o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=8
m
>
e
>
)
(W
=.
>
S
-n
o®
=]
K
Q
=5
o
-
=
<
o
=3
o
-t
<

Chapter 3
Arithmetic for Computers
(Part 1)

T &%t (Chen-Chieh Wang)
ccwang@mail.ee.ncku.edu.tw

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

3.1

3.2
C.5
C.6

Outline

Introduction

Addition and Subtraction

Constructing a Basic Arithmetic Logic Unit
Faster Addition: Carry Lookahead

2

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Arithmetic

¥ Where we've been:
» System Software
» Instruction Set Architecture (ISA)

» Instructions (arithmetic, logic, load/store, branch)
® Assembly Language
® Machine Language operation

4 What's up ahead: . T

: : —
» Implementing the Architecture 32 ALU
/ result
32

32
b

3

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Arithmetic for Computers

Operations on integers
» Addition and subtraction
» Multiplication and division
» Dealing with overflow

Floating-point real numbers
» Representation and operations

4

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
(W
2.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Outline

3.1 Introduction

3.2 Addition and Subtraction

C.5 Constructing a Basic Arithmetic Logic Unit
C.6 Faster Addition: Carry Lookahead

5

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Addition & Subtraction

Just like in grade school (carry/borrow 1s)
0111 0111 0110
+ 0110 - 0110 - 0101

4 Two's complement operations easy

» subtraction using addition of negative numbers
0111
+ 1010

Overflow (result too large for finite computer word):
» e.g., adding two n-bit numbers does not yield an n-bit number

0111
+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry ““overflowed”

The maximum value in a 4-bit signed number is 7.

6

Computer Organization and Architecture, Fall 2010

Detecting Overflow

No overflow when adding a positive and a negative number
% No overflow when signs are the same for subtraction
Overflow occurs when the value affects the sign:

» overflow when adding two positives yields a negative

» or, adding two negatives gives a positive
» or, subtract a negative from a positive and get a negative
» or, subtract a positive from a negative and get a positive
0 0 0 0
22 22 "2 22
0 escee= () e=e=- 1l ccc-- 1l eccc--
+ (Q eoee- +] eeeee + 0 eeee- +] eceee
1 1 1 1
22 22 22 22
0 === 0 ===== 1l ccc-- 1l ccc--
+ (Q eoee- +] eceee + 0 eeee- +] eeeee

7

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
-n
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Effects of Overflow

An exception (interrupt) occurs
» Control jumps to predefined address for exception
» Interrupted address is saved for possible resumption

Details based on software system / language
» example: flight control vs. homework assignment

4 Don't always want to detect overflow
» new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

8

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Outline

3.1 Introduction

3.2 Addition and Subtraction

C.5 Constructing a Basic Arithmetic Logic Unit
C.6 Faster Addition: Carry Lookahead

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=8
m
>
e
>
)
(W
=.
>
S
-n
o®
=]
K
Q
=5
o
-
=
<
o
=3
o
-t
<

9

Computer Organization and Architecture, Fall 2010

Text Book : C-4 ~ C-20

Logic Gate and MUX

% Functionally complete : AND, OR, NOT.

1. AND gate (c=a - b) [a | b |c=a.-b]

0 o)
8 —
D—» c 0 1 [5)
L 1) 0
1 1 1
2. ORgate = 3+b) T S T
0 0)
a
:D—> c o 1 1
g 1 0 1
1 1 1
3. Inverter 0=) MTEELY
a —-Do—v c o 1
1 0
a. Multpiesor T B
o] a
1 b

d
(fd==0,c=a;
else c = b)
a—0
c
b—1

ALIsdaAlun piIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

10

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Text Book : C-4 ~ C-20

Review: Boolean Algebra & Gates

4 Problem: Consider a logic function with three inputs: A, B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

4 Show the truth table for these three functions.

4 Show the Boolean equations for these three functions.

Show an implementation consisting of inverters, AND, and OR gates.

1

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Text Book : C-26 ~ C-27

Arithmetic Logic Unit (ALV)

4 Not easy to decide the “best” way to build something

» Don’t want too many inputs to a single gate

» Don’t want to have to go through too many gates

» for our purposes, ease of comprehension is important

4 Let's look at a 1-bit ALU :

» How could we build a 1-bit ALU for add, and, and or ?

» How could we build a 32-bit ALU?

