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Software

4 Source Program

» Any sequence of statements and/or declarations written in
some human-readable computer programming language
(e.g. C++, Assembly program)

» Usually created using a text editor (ASCII file)

4 Object Program

» Produced from a source program by compiling/assembling to
intermediate machine code

» Also contain data for use by the code at runtime, relocation
information, program symbols for linking and/or debugging
purposes, and other debugging information

% Executable Program
» Machine code directly executed by a computer's CPU
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Text Book : P139 ~ P145
High-level language program (in C)

swap(int v[], int k)
{int temp;
temp = v[k];
vlk] = v[k+1]1;
vik+1l] = temp;
! Assembly language program (for MIPS)

swap:
muli $2, $5,4
add $2, $4,%2
Tw $15, 0(%2)
Tw $16, 4(%2)
SW $16, 0(%2)
| Assembly language program | SW $15, 4(%2)
jr $31 V
Object: Machine language module | | Object: Library routine (machine language) |
Binary machine language program (for MIPS)
| Executable: Machine language program |

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

7 4
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Text Book : P140

Assembler Pseudo-instructions

% Most assembler instructions represent machine
instructions one-to-one

% Pseudo-instructions: figments of the assembler’s

imagination
move $t0, $tl - add $t0, $zero, $ti1
blt $t0, $t1, L - slt $at, $t0, $t1

bne $at, $zero, L

> $at (register 1): assembler temporary

5
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Text Book : P146

Dynamic linking

Dynamic Loader

Load-and-call (part of the O/S) -

ERRHANDL

DLLs

User
Program

Dynamically Linked Libraries

6
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Dynamic linking

Dynamic

Loader

User
Program

ERRHANDL

7
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Dynamic linking

Dynamic
Loader

User
Program

ERRHANDL

DLLs

9
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Load-and-call
ERRHANDL

Dynamic linking

Dynamic
Loader

User
Program

ERRHANDL

e

DLLs

4 If a subroutine is still in memory,
a second call to it may not
require another load operation.

10
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Dynamic linking

Dynamic
Loader

DLLs

User
Program

ERRHANDL
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Text Book . P157 ~ P160

Arrays vs. Pointers

o

(O]

O

[a]

=3

—+

3

™

=

M ¢ C Code

_h -

m Array Pointer

o

9._ clearl{int array[], int size) clear2{int =array, int size)

3 ( ‘

(_" int 1; int *p;

o for (i = 0; i € size; i +=1) for (p = &array[0]; p < &array[sizel; p=p + 1)
- array[i] = 0; *p = 0;

m ! )

>

QO

s

W 4 MIPS Code

=3 -

o Array Pointer

-n

g move $t0,$zero #f#i=0 move $t0,%a0 #p=4& array(0]

= loopl:sll  $t1,$t0,2 #8511 =i « 4 s11 $t1,%al,2 # $t1 = size » 4

9_ add $t2,%a0,5tl # $t2 = &arraylil add $t2,%a0,$tl ff $t2 = &array[size]
o SW $zero, 0($t2) # array[il =0 loop2: sw $zero,0($t0) {# Memory(pl = 0

cC addi $t0,$t0,1 #i=1i+1 addi $t0,$t0.4 fp=p+4

=3 s1t  $t3,$t0,%al #f $t3 = (i < size) sit  $t3,$t0,5t2 ## $t3=(p<&arrayl[sizel)
(§ bne $t3,$zero,loopl# if () go to loopl bne $t3.$zero.loop2# if () go to loop2
5

\,
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Text Book : P162

ARM & MIPS Similarities

4 ARM: the most popular embedded core
4 Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 37 x 32-bit 35 x 32-bit
Input/output Memory Memory

mapped mapped

15
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ARM introduction

4 A 32-bit RISC architecture.

V V V V

>

A large uniform register file
Many instructions execute in a single cycle
A load/Store architecture

Simple addressing mode, with all load/store addresses being determined
form register contents, not directly on memory contents.

Uniform and fixed-length instruction fields, to simplify instruction decode.
(32-bit length and 3-address format)

# Other features

Control over both the ALU and Shifter in every data-processing instruction to
maximize the use of an ALU and Shifter.

Auto-increment and auto-decrement addressing modes to optimize program
loops.

Load and Store Multiple instructions to maximize data throughput.
Conditional execution of all instructions to maximize execution throughput.
16
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ARM register briefs

ARM has 31 general-purpose 32-bit registers. Only 16 of
them are visible, RO to R15.

ARM has 6 Program status registers (PSR).

The 16 registers are User mode register. Only exception can
change User mode to other processor mode.

R14 is Link register used for holding the address of next to a
Branch and link.

R15 is program counter (PC).

PC points to instruction that is two instruction being executed
(In EXE).

R13 is generally used as a Stack Pointer (SP). This is
defined by the Software.

