
D
eparrtm

ent oof Electr

Chapter 2
Instructions: Language of the Computerrical Eng

Instructions: Language of the Computer
(Part 3)

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

Computer Organization and Architecture, Fall 2010

D
epar Outlinertm

ent o

Outline

2 12 Translating and Starting a Programof Electr

2.12 Translating and Starting a Program
2.14 Arrays versus Pointers
2.16 Real Stuff: ARM Instructionsrical Eng

2.17 Real Stuff: x86 Instructions
2.18 Fallacies and Pitfalls
2 19 C l di R k

ineering,

2.19 Concluding Remarks

, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 2

D
epar Softwarertm

ent o

Software

Source Programof Electr

Source Program
 Any sequence of statements and/or declarations written in

some human-readable computer programming language
(e.g. C++, Assembly program)rical Eng

(g , y p g)
 Usually created using a text editor (ASCII file)

Object Programineering,

j g
 Produced from a source program by compiling/assembling to

intermediate machine code
 Also contain data for use by the code at runtime, relocation , Feng-Ch

y ,
information, program symbols for linking and/or debugging
purposes, and other debugging information

hia U
nive

Executable Program
 Machine code directly executed by a computer’s CPU

Computer Organization and Architecture, Fall 2010

ersity 3

D
epar

High-level language program (in C)
Text Book : P139 ~ P145

rtm
ent o

Assembly language program (for MIPS)

of Electr

Assembly language program (for MIPS)

rical Engineering,, Feng-Ch

Binary machine language program (for MIPS)

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 4

D
epar Assembler Pseudo-instructions

Text Book : P140

rtm
ent o

Assembler Pseudo instructions

Most assembler instructions represent machineof Electr

Most assembler instructions represent machine
instructions one-to-one
Pseudo-instructions: figments of the assembler’srical Eng

Pseudo instructions: figments of the assembler s
imagination

ineering,

move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1, Feng-Ch

bne $at, $zero, L

 $at (register 1): assembler temporaryhia U
nive

 $at (register 1): assembler temporary

Computer Organization and Architecture, Fall 2010

ersity 5

D
epar Dynamic linking

Text Book : P146

rtm
ent o

Dynamic linking
of Electr Dynamic Loader

(part of the O/S)

rical Eng

(part of the O/S)Load-and-call

ERRHANDL
DLLsineering,

User
Program

DLLs

, Feng-Ch

Dynamically Linked Libraries

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 6

D
epar Dynamic linkingrtm

ent o

Dynamic linking

of Electr

Dynamic
Loader

rical Eng

Loader

DLLsineering,

User
Program

DLLs

, Feng-Ch

ERRHANDL

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 7

D
epar Dynamic linkingrtm

ent o

Dynamic linking
of Electr

Dynamic
Loader

rical Eng

Loader

DLLsineering,

User
Program

DLLs

, Feng-Ch

ERRHANDL

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 8

D
epar Dynamic linkingrtm

ent o

Dynamic linking

of Electr

Dynamic
Loader

rical Eng

Loader

DLLsineering,

User
Program

DLLs

, Feng-Ch

ERRHANDL

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 9

D
epar Dynamic linkingrtm

ent o

Dynamic linking
of Electr

Dynamic
Loader

rical Eng

Loader
Load-and-call

ERRHANDL
DLLsineering,

User
Program

DLLs

, Feng-Ch

ERRHANDL

hia U
nive

If a subroutine is still in memory,
a second call to it may not
require another load operation.