12

Computer Organization and Architecture, Fall 2010

Text Book : C-26 ~ C-27

1-bit logical unit for AND and OR

4 Operation is from the control unit.

Nnaratinn
pCiallrl
a
0
Result
1
L —e—

13

Computer Organization and Architecture, Fall 2010

o
)
©
o
-3
—+
3
o
S
-—f
(o]
—h
o
o
(9]
—+
e
0
=
m
>
=
>
)
(W
2.
>
S
-n
o
=]
<
Q
2.
o
-
=
<
o
-3
a,
-t
<

Text Book : C-27 ~ C-28

1-bit Adder

| ows | ouputs

=T R e Mol | =R

0+ 0+ 0 =00y,
0+0+1=01,,
0+1+0=01,,
0+ 1+ 1=10,
14+0+0=01,
1+0+1=10,,
1+ 1+0=10y,
1+1+1=114,

[elNe]

= O

RRrRRO|OlO|O
PRI O|Rr|O|Rr|O|r|O
PR RrOorOolo|C

Rrlelo|o|r|-
rlo|lo|r|o|-

Carryln

Sum =a ® b & Carryln
CarryOut=a-b + b - Carryln + a - Carryln

Sum

CarryQut

14

Computer Organization and Architecture, Fall 2010

ALISU2AIUN DIYD-bU24 ‘bulua2u1bu] [0314492|3 JO fuawidndaq

Text Book . C-29 ~ C-30

&
L Buildi 2-bi

3 uilding a 32-bit ALU

—+

=]

S

—t Operation

9h Operation

m Carryln ‘ Carryln

o ! 'Ta gy, J

(@]lll....

-+ a V_\ /j\ Taaa,

3. 0 a0 .| Carryln

8 . / b0 ALUO > Result0
= 4 CarryOut

m K 3

=3 R
Q. . 1 Result

* Resu *

g .,_L/ oal Carryln

o b ALU1 = Result1
-3 * —

5 ’.,0 CarryOut
(e - ¢
‘_n + 2 R

b e *

™ u .0" a2 Carryln
S R o ALU2 > Result2
! s CarryOut

()

=X CarryQut l

o : : :

- ‘%

3.

é a31— s Carryln

=3 ALU31 —————— Result31
) 031—»

= 15
~<

Computer Organization and Architecture, Fall 2010

Text Book : C-30 ~ C-31

What about subtraction (a — b) ?

4 Two's complement approach: just negate b and add.
4 How do we negate?
% A very clever solution:

Binvert Operation
Carryln

v

+ Result

77N\
b — 0] 5
1| _/
o/

137

CarryOut
16

Computer Organization and Architecture, Fall 2010

ALIsdaAluN DIYH-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Text Book . C-31 ~ C-32

Adding a NOR function

4 Can also choose to invert a. How do we get “a NOR b” ?
(Hint: DeMorgan’s theorem)

Ainvert Operation

Binvert Carryln
:
a _T—m
' -‘ o
U
?) 1 Result
[

17

Computer Organization and Architecture, Fall 2010

o
)
o
o
-3
—+
3
o
S
i
(o]
—h
il
o
(9]
—+
=y
0
=1
m
>
=
>
)
(W
=.
>
S
-n
o®
=]
<
Q
=5
o
-
=
<
o
=3
a,
-t
~<

Text Book . C-32 ~ C-33

Tailoring the ALU to the MIPS

Need to support the set-on-less-than instruction (slt)
» remember: slt is an arithmetic instruction
» produces a 1 if rs < rt and 0 otherwise

» use subtraction: (a-b) <0 impliesa<b

4 Need to support test for equality (beq $t5, $t6, $t7)

» use subtraction: (a-b) =0 impliesa=">b

18

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

o
)
©
o
3
e
3
o
>
-t
(o]
—h
il
o
(9]
—
e
0
=
m
=
=
>
)
(W
=.
>
S
-
o
=]
K
Q
=5
o
-
=
<
o
-3
a,
-t
~<

Text Book : C-32 ~ C-33

Supporting slt

Ainvert Operation
| Binvert Camryln |

'
R

0

100

{- ﬂ
1
b — o_\
:

—— Result
2
Less 3
———+—+ Set

Overflow
detection

Use this ALU for most significant bit

Ainvert Operation
| Binvert Carryln

Y
100

H—= Resuilt
b . /-uj 5
(=0
Less \3_)
CarryQut
all other bits
19

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |p214422|] 40 Juawidpdaq

Text Book : C-34

Supporting slt

Binvert Operation
Ainvert
Carryln
al —=| Carryln Resultd
b0 —= ALUQ
Less
CarryQut
al—s Carryln Resuilt1
b1 — ALU1
00— Less
CarryOut
a2— Carryln Result2
b2 —+| ALU2
00— Less
CarryOut
i : l l Cfrry\n
3
a2l—| Camyln ———————— Result31
b31—= ALU31 Set
0 — Less Overflow
20

