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D
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Software

Source Programof Electr

Source Program
 Any sequence of statements and/or declarations written in 

some human-readable computer programming language
(e.g. C++, Assembly program)rical Eng

( g , y p g )
 Usually created using a text editor (ASCII file) 

Object Programineering,

j g
 Produced from a source program by compiling/assembling to 

intermediate machine code
 Also contain data for use by the code at runtime, relocation , Feng-Ch

y ,
information, program symbols for linking and/or debugging 
purposes, and other debugging information

hia U
nive

Executable Program
 Machine code directly executed by a computer’s CPU
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High-level language program (in C)
Text Book : P139 ~ P145
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Assembly language program (for MIPS)

of Electr

Assembly language program (for MIPS)

rical Engineering,, Feng-Ch

Binary machine language program (for MIPS)
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Text Book : P140
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Assembler Pseudo instructions

Most assembler instructions represent machineof Electr

Most assembler instructions represent machine 
instructions one-to-one
Pseudo-instructions: figments of the assembler’srical Eng

Pseudo instructions: figments of the assembler s 
imagination

ineering,

move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1, Feng-Ch

bne $at, $zero, L

 $at (register 1): assembler temporaryhia U
nive

 $at (register 1): assembler temporary
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Dynamic linking
of Electr Dynamic Loader

(part of the O/S)

rical Eng

(part of the O/S)Load-and-call

ERRHANDL
DLLsineering,

User 
Program

DLLs

, Feng-Ch

Dynamically Linked Libraries
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Dynamic linking
of Electr

Dynamic 
Loader

rical Eng

Loader
Load-and-call

ERRHANDL
DLLsineering,

User 
Program

DLLs

, Feng-Ch

ERRHANDL
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If a subroutine is still in memory, 
a second call to it may not 
require another load operation.
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epar Arrays vs  Pointers

Text Book : P157 ~ P160
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Arrays vs. Pointers

C Codeof Electr

Array Pointer

rical Engineering,

MIPS Code
Array Pointer, Feng-Chhia U
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ARM & MIPS Similarities
ARM: the most popular embedded coreof Electr ARM MIPS

Similar basic set of instructions to MIPS

rical Eng

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bitsineering,

Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned, Feng-Ch

g g g
Data addressing modes 9 3
Registers 37 × 32-bit 35 × 32-bithia U

nive

Input/output Memory 
mapped

Memory 
mapped
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ARM introduction

A 32-bit RISC architectureof Electr
A 32 bit RISC architecture.
 A large uniform register file
 Many instructions execute in a single cyclerical Eng

 A load/Store architecture
 Simple addressing mode, with all load/store addresses being determined 

form register contents, not directly on memory contents.ineering,

 Uniform and fixed-length instruction fields, to simplify instruction decode.
(32-bit length and 3-address format)

Other features, Feng-Ch

Other features
 Control over both the ALU and Shifter in every data-processing instruction to 

maximize the use of an ALU and Shifter.
 Auto increment and auto decrement addressing modes to optimize programhia U

nive

 Auto-increment and auto-decrement addressing modes to optimize program 
loops.

 Load and Store Multiple instructions to maximize data throughput.
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ARM register briefs

ARM has 31 general-purpose 32-bit registers Only 16 ofof Electr

ARM has 31 general-purpose 32-bit registers. Only 16 of 
them are visible, R0 to R15.
ARM has 6 Program status registers (PSR).rical Eng

The 16 registers are User mode register. Only exception can 
change User mode to other processor mode.
R14 is Link register used for holding the address of next to aineering,

R14 is Link register used for holding the address of next to a 
Branch and link.
R15 is program counter (PC)., Feng-Ch

PC points to instruction that is two instruction being executed 
(In EXE).
R13 is generally used as a Stack Pointer (SP) This ishia U

nive

R13 is generally used as a Stack Pointer (SP). This is 
defined by the Software.
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Register File
of Electr

Shadow Register
(Banked Register)rical Eng

(Banked Register)

ineering,, Feng-Chhia U
nive
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epar Compare and Branch in ARM

Text Book : P163
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Compare and Branch in ARM