Computer Organization and Architecture, Fall 2010

ersity 10

D
epar Dynamic linkingrtm

ent o

Dynamic linking

of Electr

Dynamic
Loader

rical Eng

Loader

DLLsineering,

User
Program

DLLs

, Feng-Ch

ERRHANDL

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 11

D
epar Outlinertm

ent o

Outline

2 12 Translating and Starting a Programof Electr

2.12 Translating and Starting a Program
2.14 Arrays versus Pointers
2.16 Real Stuff: ARM Instructionsrical Eng

2.17 Real Stuff: x86 Instructions
2.18 Fallacies and Pitfalls
2 19 C l di R k

ineering,

2.19 Concluding Remarks

, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 12

D
epar Arrays vs Pointers

Text Book : P157 ~ P160

rtm
ent o

Arrays vs. Pointers

C Codeof Electr

Array Pointer

rical Engineering,

MIPS Code
Array Pointer, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 13

D
epar Outlinertm

ent o

Outline

2 12 Translating and Starting a Programof Electr

2.12 Translating and Starting a Program
2.14 Arrays versus Pointers
2.16 Real Stuff: ARM Instructionsrical Eng

2.17 Real Stuff: x86 Instructions
2.18 Fallacies and Pitfalls
2 19 C l di R k

ineering,

2.19 Concluding Remarks

, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 14

D
epar ARM & MIPS Similarities

Text Book : P162

rtm
ent o

ARM & MIPS Similarities
ARM: the most popular embedded coreof Electr ARM MIPS

Similar basic set of instructions to MIPS

rical Eng

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bitsineering,

Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned, Feng-Ch

g g g
Data addressing modes 9 3
Registers 37 × 32-bit 35 × 32-bithia U

nive

Input/output Memory
mapped

Memory
mapped

Computer Organization and Architecture, Fall 2010

ersity 15

D
epar ARM introductionrtm

ent o

ARM introduction

A 32-bit RISC architectureof Electr
A 32 bit RISC architecture.
 A large uniform register file
 Many instructions execute in a single cyclerical Eng

 A load/Store architecture
 Simple addressing mode, with all load/store addresses being determined

form register contents, not directly on memory contents.ineering,

 Uniform and fixed-length instruction fields, to simplify instruction decode.
(32-bit length and 3-address format)

Other features, Feng-Ch

Other features
 Control over both the ALU and Shifter in every data-processing instruction to

maximize the use of an ALU and Shifter.
 Auto increment and auto decrement addressing modes to optimize programhia U

nive

 Auto-increment and auto-decrement addressing modes to optimize program
loops.

 Load and Store Multiple instructions to maximize data throughput.

Computer Organization and Architecture, Fall 2010

ersity 16

 Conditional execution of all instructions to maximize execution throughput.

D
epar ARM register briefsrtm

ent o

ARM register briefs

ARM has 31 general-purpose 32-bit registers Only 16 ofof Electr

ARM has 31 general-purpose 32-bit registers. Only 16 of
them are visible, R0 to R15.
ARM has 6 Program status registers (PSR).rical Eng

The 16 registers are User mode register. Only exception can
change User mode to other processor mode.
R14 is Link register used for holding the address of next to aineering,

R14 is Link register used for holding the address of next to a
Branch and link.
R15 is program counter (PC)., Feng-Ch

PC points to instruction that is two instruction being executed
(In EXE).
R13 is generally used as a Stack Pointer (SP) This ishia U

nive

R13 is generally used as a Stack Pointer (SP). This is
defined by the Software.

Computer Organization and Architecture, Fall 2010

ersity 17

D
epar Register Filertm

ent o

Register File
of Electr

Shadow Register
(Banked Register)rical Eng

(Banked Register)

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 18

D
epar Compare and Branch in ARM

Text Book : P163

rtm
ent o

Compare and Branch in ARM

Uses condition codes for result of anof Electr

Uses condition codes for result of an
arithmetic/logical instruction
 Negative, zero, carry, overflowrical Eng

 Compare instructions to set condition codes without
keeping the result

ineering,

Each instruction can be conditional
 Top 4 bits of instruction word: condition value, Feng-Ch

 Can avoid branches over single instructions

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 19

D
epar Condition Codesrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 20

D
epar Program status registersrtm

ent o

Program status registers

of Electr 4 condition code flagsrical Eng

g
 (N, Z, C, V) flags：Negative, Zero, Carry, oVerflow

1 sticky overflow flag
 Q bit：DSP instruction overflow bitineering,

 Q bit：DSP instruction overflow bit.
 In E variants of ARM architecture 5 and above.