17
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Register File

K} 0
RO
R1 .
R2 Shadow Register
R3 .
R (Banked Register)
RS
R6
R7
R8 R8_fig
RY R9? fiq
R10 R10 fig
R11 R11 fig
R12 fi
g:i R13 ﬂ: RI3 sve R13_abt Rl: und ::i ::qg
R14 R14_fiq R14_sve R14_abt R14_und
R15(PC)
PSR SPSR_ir
| CPSR SPSR_fiq SPSR_sve SPSR_abt PSR_und
User / System  Fast Interrupt Supervisor Abort Undefined Interrupt
Mode Mode Mode Mode Mode Mode

18
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Text Book : P163

Compare and Branch in ARM

% Uses condition codes for result of an
arithmetic/logical instruction
» Negative, zero, carry, overflow

» Compare instructions to set condition codes without
keeping the result

4 Each instruction can be conditional
» Top 4 bits of instruction word: condition value
» Can avoid branches over single instructions
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o

o ° °

g Condition Codes

8 ondaiTio oae

=

® Opcode Mnemonic ; -

3 [31:28] extencion Meaning Condition flag state

o 0000 EQ Equal 7 set

—

m 0001 NE Nat equal Z clear

((?' 0010 CS/HS Carry set/unsigned higher or same C set

;" 0011 CC/LO Carry clear/unsigned lower C clear

8 oron M1 Minus/negative N set

— 0101 PL Plus/positive or zero N clear

m

Lg 0110 VS Overflow V oset

S' o111 vC No overflow V clear

o

™ 1000 HI Unsigned higher C setand Z clear

S

3' 1001 LS Unsigned lower or same C clear or Z set

O

S 1010 GE Signed greater than or equal N set and V set, or

gned g

m) N clear and V clear (N == V)

o

> 1011 LT Signed less than N set and V clear, or

L? N clear and V set (N = V)

9— 1100 GT Signed greater than Z clear, and either N set and V set, or
5' N clear and V clear (Z == 0,N == V)
C 1101 LE Signed less than or equal Zset,or N setand V clear, or

S N clear and Vset (Z ==1or N I=V)
é 1110 AL Always (unconditional)

a 1111 (NV) See Condition code Ob1111 on page A3-5
i,: 20
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Program status registers

31 30 29 28 27 206

§8 7 6 54 3 2 1 0

Nlz|c|v]|o

DNM(RAZ) I{F|T

MMM |M|M
413(211]0

4 4 condition code flags

> (N, Z, C, V) flags : Negative, Zero, Carry, oVerflow

% 1 sticky overflow flag

> Q bit : DSP instruction overflow bit.
> In E variants of ARM architecture 5 and above.

4 2 interrupt disable bits

> | bit : disable normal interrupt (IRQ)
> F bit : disable fast interrupt (FIQ)
# 1 bit which encodes whether ARM or Thumb instructions are

being executed.
» T bit

21
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Program status registers (cont.)

3130 29 28 27 26 8 7 6 54 32 10
v M|M[M|M|M
N[Z|C|V|Q DNM(RAZ) HEITS S

4 5 bits that encode the current processor mode.
» MJ4:0] are the mode bits.

M[4:0] Mode Accessible registers

0b10000 User PC, R14 to RO, CPSR

0b10001 FIQ PC, R14_fiq to R8_fig, R7 to RO, CPSR, SPSR_fiq
0b10010 IRQ PC, R14_irg, R13_irg, R12 to RO, CPSR, SPSR_irq
0b10011 Supervisor PC, R14_sve, R13_sve, R12 to RO, CPSR, SPSR_sve
0b10111 Abort PC, R14_abt, R13_abt, R12 to RO, CPSR, SPSR_abt
0b11011 Undefined PC,R14 und, R13 _und, R12 to RO, CPSR, SPSR_und
Obl11111 System PC, R14 to RO, CPSR (ARM architecture v4 and above)

22
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Exceptions

# Vector address

. Normal High vector
Exception type Mode address a d%ress
Reset Supervisor 0x00000000 OxFFFF00O0O
Undefined instructions Undefined 0x00000004 OxFFFF0004
Software interrupt (SWI) Supervisor 0x00000008 OxFFFF0008
Prefetch Abort (instruction fetch memory abort) Abort 0x0000000C OxFFFF0O0OC
Data Abort (data access memory abort) Abort 0x00000010 OxXFFFF0010
IRQ (interrupt) IRQ 0x00000018 OxXFFFF0018
FIQ (fast interrupt) FIQ 0x0000001C OxFFFF001C

23
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Exception process

# When an exception occurs, the banked versions of

R14 and the SPSR for the exception mode are
used to save state as follows:

R14 <exception_mode> = return link
SPSR_<exception_mode> = CPSR
CPSR[4:0] = exception mode number

