
D
eparrtm

ent oof Electr

Chapter 3
Arithmetic for Computersrical Eng

Arithmetic for Computers
(Part 2)

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

Computer Organization and Architecture, Fall 2010

D
epar Outlinertm

ent o

Outline

3 3 Multiplicationof Electr

3.3 Multiplication
3.4 Division
3.5 Floating Pointrical Eng

3.9 Concluding Remarks

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 2

D
epar Multiplication

Text Book : P220

rtm
ent o More complicated than addition

Multiplication

of Electr

More complicated than addition
 accomplished via shifting and addition

More time and more arearical Eng

Let's look at 3 versions based on a gradeschool algorithm

0010 (multiplicand)ineering,

(p)

__x_1011 (multiplier)

, Feng-Chhia U
nive

See if the right most bit of the multiplier is 1.
 Shift 1 bit right for the multiplier

Computer Organization and Architecture, Fall 2010

ersity 3
 Note the position of placement - Multiplicand is shifted left.

D
epar Multiplication: First Version

I l i

Text Book : P221 ~ P222

rtm
ent o

Implementation
Start

of Electr

1. Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

rical Eng

1a. Add multiplicand to product and
place the result in Product register

ineering,

Multiplicand
Shift left

64 bits 2. Shift the Multiplicand register left 1 bit

, Feng-Ch

64-bit ALU
Multiplier

Shift right

32bits

3. Shift the Multiplier register right 1 bit

hia U
nive

Control test
Product

Write

64bits

32bits

32nd repetition?
No: < 32 repetitions

Yes: 32 repetitions

Computer Organization and Architecture, Fall 2010

ersity 4

64 bits

Done

D
epar

Text Book : P224

rtm
ent o

A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2ten x 3ten, or 0010two x 0011two.of Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 5

D
epar Multiplication: Second Versionrtm

ent o

Multiplication: Second Version
Start

of Electr

1. Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

rical Eng

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product registerineering, Multiplicand

2. Shift the Product register right 1 bit, Feng-Ch Multiplier

32 bits

Multiplicand

3. Shift the Multiplier register right 1 bit

hia U
nive

Multiplier
Shift right

32 bits

Shift right

32-bit ALU

Product Control test

32nd repetition?
No: < 32 repetitions

Yes: 32 repetitions

Computer Organization and Architecture, Fall 2010

ersity 6

Write

64 bits

Product Control test

Done

D
epar Multiplication: Final Version

Text Book : P223

rtm
ent o

Multiplication: Final Version
Start

of Electr

1. Test
Product0

Product0 = 0Product0 = 1

rical Eng 1a. Add multiplicand to the left half of
the product and place the result in
th l ft h lf f th P d t i t

ineering,

32 bits

Multiplicand
the left half of the Product register

, Feng-Ch

32-bit ALU

2. Shift the Product register right 1 bit

No: < 32 repetitions

hia U
nive

Control
testWrite

Shift right
Product

32nd repetition?
No: < 32 repetitions

Yes: 32 repetitions

Computer Organization and Architecture, Fall 2010

ersity 7
64 bits Done

D
epar Faster Multiplier

Text Book : P225

rtm
ent o

Faster Multiplier

Uses multiple addersof Electr

Uses multiple adders
 Cost/performance tradeoff

rical Engineering,, Feng-Chhia U
nive Can be pipelined

Computer Organization and Architecture, Fall 2010

ersity 8
 Several multiplication performed in parallel

D
epar Signed Multiplication : Booth’s Algorithmrtm

ent o

2 x 6

of Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 9

D
epar Booth’s Algorithmrtm

ent o

Booth s Algorithm
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 10

D
epar Booth’s Algorithm Examplertm

ent o

Booth s Algorithm Example

of Electr

2 x 6

rical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 11

D
epar Booth’s Algorithm Examplertm

ent o

Booth s Algorithm Example
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 12

