zen t Bten

or

01104, = - 00104, + 10004,

we could replace a string of 1s in the multiplier with an initial subtract when we
first see a 1 and then later add when we see the bit after the last 1. For example,

00104,
01104y,

+ 0000 shift (0 in multiplier)

- 0010 sub (first 1 in multiplier)

+ 0000 shift (middle of string of 1s)
+0010 add (prior step had Tast 1)

000011004,

>




IMD 3.11-2

In More Depth

Booth invented this approach in a quest for speed because in machines of
his era shifting was faster than addition. Indeed, for some patterns his algo-
rithm would be faster; it’s our good fortune that it handles signed numbers as
well, and we’ll prove this later. The key to Booth’s insight is in his classifying
groups of bits into the beginning, the middle, or the end of a run of 1s:

Middle of run
0 Cl 11 ZID 0

Of course, a string of 0s already avoids arithmetic, so we can leave these
alone.

If we are limited to looking at just 2 bits, we can then try to match the situa-
tion in the preceding drawing, according to the value of these 2 bits:

If we are limited to looking at just 2 bits, we can then try to match the situa-
tion in the preceding drawing, according to the value of these 2 bits:

End of run Beginning of run

Current bit  Bit to the right Explanation Example
1 0 Beginning of a run of 1s | 00001111000,
1 1 Middle of a run of 1s 000011110004,
0 1 End of a run of 1s 0000111100040
(] [¢] Middle of a run of Os 000011110004,

Booth’s algorithm changes the first step of the algorithm—Ilooking at 1 bit of
the multiplier and then deciding whether to add the multiplicand—to looking
at 2 bits of the multiplier. The new first step, then, has four cases, depending on
the values of the 2 bits. Let’s assume that the pair of bits examined consists of
the current bit and the bit to the right—which was the current bit in the previ-
ous step. The second step is still to shift the product right. The new algorithm is
then the following:

1. Depending on the current and previous bits, do one of the following:
00: Middle of a string of 0s, so no arithmetic operation.

01: End of a string of 1s, so add the multiplicand to the left half of the
product.

10:  Beginning of a string of 1s, so subtract the multiplicand from the
left half of the product.

11:  Middle of a string of 1s, so no arithmetic operation.

2. Asin the previous algorithm, shift the Product register right 1 bit.



In More Depth IMD 3.11-3

Now we are ready to begin the operation, shown in Figure 3.11.2. It starts
with a 0 for the mythical bit to the right of the rightmost bit for the first stage.
Figure 3.11.2 compares the two algorithms, with Booth’s on the right. Note
that Booth’s operation is now identified according to the values in the 2 bits. By
the fourth step, the two algorithms have the same values in the Product register.

The one other requirement is that shifting the product right must preserve
the sign of the intermediate result, since we are dealing with signed numbers.
The solution is to extend the sign when the product is shifted to the right.
Thus, step 2 of the second iteration turns 1110 0011 0, into 1111 0001 1,
instead of 0111 0001 1,,,,. This shift is called an arithmetic right shift to differ-
entiate it from a logical right shift.

Multi- Original algorithm Booth’s algorithm
plicand [ step [ Produet [ step [ Proddest |

(6] 0010 Initial values 0000 0110 Initial values 0000 0110 0
1 0010 1: 0 = no operation 0000 0110 1a: 00 = no operation 0000 0110 O
0010 2: Shift right Product 0000 0011 | 2: Shift right Product 0000 0011 O
2 0010 la: 1 = Prod = Prod + Mcand 0010 0011 1c¢: 10 = Prod = Prod — Mcand 1110 0011 O
0010 2: Shift right Product 0001 0001 | 2: Shift right Product 1111 0001 1
3 0010 1a: 1 = Prod = Prod + Mcand 0011 0001 1d: 11 = no operation 1111 0001 1
0010 2: Shift right Product 0001 1000 | 2: Shift right Product 1111 1000 1
4 0010 1: 0 = no operation 0001 1000 1b: 01 = Prod = Prod + Mcand 0001 1000 1
0010 2: Shift right Product 0000 1100 | 2: Shift right Product 0000 1100 0

FIGURE 3.11.2 Comparing algorithm in Booth’s algorithm for positive numbers. The bit(s) examined to determine the
next step is circled in color.