Computer Organization and Architecture, Fall 2010

Text Book . C-35 ~ C-36

Test for equality

Bnegate Operation

Binvart ratl Ainvert
Carryln b

e

a0 — Carryln
ALUO Result0

Less)

Less

CarryOut

w————ﬂ l r————m

al — Carryln

b0 ——

= Result

Result1

b1 — ALU1 ?
0— Less
CarryOut : zero
CarryOut h 4 l Y

a2 — Carryln

b2 — =] ALU2 Result2
% Notice control lines: 0 Caﬁf;;m
0000 = and sl : ¥Carr " : :
0001 = or e | |
0010 = add a31—» 'EZar‘ryln' | Resuitst [
0110 = subtract P A st vt
0111 = slt
1100 = NOR

MNote: zerois a 1 when the result is zero! .
2

Computer Organization and Architecture, Fall 2010

o
)
o
o
-3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=8
m
>
=)
>
)
o
3.
>
S
-
o
>
<
Q
=7
o
-
=
<
o
-3
A
—+
<

Text Book . C-37

ALU Symbol

4 a, b, Result, are buses for data
4 ALU operation are control signals ALU operation
4 Zero, Carryout, Overflow are status signals.

a —»
' 0000 [AND > ALU |—= Result
0001 OR — Overflow
0010 add
0110 subtract b —»
0111 set on less than
1100 NOR

CarryOut

22

Computer Organization and Architecture, Fall 2010

ALIsdaAluN DIYH-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Conclusion

4 We can build an ALU to support the MIPS instruction set

» key idea: use multiplexor to select the output we want
» we can efficiently perform subtraction using two’s complement
» we can replicate a 1-bit ALU to produce a 32-bit ALU

4 Important points about hardware
» all of the gates are always working
> the speed of a gate is affected by the number of inputs to the gate

» the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)

4 Our primary focus: comprehension, however,

» clever changes to organization can improve performance
(similar to using better algorithms in software)

» we'll look at two examples for addition and multiplication

23

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Outline

3.1 Introduction

3.2 Addition and Subtraction

C.5 Constructing a Basic Arithmetic Logic Unit
C.6 Faster Addition: Carry Lookahead

24

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Text Book . C-39

Problem: ripple carry adder is slow

|s a 32-bit ALU as fast as a 1-bit ALU?
|s there more than one way to do addition?
» two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

C; = boCy + ayCy + aghy

c, = b,c, + ¢y + a4by C, =
Cz = byc, + a,c, + ab, Cz =
C, = bscy; + azc; + agbg C, =

Not feasible! Why?

25

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Text Book . C-40

Carry-Lookahead Adder (CLA)

¢ An approach in-between our two extremes

4 Motivation:
> If we didn't know the value of carry-in, what could we do?
» When would we always generate a carry? g; = a; b;
» When would we propagate the carry? pP; = a; + b;

Did we get rid of the ripple?

C1 = Up T PoCo

C, = 0 t PGy C, =
C3 = 0, T PG, Cs; =
Cs, = 03 T P3C3 C, =

26

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Text Book : C-40

Principle: Generate, Propagate

¥ Analogy

-
HA
I

g0+ (p0 - c0)

o]
(9]
Il

gl +(pl-gb)+(pl-p0-c0)
3 =g2+(p2-gl)+(p2-pl-gld)+(p2 pl-p0-cO)

4 =g3+(p3-g2)+(p3-p2-gl)+(p3-p2-pl-gh)
+(p3-p2-pl-p0-c0)

C4 is computed once inputs
(a0~a3, b0~b3, and c0) are valid.

27

Computer Organization and Architecture, Fall 2010

o
)
©
o
-3
—+
3
o
S
-—f
(o]
—h
on
o
(9]
—+
e
0
=
m
>
=
>
o
o
=
>
S
-
o
>
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Text Book : C-41 ~ C-45

Use hierarchy to build a bigger adder

o
(O]
el
[a)
=3
-+
g Carllyln
= . . . :
@ ¢ Can't build a 16 bit adder this o o Resuro-3
m way ... (too big) o mwo —
S mr Gol o
'1+ . . = 41 Carry-lookahead unit
8 4 Could use ripple carry of 4-bit P
a4 == Carryin
— CLA adders b T " Resuti-7
21 %] ALUA
Lg. g%—: P1 - pi+1
S . . e Gl = gi+1
S 4 Better: user the CLA principle e 2|,
= again! 5 |
S a6 —=1 carryin
=) I;g : Resultd-11
T al‘llg : ALUZ
o b10 —=| F2 ~ pi+2
S :H — Gzl—gi+2
ﬁ f cl+3
> a12—* Carmryln
B' ::g: Result12-15
C :}2:: ALU3
=3 b::—* P3 - pi+§
< b @3 - g+
Q o €4 leivs
0 !
q CarryQut 28