Uses condition codes for result of anof Electr

Uses condition codes for result of an 
arithmetic/logical instruction
 Negative, zero, carry, overflowrical Eng

 Compare instructions to set condition codes without 
keeping the result

ineering,

Each instruction can be conditional
 Top 4 bits of instruction word: condition value, Feng-Ch

 Can avoid branches over single instructions

hia U
nive
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Program status registers

of Electr 4 condition code flagsrical Eng

g
 (N, Z, C, V) flags：Negative, Zero, Carry, oVerflow

1 sticky overflow flag
 Q bit：DSP instruction overflow bitineering,

 Q bit：DSP instruction overflow bit.
 In E variants of ARM architecture 5 and above.

2 interrupt disable bits, Feng-Ch

 I bit：disable normal interrupt (IRQ)
 F bit：disable fast interrupt (FIQ)

1 bit which encodes whether ARM or Thumb instructions arehia U
nive

1 bit which encodes whether ARM or Thumb instructions are 
being executed. 
 T bit  
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Program status registers (cont.)

of Electr 5 bits that encode the current processor mode.rical Eng

p
 M[4:0] are the mode bits.

ineering,, Feng-Chhia U
nive
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Exceptions

Vector addressof Electr

Vector address

rical Engineering,, Feng-Chhia U
nive
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Exception process

When an exception occurs the banked versions ofof Electr

When an exception occurs, the banked versions of 
R14 and the SPSR for the exception mode are 
used to save state as follows:rical Eng

R14_<exception_mode> = return link
SPSR <exception mode> = CPSRineering,

_ p _
CPSR[4:0] = exception mode number
CPSR[5] = 0    /* Execute in ARM state */
If <exception mode> == Reset or FIQ then, Feng-Ch

If exception_mode   Reset or FIQ then 
CPSR[6] = 1 /* Disable fast interrupts */

/* else CPSR[6] is unchanged */
CPSR[7] = 1 /* Disable normal interrupts */hia U

nive

CPSR[7]  1 /  Disable normal interrupts /
PC = exception vector address
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Example : IRQ 
0x00000000 Vector address

IRQ Vector address

of Electr

0 12

IRQ Vector address

rical Eng

r0 ~ r12 IRQ Exception handing routine

ineering,

I1

I2

I3

I4
r13 (SP) r13_irq, Feng-Ch

r15 (PC)

r14 (LR)
I4

I5

I6

I7

r14_irq

X

EVA

hia U
nive

…
CPSR SPSR_irq

0xFFFFFFFF

CPSR’
X

X
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IRQ mode Memory

D
epar Instruction Encoding

Text Book : P164
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Instruction Encoding
of Electrrical Engineering,, Feng-Chhia U

nive
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Thumb Architecture Extension 

The Thumb instruction set is a re-encoded subset of theof Electr

The Thumb instruction set is a re-encoded subset of the 
ARM instruction set and the instructions operate on restricted 
view of the ARM registers. (R0~R7, R13, R14, R15)rical Eng

Thumb is designed to increase the performance of ARM 
implementations that use a 16-bit or narrower memory data 
bus and to allow better code density than ARMineering,

bus and to allow better code density than ARM
Every Thumb instruction is encode in 16 bits.
Most Thumb instructions are executed unconditionally., Feng-Ch

y
Many Thumb data processing instructions use 2-address 
format. (the destination register is the same as one of the 

i )

hia U
nive

source registers)
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Example : ARM vs. Thumb
of Electrrical Engineering,, Feng-Chhia U
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Thumb 2

Improved code density with performance andof Electr

Improved code density with performance and 
power efficiency.

rical Engineering,, Feng-Chhia U
nive
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Alternative Architectures

of Electr

 provide more powerful operations
 goal is to reduce number of instructions executedrical Eng

 danger is a slower cycle time and/or a higher CPI

–“The path toward operation complexity is thus fraught with peril.  ineering,

To avoid these problems, designers have moved toward simpler 

instructions”

, Feng-Ch

Let’s look (briefly) at IA-32 (x86)

hia U
nive
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The Intel x86 ISA