D
epar MIPS Multiplicationrtm

ent o

MIPS Multiplication

Two 32 bit registers for productof Electr

Two 32-bit registers for product
 HI: most-significant 32 bits
 LO: least-significant 32-bitsrical Eng

g

Instructionsineering,

 mult rs, rt / multu rs, rt

 64-bit product in HI/LO
 fhi d / fl d

, Feng-Ch

 mfhi rd / mflo rd

 Move from HI/LO to rd
 Can test HI value to see if product overflows 32 bitshia U

nive

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Computer Organization and Architecture, Fall 2010

ersity 13

D
epar Outlinertm

ent o

Outline

3 3 Multiplicationof Electr

3.3 Multiplication
3.4 Division
3.5 Floating Pointrical Eng

3.9 Concluding Remarks

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 14

D
epar Division

Text Book : P226 ~ P227

rtm
ent o

Division

Check for 0 divisorof Electr

Check for 0 divisor
Long division approach
 If divisor ≤ dividend bits

 1 bit in quotient subtract1001

quotient

dividendrical Eng

 1 bit in quotient, subtract
 Otherwise

 0 bit in quotient, bring down
next dividend bit

1001
1000 1001010

-1000
10

divisorineering,

next dividend bit
Restoring division
 Do the subtract, and if

remainder goes < 0 add

10
101
1010

divisor

, Feng-Ch

remainder goes < 0, add
divisor back

Signed division
 Divide using absolute values

-1000
10remainder

hia U
nive

 Divide using absolute values
 Adjust sign of quotient and

remainder as required
n-bit operands yield n-bit
quotient and remainder

Computer Organization and Architecture, Fall 2010

ersity 15

D
epar MIPS Divisionrtm

ent o

MIPS Division

Use HI/LO registers for resultof Electr

Use HI/LO registers for result
HI: 32-bit remainder
LO 32 bit ti t

rical Eng

LO: 32-bit quotient

ineering,

Instructions
div rs, rt / divu rs, rt, Feng-Ch

No overflow or divide-by-0 checking
Software must perform checks if requiredhia U

nive

Use mfhi, mflo to access result

Computer Organization and Architecture, Fall 2010

ersity 16

D
epar Outlinertm

ent o

Outline

3 3 Multiplicationof Electr

3.3 Multiplication
3.4 Division
3.5 Floating Pointrical Eng

3.9 Concluding Remarks

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 17

D
epar Floating Point (a brief look)

Text Book : P232

rtm
ent o

Floating Point (a brief look)

We need a way to representof Electr

We need a way to represent
 numbers with fractions, e.g., 3.14159265… (pi)
 very small numbers, e.g., 0.000000001 = 1.0 x 10 -9rical Eng

y , g ,
 very large numbers, e.g., 3,155,760,000 = 3.15576 x 10 9

Representationineering,

Representation:
 sign, exponent, significand: (–1)sign x significand x 2exponent

 more bits for significand gives more accuracy, Feng-Ch

 more bits for significand gives more accuracy
 more bits for exponent increases range

underflow overflowoverflowhia U
nive 0 +min +max1-1 -min-max

underflow overflowoverflow

Computer Organization and Architecture, Fall 2010

ersity 18

0 min 11 minmax

D
epar IEEE 754 floating-point standard

Text Book : P233 ~ P234

rtm
ent o

IEEE 754 floating point standard

Single precision : 8 bit exponent, 23 bit significandof Electr

g p p , g

rical Eng

Double precision : 11 bit exponent, 52 bit significand

ineering,, Feng-Ch

Leading “1” bit of significand is implicit
Exponent is “biased” to make sorting easierhia U

nive

 all 0s is smallest exponent all 1s is largest
 bias of 127 for single precision and 1023 for double precision
 summary: (–1)sign x significand) x 2exponent – bias

Computer Organization and Architecture, Fall 2010

ersity 19

y () g)

D
epar IEEE 754 floating-point standard

Text Book : P236 ~ P237

rtm
ent o

IEEE 754 floating point standard

Example:of Electr

Example:

 decimal: - 0.75 = - (½ + ¼)
 binary: 0 11 = 1 1 x 2-1

rical Eng

 binary: - 0.11 = -1.1 x 2-1

 floating point: exponent = 126 = 01111110 (after add 127)

ineering,

 IEEE single precision:

, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 20

D
epar IEEE 754 Encoding

Text Book : P235

rtm
ent o

IEEE 754 Encoding

Single precision Double precision Object representedof Electr

Exponent Fraction Exponent Fraction
0 0 0 0 0
0 0 d li d b

rical Eng

0 nonzero 0 nonzero ± denormalized number
1-254 anything 1-2046 anything ± floating-point number
255 0 2047 0 ± infinityineering,

255 0 2047 0 ± infinity
255 nonzero 2047 nonzero NaN (Not a Number)

S E t i ifi d

, Feng-Ch

S Exponent significand
1 bit 8 bits 23 bits

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 21

D
epar Denormalized Numbers

Text Book : P235

rtm
ent o

Denormalized Numbers

Exponent = 000 0 hidden bit is 0of Electr

Exponent = 000...0 hidden bit is 0
BiasS 2Fraction)(01)(x rical Eng Smaller than normal numbers

2Fraction)(01)(x

ineering,

allow for gradual underflow, with diminishing
precision, Feng-Ch

Denormal with fraction = 000...0

hia U
nive

Two representations of 0 0!

0.0 BiasS 20)(01)(x

Computer Organization and Architecture, Fall 2010

ersity 22

Two representations of 0.0!

D
epar Infinities and NaNs

Text Book : P235

rtm
ent o

Infinities and NaNs

Exponent = 111 1 Fraction = 000 0of Electr

Exponent = 111...1, Fraction = 000...0
±Infinity
C b d i b t l l ti

rical Eng

Can be used in subsequent calculations,
avoiding need for overflow check

ineering,

Exponent = 111...1, Fraction ≠ 000...0

, Feng-Ch

Not-a-Number (NaN)
 Indicates illegal or undefined result

hia U
nive

e.g., 0.0 / 0.0
Can be used in subsequent calculations

Computer Organization and Architecture, Fall 2010

ersity 23

D
epar IEEE 754 floating-point (32-bit)rtm

ent o

IEEE 754 floating point (32 bit)

Maximumof Electr

Maximum

= 1.11111111111111111111111 x 2 (+127)rical Eng

= (2- 0.00000000000000000000001) x 2(+127)

= 2 x 2(+127) - 2(-23) x 2(+127)

= 2(+128) - 2(+104)ineering, Minimum, Feng-Ch

= 0.00000000000000000000001 x 2 (-126)

= 2(-23) x 2(-126)hia U
nive

= 2(-149)

Computer Organization and Architecture, Fall 2010

ersity 24

D
epar Floating-point

Addi i

Text Book : P238 ~ P241

rtm
ent o

Addition
guard and round ?of Electr

guard and round ?

rical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 25

D
epar FP Adder Hardware

Text Book : P243

rtm
ent o

FP Adder Hardware
of Electrrical Eng

Step 1

ineering, Step 2, Feng-Ch Step 3hia U
nive

p

Step 4

Computer Organization and Architecture, Fall 2010

ersity 26

D
epar Floating-point

M l i li i

Text Book : P242 ~ P246

rtm
ent o

Multiplication

of Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 27

D
epar FP Instructions in MIPSrtm

ent o

FP Instructions in MIPS

FP hardware is coprocessor 1of Electr
FP hardware is coprocessor 1
 Adjunct processor that extends the ISA

Separate FP registersrical Eng

 32 single-precision: $f0, $f1, … $f31
 Paired for double-precision: $f0/$f1, $f2/$f3, …

 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’sineering,

 Release 2 of MIPs ISA supports 32 × 64 bit FP reg s
FP instructions operate only on FP registers
 Programs generally don’t do integer ops on FP data, or , Feng-Ch

vice versa
 More registers with minimal code-size impact

FP load and store instructionshia U
nive

FP load and store instructions
 lwc1, ldc1, swc1, sdc1

 e.g., ldc1 $f8, 32($sp)

Computer Organization and Architecture, Fall 2010

ersity 28

D
epar FP Instructions in MIPSrtm

ent o

FP Instructions in MIPS

Single-precision arithmeticof Electr

Single-precision arithmetic
 add.s, sub.s, mul.s, div.s

 e.g., add.s $f0, $f1, $f6rical Eng

Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e g mul d $f4 $f4 $f6ineering,

 e.g., mul.d $f4, $f4, $f6
Single- and double-precision comparison
 c.xx.s, c.xx.d (xx is eq, lt, le, …), Feng-Ch