2 interrupt disable bits, Feng-Ch

 I bit：disable normal interrupt (IRQ)
 F bit：disable fast interrupt (FIQ)

1 bit which encodes whether ARM or Thumb instructions arehia U
nive

1 bit which encodes whether ARM or Thumb instructions are
being executed.
 T bit

Computer Organization and Architecture, Fall 2010

ersity 21

D
epar Program status registers (cont)rtm

ent o

Program status registers (cont.)

of Electr 5 bits that encode the current processor mode.rical Eng

p
 M[4:0] are the mode bits.

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 22

D
epar Exceptionsrtm

ent o

Exceptions

Vector addressof Electr

Vector address

rical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 23

D
epar Exception processrtm

ent o

Exception process

When an exception occurs the banked versions ofof Electr

When an exception occurs, the banked versions of
R14 and the SPSR for the exception mode are
used to save state as follows:rical Eng

R14_<exception_mode> = return link
SPSR <exception mode> = CPSRineering,

_ p _
CPSR[4:0] = exception mode number
CPSR[5] = 0 /* Execute in ARM state */
If <exception mode> == Reset or FIQ then, Feng-Ch

If exception_mode Reset or FIQ then
CPSR[6] = 1 /* Disable fast interrupts */

/* else CPSR[6] is unchanged */
CPSR[7] = 1 /* Disable normal interrupts */hia U

nive

CPSR[7] 1 / Disable normal interrupts /
PC = exception vector address

Computer Organization and Architecture, Fall 2010

ersity 24

D
epar Example : IRQ rtm

ent o

Example : IRQ
0x00000000 Vector address

IRQ Vector address

of Electr

0 12

IRQ Vector address

rical Eng

r0 ~ r12 IRQ Exception handing routine

ineering,

I1

I2

I3

I4
r13 (SP) r13_irq, Feng-Ch

r15 (PC)

r14 (LR)
I4

I5

I6

I7

r14_irq

X

EVA

hia U
nive

…
CPSR SPSR_irq

0xFFFFFFFF

CPSR’
X

X

Computer Organization and Architecture, Fall 2010

ersity 25
User

mode
IRQ mode Memory

D
epar Instruction Encoding

Text Book : P164

rtm
ent o

Instruction Encoding
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 26

D
epar Thumb Architecture Extension rtm

ent o

Thumb Architecture Extension

The Thumb instruction set is a re-encoded subset of theof Electr

The Thumb instruction set is a re-encoded subset of the
ARM instruction set and the instructions operate on restricted
view of the ARM registers. (R0~R7, R13, R14, R15)rical Eng

Thumb is designed to increase the performance of ARM
implementations that use a 16-bit or narrower memory data
bus and to allow better code density than ARMineering,

bus and to allow better code density than ARM
Every Thumb instruction is encode in 16 bits.
Most Thumb instructions are executed unconditionally., Feng-Ch

y
Many Thumb data processing instructions use 2-address
format. (the destination register is the same as one of the

i)

hia U
nive

source registers)

Computer Organization and Architecture, Fall 2010

ersity 27

D
epar Example : ARM vs Thumbrtm

ent o

Example : ARM vs. Thumb
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 28

D
epar Thumb-2rtm

ent o

Thumb 2

Improved code density with performance andof Electr

Improved code density with performance and
power efficiency.

rical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 29

D
epar Outlinertm

ent o

Outline

2 12 Translating and Starting a Programof Electr

2.12 Translating and Starting a Program
2.14 Arrays versus Pointers
2.16 Real Stuff: ARM Instructionsrical Eng

2.17 Real Stuff: x86 Instructions
2.18 Fallacies and Pitfalls
2 19 C l di R k

ineering,

2.19 Concluding Remarks

, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 30

D
epar Alternative Architecturesrtm

ent o Design alternative:

Alternative Architectures

of Electr

 provide more powerful operations
 goal is to reduce number of instructions executedrical Eng

 danger is a slower cycle time and/or a higher CPI

–“The path toward operation complexity is thus fraught with peril. ineering,

To avoid these problems, designers have moved toward simpler

instructions”

, Feng-Ch

Let’s look (briefly) at IA-32 (x86)