Computer Organization and Architecture, Fall 2010

Second Level of
Abstraction: CLA

4 Reuse the same principle in

second level
PO = p3-p2-pl-po
P1 = p7-p6-p5- pd
P2 = pll: pl0-p9-p8
P3 = pl5 pld.-pl3.pl2

GO = g3+ (p3-g2)+(p3-p2-gl)+(p3-p2-pl-g0)
I = g7+(p7-g6)+(p7 - p6-g5)+(p7-p6-p>-g4)
G2 = gll+(pll-gl0)+(pll-pl0-g9)+ (pll - pl0-p9-g8)
3 = gl5+(pl5-gl4)+(pl5-pld-gl3)«(pl5- pld-pl3-gl2)
29

Computer Organization and Architecture, Fall 2010

o
)
o
o
-3
—+
3
o
S
i
(o]
—h
il
o
(9]
—+
3.
0
=8
m
>
=
>
)
(W
=.
>
S
-n
o®
=]
<
Q
=5
o
-
=
<
o
=3
a,
-t
~<

Text Book . C-41

Second Level Equation

4 The same principle as in the first level is used.

4 The result of the second level is computed as soon as its
inputs are valid.

Cl = GO+ (P0-c0)
C2 = Gl1+(P1-G0)+ (P1-P0-c0)
C3 = G2+ (P2-Gl)+(P2-P1-GO)+(P2-PI-P0-c0)

C4 = G3+(P3-G2)+(P3-P2-G1)+(P3-P2-P1-G0)
+(P3-P2-P1-P0-c0)

ALIsdaAlun piIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

30

Computer Organization and Architecture, Fall 2010

o
)
©
o
3
e
3
o
>
-t
(o]
—h
il
o
(9]
—
e
0
=
m
=
=
>
)
(W
=.
>
S
-
o
=]
K
Q
=5
o
-
=
<
o
-3
a,
-t
~<

Both Levels of the Propagate and Generate

Determine the g7, pi, Pi, and Gi values of these two 16-bit numbers:
0 0011 0011

a 01 101 .
a 0001 1010 00114y,
b 1110 0101 1110 10114y,
Alon warhiat o £ asead Yardk 1T (0 AN?
LALaUr, Vvllal 1o \._JC].II)(\._ILII.IJ\\._;'T}

Aligning the bits makes it easy to see the values of generate gi (ai-bi) and
propagate pi (ai+bi):

a: 0001 1010 0011 0011
b: 1110 0101 1110 1011
g7z 0000 0000 0010 0011
pi: }11le 1141 1111 1011

where the bits are numbered 15 to 0 from left to right. Next, the “super”
propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

P3=1-1-1-1=1
P2=1-1-1-1=1
Pl I-1-1-1=1
PO=1-0-1-1-=

o

(Cont.) 31

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |p214422|] 40 Juawidpdaq

Text Book : C-44

The “super” generates are more complex, so use the following equations:

GO = g3+ (p3-82) +(p3-p2-gl) + (p3-p2-pl-g0)
=0+(1-0)+(1-0-1)+(1-0-1-1)=0+0+0+0=0

Gl = g7+ (p7- g6)+(p; p6-g5) + (p7 - p6-p5-gd)
=04+(1-0)4+(1-1-)+(1-1-1-0)=04+0+14+0=1
G2 = gll+(pll-gl0) + (pll-pl0-g9) + (pll-plO-p9-g8)
=0+(1-0)+(1-1-0)+(L-1-1-0)=04+0+0+0=0
G3 = gl5+ (p15-gl4) + (p15-pl4-gl3) + (pl5-pl4-pl3-gl2)
— N LM .0Yy /M1y o1 1. =N 0NN LN =in
L A SRV A S SV N A S Y VTV U U U
Finally, CarryOutl5 is
C4= G3+ (P3-G2)+ (P3-P2-Gl1)+ (P3-P2-PI GO)
+ (P3-P2-P1-P0O-c0)
— N oMM .NMaef1T. 1.1y cfM1o1.1.0 041010100000
Ulkl Ujl\l 1 l;l\l 1 1 U)lll‘l 1 L v Uj
=0+0+14+0+0=1

Hence there 75 a carry out when adding these two 16-bit numbers.

32

Computer Organization and Architecture, Fall 2010