 Sets or clears FP condition-code bit
 e.g. c.lt.s $f3, $f4

Branch on FP condition code true or falsehia U
nive

Branch on FP condition code true or false
 bc1t, bc1f

 e.g., bc1t TargetLabel

Computer Organization and Architecture, Fall 2010

ersity 29

D
epar Floating Point Complexitiesrtm

ent o

Floating Point Complexities

Operations are somewhat more complicated (see text)of Electr

Operations are somewhat more complicated (see text)
In addition to overflow we can have “underflow”

Accuracy can be a big problemrical Eng

Accuracy can be a big problem
 IEEE 754 keeps two extra bits, guard and round
 four rounding modesineering,

 four rounding modes
 positive divided by zero yields “infinity”

 zero divide by zero yields “not a number”, Feng-Ch

 other complexities
Implementing the standard can be trickyhia U

nive

Not using the standard can be even worse
 see text for description of 80x86 and Pentium bug!

Computer Organization and Architecture, Fall 2010

ersity 30

D
epar Outlinertm

ent o

Outline

3 3 Multiplicationof Electr

3.3 Multiplication
3.4 Division
3.5 Floating Pointrical Eng

3.9 Concluding Remarks

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 31

D
epar Summaryrtm

ent o

Summary

Computer arithmetic is constrained by limited precisionof Electr

Computer arithmetic is constrained by limited precision
Bit patterns have no inherent meaning but standards do exist
 two’s complementrical Eng

 two s complement
 IEEE 754 floating point

Computer instructions determine “meaning” of the bit ineering,

p g
patterns
Performance and accuracy are important so there are many , Feng-Ch

complexities in real machines
Algorithm choice is important and may lead to hardware hia U

nive

optimizations for both space and time (e.g., multiplication)

Computer Organization and Architecture, Fall 2010

ersity 32

In More Depth

IMD 3.11-1

In More Depth

In More Depth: Booth’s Algorithm

A more elegant approach to multiplying signed numbers than above is called

Booth’s algorithm

. It starts with the observation that with the ability to both add
and subtract there are multiple ways to compute a product. Suppose we want
to multiply 2

ten

 by 6

ten

, or 0010

two

 by 0110

two

:

 0010

two

 x 0110

two

 + 0000 shift (0 in multiplier)
 + 0010 add (1 in multiplier)
 + 0010 add (1 in multiplier)
 + 0000 shift (0 in multiplier)

00001100

two

Booth observed that an ALU that could add or subtract could get the same
result in more than one way. For example, since

6

ten

 = – 2

ten

 + 8

ten

or

0110

two

 = – 0010

two

 + 1000

two

we could replace a string of 1s in the multiplier with an initial subtract when we
first see a 1 and then later add when we see the bit

after

 the last 1. For example,

 0010

two

 x

0110

two

 + 0000 shift (0 in multiplier)
 – 0010 sub (first 1 in multiplier)
 + 0000 shift (middle of string of 1s)
 +0010 add (prior step had last 1)

00001100

two

IMD 3.11-2

In More Depth

Booth invented this approach in a quest for speed because in machines of
his era shifting was faster than addition. Indeed, for some patterns his algo-
rithm would be faster; it’s our good fortune that it handles signed numbers as
well, and we’ll prove this later. The key to Booth’s insight is in his classifying
groups of bits into the beginning, the middle, or the end of a run of 1s:

Of course, a string of 0s already avoids arithmetic, so we can leave these
alone.

If we are limited to looking at just 2 bits, we can then try to match the situa-
tion in the preceding drawing, according to the value of these 2 bits:

If we are limited to looking at just 2 bits, we can then try to match the situa-
tion in the preceding drawing, according to the value of these 2 bits:

Booth’s algorithm changes the first step of the algorithm—looking at 1 bit of
the multiplier and then deciding whether to add the multiplicand—to looking
at 2 bits of the multiplier. The new first step, then, has four cases, depending on
the values of the 2 bits. Let’s assume that the pair of bits examined consists of
the current bit and the bit to the right—which was the current bit in the previ-
ous step. The second step is still to shift the product right. The new algorithm is
then the following:

1. Depending on the current and previous bits, do one of the following:

00: Middle of a string of 0s, so no arithmetic operation.