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 31

D
epar The Intel x86 ISArtm

ent o

The Intel x86 ISA

Evolution with backward compatibilityof Electr

Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairsrical Eng

p g p
 8086 (1978): 16-bit extension to 8080

 Complex instruction set (CISC)
 8087 (1980) fl ti i t

ineering,

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU, Feng-Ch

80 86 (98) b t add esses, U
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)hia U
nive

 Additional addressing modes and operations
 Paged memory mapping as well as segments

Computer Organization and Architecture, Fall 2010

ersity 32

D
epar The Intel x86 ISArtm

ent o

The Intel x86 ISA

Further evolutionof Electr

Further evolution…
 i486 (1989): pipelined, on-chip caches and FPU

 Compatible competitors: AMD, Cyrix, …rical Eng

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension)

instructionsineering,

 The infamous FDIV bug
 Pentium Pro (1995), Pentium II (1997)

 New microarchitecture (see Colwell, The Pentium , Feng-Ch

(,
Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associatedhia U

nive

Added SSE (Streaming SIMD Extensions) and associated
registers

 Pentium 4 (2001)
 New microarchitecture

Computer Organization and Architecture, Fall 2010

ersity 33

 New microarchitecture
 Added SSE2 instructions

D
epar The Intel x86 ISArtm

ent o

The Intel x86 ISA

And furtherof Electr
And further…
 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)

rical Eng

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions virtual machine supportineering,

 Added SSE4 instructions, virtual machine support
 AMD64 (announced 2007): SSE5 instructions

 Intel declined to follow, instead…
 Advanced Vector Extension (announced 2008), Feng-Ch

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

If Intel didn’t extend with compatibility, its
competitors o ld!hia U

nive

competitors would!
 Technical elegance ≠ market success

Computer Organization and Architecture, Fall 2010

ersity 34

D
epar x86 Overviewrtm

ent o

x86 Overview

Complexity:of Electr

Complexity:
 Instructions from 1 to 17 bytes long
 one operand must act as both a source and destinationrical Eng

 one operand can come from memory
 complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”ineering,

Saving grace:
 the most frequently used instructions are not too difficult to build
 compilers avoid the portions of the architecture that are slow, Feng-Ch

 compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity, hia U
nive

making it beautiful from the right perspective”

Computer Organization and Architecture, Fall 2010

ersity 35

D
epar x86 Instruction Encodingrtm

ent o

x86 Instruction Encoding

Variable length encoding
 Postfix bytes specify addressing modeof Electr

 Postfix bytes specify addressing mode
 Prefix bytes modify operation

 Operand length, repetition, locking, … Basic x86 Registers

rical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 36

D
epar Implementing IA-32rtm

ent o

Implementing IA 32

Complex instruction set makesof Electr

Complex instruction set makes
implementation difficult
H d t l t i t ti t i l

rical Eng

Hardware translates instructions to simpler
microoperations
Simple instructions: 1–1ineering,

Simple instructions: 1–1
Complex instructions: 1–many

Microengine similar to RISC, Feng-Ch

c oe g e s a to SC
Market share makes this economically viable

Comparable performance to RISChia U
nive

Comparable performance to RISC
Compilers avoid complex instructions

Computer Organization and Architecture, Fall 2010

ersity 37

D
epar Outlinertm

ent o

Outline

2 12 Translating and Starting a Programof Electr

2.12 Translating and Starting a Program
2.14 Arrays versus Pointers
2.16 Real Stuff: ARM Instructionsrical Eng

2.17 Real Stuff: x86 Instructions
2.18 Fallacies and Pitfalls
2 19 C l di R k

ineering,

2.19 Concluding Remarks

, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 38

D
epar Fallacies

Text Book : P174

rtm
ent o

Fallacies

Powerful instruction higher performanceof Electr

Powerful instruction higher performance
 Fewer instructions required
 But complex instructions are hard to implementrical Eng

 May slow down all instructions, including simple ones
 Compilers are good at making fast code from simple

instructionsineering, Use assembly code for high performance
 B t d il b tt t d li ith d

, Feng-Ch

 But modern compilers are better at dealing with modern
processors

 More lines of code more errors and less productivityhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 39