CPSR[5] =0 /* Execute in ARM state */
If <exception_mode> == Reset or FIQ then

CPSR[6] =1 /* Disable fast interrupts */
I* else CPSR[6] is unchanged */
CPSR[7]=1 /* Disable normal interrupts */

PC = exception vector address

24
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Example

: IRQ

26
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[a]
3
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3
3_ 0x00000000 Vector address
(o]
—h
m
o
(o]
%‘- [
o ro~ri2 IRQ Exgeption handing routine
=} v —
m
>
QY
3 : 1
e : 12
g r13 (SP) ri3_irq vy I3
;-‘31 ri4 (LR) 114 irg < _: s
3 EVA—= 115 (PC) 4 P
] .
e X . v
& CPSRT—CPSR SPSR_irq
X
§ L I OxFFFFFFFF
=
o
a User IRQ mode Memory
< mode 25
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Text Book : P164
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Thumb Architecture Extension

# The Thumb instruction set is a re-encoded subset of the
ARM instruction set and the instructions operate on restricted
view of the ARM registers. (RO~R7, R13, R14, R15)

4 Thumb is designed to increase the performance of ARM
implementations that use a 16-bit or narrower memory data
bus and to allow better code density than ARM

% Every Thumb instruction is encode in 16 bits.

4 Most Thumb instructions are executed unconditionally.

4 Many Thumb data processing instructions use 2-address

format. (the destination register is the same as one of the
source registers)

27
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Example : ARM vs. Thumb

The equivalent ARM assembly

/ labs CMP r0,#0 :Compare r0 to zero
S|mp|e C routine RSBLT r0,r0,#0 ;If r0<0 (less than=LT) then do r0= 0-r0

if (X>:O) \ MOV pc,Ir :Move Link Register to PC (Return)
return x; .

clse The equivalent Thumb assembly
return -x; CODE16 ;Directive specifying 16-bit (Thumb) instructions

labs CMP r0,#0 ;Compare r0 to zero
BGE return  ;Jump to Return if greater or
;equal to zero
NEG r0,r0 :If not, negate r0
return MOV pcIr ;Move Link register to PC (Return)

Code Instructions | Size (Bytes) | Normalised
ARM 3 12 1.0
Thumb 4 g 0.67

28
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Thumb-2

% Improved code density with performance and
power efficiency.

B

M ARM ] B ARM

M Thumh-2 " B Thumb-2

B Thumb B Thumb
il

0 _ 0
Thumb-2 code size 26% Thumb-2 Parformance 25%
smaller than ARM faster than Thumb

29
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Alternative Architectures

# Design alternative:
» provide more powerful operations
» goal is to reduce number of instructions executed
» danger is a slower cycle time and/or a higher CPI
— “The path toward operation complexity is thus fraught with peril.

To avoid these problems, designers have moved toward simpler
instructions”

# Let's look (briefly) at IA-32 (x86)
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The Intel x86 ISA

4 Evolution with backward compatibility
> 8080 (1974): 8-bit microprocessor
® Accumulator, plus 3 index-register pairs
» 8086 (1978): 16-bit extension to 8080
® Complex instruction set (CISC)
»> 8087 (1980): floating-point coprocessor
® Adds FP instructions and register stack
> 80286 (1982): 24-bit addresses, MMU
® Segmented memory mapping and protection
> 80386 (1985): 32-bit extension (now 1A-32)
® Additional addressing modes and operations
® Paged memory mapping as well as segments

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq
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The Intel x86 ISA

% Further evolution...

> 1486 (1989): pipelined, on-chip caches and FPU
® Compatible competitors: AMD, Cyrix, ...
» Pentium (1993): superscalar, 64-bit datapath

® | ater versions added MMX (Multi-Media eXtension)
instructions

® The infamous FDIV bug
» Pentium Pro (1995), Pentium Il (1997)

® New microarchitecture (see Colwell, 7The Pentium
Chronicles)

> Pentium Il (1999)

® Added SSE (Streaming SIMD Extensions) and associated
registers

» Pentium 4 (2001)
® New microarchitecture
® Added SSE2 instructions
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The Intel x86 ISA

% And further...
» AMDG64 (2003): extended architecture to 64 bits

» EM64T — Extended Memory 64 Technology (2004)
® AMDG64 adopted by Intel (with refinements)
® Added SSE3 instructions
> Intel Core (2006)
® Added SSE4 instructions, virtual machine support
» AMDG64 (announced 2007): SSES instructions
® Intel declined to follow, instead...
» Advanced Vector Extension (announced 2008)
® Longer SSE registers, more instructions

# If Intel didn’t extend with compatibility, its
competitors would!
» Technical elegance # market success

ALisdaAlun piIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq
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x86 Overview