01: End of a string of 1s, so add the multiplicand to the left half of the
product.

10: Beginning of a string of 1s, so subtract the multiplicand from the
left half of the product.

11: Middle of a string of 1s, so no arithmetic operation.

2. As in the previous algorithm, shift the Product register right 1 bit.

Beginning of runEnd of run
Middle of run

0 1 1 1 1 0

Current bit Bit to the right Explanation Example

1 0 Beginning of a run of 1s 00001111000two

1 1 Middle of a run of 1s 00001111000two

0 1 End of a run of 1s 00001111000two

0 0 Middle of a run of 0s 00001111000two

In More Depth

IMD 3.11-3

Now we are ready to begin the operation, shown in Figure 3.11.2. It starts
with a 0 for the mythical bit to the right of the rightmost bit for the first stage.
Figure 3.11.2 compares the two algorithms, with Booth’s on the right. Note
that Booth’s operation is now identified according to the values in the 2 bits. By
the fourth step, the two algorithms have the same values in the Product register.

The one other requirement is that shifting the product right must preserve
the sign of the intermediate result, since we are dealing with signed numbers.
The solution is to extend the sign when the product is shifted to the right.
Thus, step 2 of the second iteration turns 1110 0011 0

two

 into 1111 0001 1

two

instead of 0111 0001 1

two

. This shift is called an

arithmetic right shift

 to differ-
entiate it from a logical right shift.

Booth’s Algorithm

Let’s try Booth’s algorithm with negative numbers: 2

ten

×

 –3

ten

= – 6

ten

, or
0010

two

×

 1101

two

 = 1111 1010

two

.

Figure 3.11.3 shows the steps.

Itera-
tion

Multi-
plicand

Original algorithm Booth’s algorithm

Step Product Step Product

0 0010 Initial values 0000 0110 Initial values 0000 0110 0

1 0010 1: 0 ⇒ no operation 0000 0110 1a: 00 ⇒ no operation 0000 0110 0

0010 2: Shift right Product 0000 0011 2: Shift right Product 0000 0011 0

2 0010 1a: 1 ⇒ Prod = Prod + Mcand 0010 0011 1c: 10 ⇒ Prod = Prod – Mcand 1110 0011 0

0010 2: Shift right Product 0001 0001 2: Shift right Product 1111 0001 1

3 0010 1a: 1 ⇒ Prod = Prod + Mcand 0011 0001 1d: 11 ⇒ no operation 1111 0001 1

0010 2: Shift right Product 0001 1000 2: Shift right Product 1111 1000 1

4 0010 1: 0 ⇒ no operation 0001 1000 1b: 01 ⇒ Prod = Prod + Mcand 0001 1000 1

0010 2: Shift right Product 0000 1100 2: Shift right Product 0000 1100 0

FIGURE 3.11.2 Comparing algorithm in Booth’s algorithm for positive numbers. The bit(s) examined to determine the
next step is circled in color.

EXAMPLE

ANSWER

IMD 3.11-4

In More Depth

Our example multiplies one bit at a time, but it is possible to generalize
Booth’s algorithm to generate multiple bits for faster multiplies (see Exercise
3.50)

Now that we have seen Booth’s algorithm work, we are ready to see

why

 it
works for two’s complement signed integers. Let

a

 be the multiplier and

b

 be
the multiplicand and we’ll use

 a

i

 to refer to bit

i

 of

a

. Recasting Booth’s algo-
rithm in terms of the bit values of the multiplier yields this table:

Instead of representing Booth’s algorithm in tabular form, we can represent it
as the expression

(

a

i

–1

 –

a

i

)

where the value of the expression means the following actions:

0 : do nothing
 +1: add

b

 –1: subtract

b

Since we know that shifting of the multiplicand left with respect to the Product
register can be considered multiplying by a power of 2, Booth’s algorithm can
be written as the sum