Booth’s Algorithm

Let’s try Booth’s algorithm with negative numbers: 2., X =3, = —6epp OF
0010,y X 1101 = 1111 1010,,,,.
Figure 3.11.3 shows the steps. m
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In More Depth

Initial values 0010 0000 1101 0
1 1c: 10 = Prod = Prod — Mcand 0010 1110 11010
2: Shift right Product 0010 1111 0110 1
2 1b: 01 = Prod = Prod + Mcand 0010 0001 0110 1
2: Shift right Product 0010 0000 1011 0
3 1c: 10 = Prod = Prod — Mcand 0010 11101011 0
2: Shift right Product 0010 1111 01011
4 1d: 11 = no operation 0010 1111 0101 1
2: Shift right Product 0010 111110101

FIGURE 3.11.3 Booth’s algorithm with negative multiplier example. The bits exam-
ined to determine the next step are circled in color.

Our example multiplies one bit at a time, but it is possible to generalize
Booth’s algorithm to generate multiple bits for faster multiplies (see Exercise
3.50)

Now that we have seen Booth’s algorithm work, we are ready to see why it
works for two’s complement signed integers. Let a be the multiplier and b be
the multiplicand and we’ll use a; to refer to bit i of a. Recasting Booth’s algo-
rithm in terms of the bit values of the multiplier yields this table:

2 | o |operation
Do nothing
Add b

Subtract b
Do nothing

PR OO
RO |O

Instead of representing Booth’s algorithm in tabular form, we can represent it
as the expression

(ai_y —a;)

where the value of the expression means the following actions:

0: do nothing
+1: add b
—1: subtract b

Since we know that shifting of the multiplicand left with respect to the Product
register can be considered multiplying by a power of 2, Booth’s algorithm can
be written as the sum



In More Depth IMD 3.11-5

(ay —ap) xb x2°
+ (ag —a) xb x 2!
+ (a; —ay) xb x 2?

+ &a2‘9 —a)x b x 2%
+ (azy —az) xb x 2%
We can simplify this sum by noting that
—aix2i+ a; x2it1 = (—a; + 2a)) x2i= (2a;—a;) ><2i:ai><2i
recalling that a_, = 0 and by factoring out b from each term:
bx ((az X =271 + (a39 X 2%°) + (ay x 2%) +. .. + (a; X 21) + (ayx 2%))

The long formula in parentheses to the right of the first multiply operation is
simply the two’s complement representation of a (see page 163). Thus, the sum
is further simplified to

bxa

Hence, Booth’s algorithm does in fact perform two’s complement multiplica-
tion of a and b.

3.23 [30] <§3.6> The original reason for Booth’s algorithm was to reduce the
number of operations by avoiding operations when there were strings of 0s and
1s. Revise the algorithm on page IMD 3.11-2 to look at 3 bits at a time and com-
pute the product 2 bits at a time. Fill in the following table to determine the 2-bit
Booth encoding:

[ Gurntits | provious it | Oporatn | ewson_|

ai+1 ai ai-1
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Assume that you have both the multiplicand and 2 X multiplicand already in
registers. Explain the reason for the operation on each line, and show a 6-bit
example that runs faster using this algorithm. (Hint: Try dividing to conquer;
see what the operations would be in each of the eight cases in the table using a
2-bit Booth algorithm, and then optimize the pair of operations.)
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Floating-Point Numbers!

An IEEE 754 floating point number consists of three parts:
the Sign, the Exponent, and the Mantissa.

(-})
i

(Also known as the Significand)

+/3.141592

The Sign, as its name suggests,
determines the sign of the number.

10000000

The Exponent plays a vital role in determining
how big (or small) the number is. However, it's
encoded so that unsigned comparison can be
used to check floating-point numbers.

To see the true magnitude of the
Exponent, you'd need to subtract the
Bias, a special number determined by
the length of the Exponent.

7

And last but not least, the Mantissa
holds the significant digits of the
floating point number.

Ktramalfim



Floating-Point Numbers:
All Together Now!

D ——

Once all the parts of the floating-point number are obtained, converting
it to decimal is just a matter of applying the following formula:

Notice that the Mantissa actually represents a fraction, instead of an integer!
In addition to representing real numbers, the IEEE 754 representation can also indicate...

the set of numbers known as denormalized
numbers (including zero),

positive or negative infinity,

11111111,
+ Lg
and even when something is not a
number! This is called NaN.

+ 11111111-

NaNs aren't
comparable, but
they can be
different!
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Floating-Point Numbers:
The Great Number Line

Due to the format of the IEEE-754 standard, the floating-point numbers can be plotted on a number line.
In fact, the floating-point numbers are arranged so that they can be incremented like a binary odometer!
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