D
epar Fallacies

Text Book : P175

rtm
ent o

Fallacies

Backward compatibility instruction set doesn’tof Electr

Backward compatibility instruction set doesn t
change
But they do accrete more instructionsrical Eng

But they do accrete more instructions

ineering,

86 i t ti t

, Feng-Ch

x86 instruction set

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 40

D
epar Pitfalls

Text Book : P175

rtm
ent o

Pitfalls

Sequential words are not at sequential addressesof Electr

Sequential words are not at sequential addresses
 Increment by 4, not by 1!

rical Eng

Keeping a pointer to an automatic variable after
procedure returnsineering,

 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack popped, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 41

D
epar Outlinertm

ent o

Outline

2 12 Translating and Starting a Programof Electr

2.12 Translating and Starting a Program
2.14 Arrays versus Pointers
2.16 Real Stuff: ARM Instructionsrical Eng

2.17 Real Stuff: x86 Instructions
2.18 Fallacies and Pitfalls
2 19 C l di R k

ineering,

2.19 Concluding Remarks

, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 42

D
epar Concluding Remarks

Text Book : P176 ~ P177

rtm
ent o Instruction complexity is only one variable

Concluding Remarks

of Electr

Instruction complexity is only one variable
 lower instruction count vs. higher CPI / lower clock rate

Design Principles:rical Eng

Design Principles:
 simplicity favors regularity
 smaller is faster
 make the common case fastineering,

 make the common case fast
 good design demands compromise

Instruction set architecture, Feng-Ch

Instruction set architecture
 a very important abstraction indeed!

R i d i t tihia U
nive

Required instruction groups
 Arithmetic and logic operations
 Load/store

Computer Organization and Architecture, Fall 2010

ersity 43
 Control transfer

D
epar Concluding Remarks

Text Book : P179

rtm
ent o

Concluding Remarks

Measure MIPS instruction executions inof Electr

Measure MIPS instruction executions in
benchmark programs
Consider making the common case fastrical Eng

Consider making the common case fast
Consider compromises

ineering,

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%

Data transfer lw sw lb lbu 35% 36%, Feng-Ch

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori sll srl

12% 4%

hia U
nive

ori, sll, srl

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j jr jal 2% 0%

Computer Organization and Architecture, Fall 2010

ersity 44

Jump j, jr, jal 2% 0%

p

a

q x

168 12 20 24 28 32 36 40 44

8 12 16 20 24 28 32 36 40 448

p q

1612

x

20 28

a

24 3632 40 44

*p:1, p:40, &p:12
*q:2, q:20, &q:16
*a:3, a:24, &a:24

printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);
printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);
printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

Printed
output

a

p q x

24 28 32 36 40168 12 20 24 28 32 36 40 44

p q x

168 12 20 24 28 32 36 40 44

Now we define an array that can store 4
int values. a is now a variable that points
to the first index of this array. However,
notice that unlike the pointer variables p
and q, a does NOT live in memory.

Now p contains, or points to, the address of a dynamically
allocated memory space that can store one int value, and
q points to the address of the variable x.

Here, we declare p and q
as pointers that will hold
the addresses of int
variables, and x as an
ordinary int variable.

int *p, *q, x;

int a[4];

p = (int*) malloc(sizeof(int));
q = &x;

*p = 1;
*q = 2;
*a = 3;

When we dereference these pointers,
we simply look inside the addresses
that they point to. In this way, we can
access the data stored there and
even change those values. Here, we
store the values of 1, 2, and 3 into
the boxes that the addresses p, q,
and a point to, respectively.

Imagine memory as long block of boxes that store data. Each box is labeled with an address. A pointer is simply a variable
that holds a particular address. An array is a group of contiguous boxes that can be accessed by their index values. Array
and pointer variables are mostly the same; we're going to highlight one of the ways they are different.

In the illustrations above, none of these variables
have been assigned values yet, so they contain
“garbage” -- whatever had been stored into these
blocks of memory beforehand. We change that with
the code below.

One last thing before you
go.... We said that the
variable of an array
doesn‛t live in memory.
But, the system prints
the address of the first
index of the array as the
address of a.

Pointers and Arrays

a

q