Iteration Step Multiplicand Product

0 Initial values 0010 0000 1101 0

1 1c: 10 ⇒ Prod = Prod – Mcand 0010 1110 1101 0

2: Shift right Product 0010 1111 0110 1

2 1b: 01 ⇒ Prod = Prod + Mcand 0010 0001 0110 1

2: Shift right Product 0010 0000 1011 0

3 1c: 10 ⇒ Prod = Prod – Mcand 0010 1110 1011 0

2: Shift right Product 0010 1111 0101 1

4 1d: 11 ⇒ no operation 0010 1111 0101 1

2: Shift right Product 0010 1111 1010 1

FIGURE 3.11.3 Booth’s algorithm with negative multiplier example. The bits exam-
ined to determine the next step are circled in color.

ai ai–1 Operation

0 0 Do nothing

0 1 Add b

1 0 Subtract b

1 1 Do nothing

In More Depth

IMD 3.11-5

(

a

–1

–

a

0

)

×

b

×

2

0

+ (

a

0

–

a

1

)

×

b

×

2

1

+ (

a

1

–

a

2

)

×

b

×

2

2

.
+

(

a

29

–

a

30

)

×

b

×

2

30

+ (

a

30

– a31) × b × 231

We can simplify this sum by noting that

– ai × 2 i+ ai × 2 i + 1 = (–ai + 2ai) × 2 i = (2ai – ai) × 2 i = ai × 2i

recalling that a–1 = 0 and by factoring out b from each term:

b × ((a31 × –231) + (a30 × 230) + (a29 × 229) + . . . + (a1 × 21) + (a0 × 20))

The long formula in parentheses to the right of the first multiply operation is
simply the two’s complement representation of a (see page 163). Thus, the sum
is further simplified to

b × a

Hence, Booth’s algorithm does in fact perform two’s complement multiplica-
tion of a and b.

3.23 [30] <§3.6> The original reason for Booth’s algorithm was to reduce the
number of operations by avoiding operations when there were strings of 0s and
1s. Revise the algorithm on page IMD 3.11-2 to look at 3 bits at a time and com-
pute the product 2 bits at a time. Fill in the following table to determine the 2-bit
Booth encoding:

Assume that you have both the multiplicand and 2 × multiplicand already in
registers. Explain the reason for the operation on each line, and show a 6-bit
example that runs faster using this algorithm. (Hint: Try dividing to conquer;
see what the operations would be in each of the eight cases in the table using a
2-bit Booth algorithm, and then optimize the pair of operations.)

Current bits Previous bit Operation Reason

ai+1 ai ai–1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3.141592

Floating-Point Numbers!

An IEEE 754 floating point number consists of three parts:

(Also known as the Significand)

the Exponent,the Sign, and the Mantissa.

The Sign, as its name suggests,
determines the sign of the number.

The Exponent plays a vital role in determining
how big (or small) the number is. However, it‛s
encoded so that unsigned comparison can be
used to check floating-point numbers.

To see the true magnitude of the
Exponent, you‛d need to subtract the
Bias, a special number determined by
the length of the Exponent.

And last but not least, the Mantissa
holds the significant digits of the
floating point number.

+

100000002

01000000000
0000000000002

-12710

Floating-Point Numbers:
All Together Now!

01000000000
0000000000002

+

Once all the parts of the floating-point number are obtained, converting
it to decimal is just a matter of applying the following formula:

Notice that the Mantissa actually represents a fraction, instead of an integer!
In addition to representing real numbers, the IEEE 754 representation can also indicate...

positive or negative infinity,

and even when something is not a
number! This is called NaN.

+ 111111112 00000000000
0000000000002

-

- 111111112+

the set of numbers known as denormalized
numbers (including zero),

+-
-12610

-12710

Example:

=02

NaNs aren‛t
comparable, but

they can be
different!

If this is all zeroes,
the float is zero!

Floating-Point Numbers:
The Great Number Line

Due to the format of the IEEE-754 standard, the floating-point numbers can be plotted on a number line.
In fact, the floating-point numbers are arranged so that they can be incremented like a binary odometer!

NaN

+ Floating
Point

Number

+ Denormalized
Number

+ 0-

-

-

+ -

	CA2010_CH03_Part2 - Arithmetic for Computers(ORG)
	CA2010_CH03_Part2 - Arithmetic for Computers (Booths)
	CA2010_CH03_Part2 - Arithmetic for Computers(FP)
	floating-point
	floating-point-interpretations
	floating-point-number-line