4 Complexity:
> Instructions from 1 to 17 bytes long
» one operand must act as both a source and destination
» one operand can come from memory

» complex addressing modes
e.g., “base or scaled index with 8 or 32 bit displacement”

# Saving grace:
» the most frequently used instructions are not too difficult to build
» compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”
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x86 Instruction Encoding

% Variable length encoding
» Postfix bytes specify addressing mode

> Prefix bytes modify operation

® Operand length, repetition, locking, ... Basic x86 Regisfer‘s

a.JE EP+ displansmenl Mam Ui
44 & a °
E=HEEE e ermo
E::l aPA1
'“’""‘. - axl aPR2
| CaLL | Ofet EmX crma
Eap aPre
aMOV  EEK[ED +45] EBP| ams
e 1t v [
| Hay |ﬂ|||'| rﬁ! Dinplermmens = GrRe
ED amRT
d.n:n-mu‘ & Gose pagment poiter
= ROE——
D8 Dt saggrvers polier 0
R‘PBE’:"?‘E = = Dot sogneont pulsiar{
s it Segnens panr 5
”H;Em:u 8 = BP Inmmasion palmier (PG
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Implementing IA-32

# Complex instruction set makes
implementation difficult

» Hardware translates instructions to simpler
microoperations
® Simple instructions: 1-1
® Complex instructions: 1—-many

» Microengine similar to RISC

» Market share makes this economically viable
4 Comparable performance to RISC

» Compilers avoid complex instructions
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Text Book : P174

Fallacies

% Powerful instruction = higher performance
» Fewer instructions required

» But complex instructions are hard to implement
® May slow down all instructions, including simple ones

» Compilers are good at making fast code from simple
instructions

$ Use assembly code for high performance

» But modern compilers are better at dealing with modern
processors

» More lines of code = more errors and less productivity
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Text Book : P175

Fallacies

% Backward compatibility = instruction set doesn’t
change

» But they do accrete more instructions
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Text Book : P175

Pitfalls

# Sequential words are not at sequential addresses
» Increment by 4, not by 1!

# Keeping a pointer to an automatic variable after
procedure returns
> e.g., passing pointer back via an argument
» Pointer becomes invalid when stack popped
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Text Book . P176 ~ P177

Concluding Remarks

4 Instruction complexity is only one variable
> lower instruction count vs. higher CPI / lower clock rate

# Design Principles:
» simplicity favors regularity
» smaller is faster
» make the common case fast
» good design demands compromise

% Instruction set architecture
» a very important abstraction indeed!

% Required instruction groups
» Arithmetic and logic operations
» Load/store

» Control transfer
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Text Book : P179

Concluding Remarks

4 Measure MIPS instruction executions in
benchmark programs
» Consider making the common case fast
» Consider compromises

Instruction class MIPS examples SPEC2006 Int | SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer lw, sw, 1b, lbu, 35% 36%

Ih, Bhu, sb, lui
Logical and, or, nor, andi, 12% 4%
ori, sll, srl

Cond. Branch beq, bne, slt, 34% 8%

slti, sltiu
Jump j. Jr, jal 2% 0%
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" Pointers and Arrays

Imagine memory as long block of boxes that store data. Each box is labeled with an address. A pointer is simply a variable
that holds a particular address. An array is a group of contiguous boxes that can be accessed by their index values. Array
and pointer variables are mostly the same; we're going to highlight one of the ways they are different.

Here, we declare p and g
as pointers that will hold
the addresses of int
int *p, *q, x; variables, and x as an
ordinary int variable.

Now we define an array that can store 4
int values. a is now a variable that points

to the first index of this array. However, ,?\“\
notice that unlike the pointer variables N %
and g, a does NOT live in memory.

int al4];

In the illustrations above, none of these variables
have been assigned values yet, so they contain
"garbage” -- whatever had been stored into these
blocks of memory beforehand. We change that with
the code below.

p = (int*) malloc(sizeof (int));

d
7
Q)

/o)

Now © contains, or points to, the address of a dynamically
allocated memory space that can store one int value, and
g points to the address of the variable x.

= &x%X;

1 When we dereference these pointers,
*g = 2 we simply look inside the addresses
9 ! that they point to. In this way, we can
= 3; access the data stored there and
even change those values. Here, we
store the values of 1, 2, and 3 into
the boxes that the addresses p, g,

printf ("*p:%u, p:%u, &p:%u\n", *p, p, &p); and a point fo, respectively.

printf ("*g:%u, g:%u, &q:%u\n", *qgq, g, &q);

printf ("*a:%u, a:%u, &a:%u\n", *a, a, &a); One last thing before you
go.... We said that the

variable of an array
doesn't live in memory.
But, the system prints
the address of the first
index of the array as the
address of a.

B, p:40, &pipEs
R, g:20, &gEpEs
*a:3, a:24, &a:24
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