Evolution with backward compatibilityof Electr

Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairsrical Eng

p g p
 8086 (1978): 16-bit extension to 8080

 Complex instruction set (CISC)
 8087 (1980) fl ti i t

ineering,

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU, Feng-Ch

80 86 ( 98 ) b t add esses, U
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)hia U
nive

 Additional addressing modes and operations
 Paged memory mapping as well as segments
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The Intel x86 ISA

Further evolutionof Electr

Further evolution…
 i486 (1989): pipelined, on-chip caches and FPU

 Compatible competitors: AMD, Cyrix, …rical Eng

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension) 

instructionsineering,

 The infamous FDIV bug
 Pentium Pro (1995), Pentium II (1997)

 New microarchitecture (see Colwell, The Pentium , Feng-Ch

( ,
Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associatedhia U

nive

Added SSE (Streaming SIMD Extensions) and associated 
registers

 Pentium 4 (2001)
 New microarchitecture
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 New microarchitecture
 Added SSE2 instructions

D
epar The Intel x86 ISArtm
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The Intel x86 ISA

And furtherof Electr
And further…
 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)

rical Eng

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions virtual machine supportineering,

 Added SSE4 instructions, virtual machine support
 AMD64 (announced 2007): SSE5 instructions

 Intel declined to follow, instead…
 Advanced Vector Extension (announced 2008), Feng-Ch

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

If Intel didn’t extend with compatibility, its 
competitors o ld!hia U

nive

competitors would!
 Technical elegance ≠ market success
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x86 Overview

Complexity:of Electr

Complexity:
 Instructions from 1 to 17 bytes long
 one operand must act as both a source and destinationrical Eng

 one operand can come from memory
 complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”ineering,

Saving grace:
 the most frequently used instructions are not too difficult to build
 compilers avoid the portions of the architecture that are slow, Feng-Ch

 compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity, hia U
nive

making it beautiful from the right perspective”
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x86 Instruction Encoding

Variable length encoding
 Postfix bytes specify addressing modeof Electr

 Postfix bytes specify addressing mode
 Prefix bytes modify operation

 Operand length, repetition, locking, … Basic x86 Registers

rical Engineering,, Feng-Chhia U
nive
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Implementing IA 32

Complex instruction set makesof Electr

Complex instruction set makes 
implementation difficult
H d t l t i t ti t i l

rical Eng

Hardware translates instructions to simpler 
microoperations
Simple instructions: 1–1ineering,

Simple instructions: 1–1
Complex instructions: 1–many

Microengine similar to RISC, Feng-Ch

c oe g e s a to SC
Market share makes this economically viable

Comparable performance to RISChia U
nive

Comparable performance to RISC
Compilers avoid complex instructions
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Fallacies

Powerful instruction  higher performanceof Electr

Powerful instruction  higher performance
 Fewer instructions required
 But complex instructions are hard to implementrical Eng

 May slow down all instructions, including simple ones
 Compilers are good at making fast code from simple 

instructionsineering, Use assembly code for high performance
 B t d il b tt t d li ith d

, Feng-Ch

 But modern compilers are better at dealing with modern 
processors

 More lines of code  more errors and less productivityhia U
nive
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Text Book : P175
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Fallacies

Backward compatibility  instruction set doesn’tof Electr

Backward compatibility  instruction set doesn t 
change
But they do accrete more instructionsrical Eng

But they do accrete more instructions

ineering,

86 i t ti t

, Feng-Ch

x86 instruction set

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 40



D
epar Pitfalls

Text Book : P175
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Pitfalls

Sequential words are not at sequential addressesof Electr

Sequential words are not at sequential addresses
 Increment by 4, not by 1!

rical Eng

Keeping a pointer to an automatic variable after 
procedure returnsineering,

 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack popped, Feng-Chhia U

nive
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Text Book : P176 ~ P177

rtm
ent o Instruction complexity is only one variable

Concluding Remarks

of Electr

Instruction complexity is only one variable
 lower instruction count vs. higher CPI / lower clock rate

Design Principles:rical Eng

Design Principles:
 simplicity favors regularity
 smaller is faster
 make the common case fastineering,

 make the common case fast 
 good design demands compromise

Instruction set architecture, Feng-Ch

Instruction set architecture
 a very important abstraction indeed!

R i d i t tihia U
nive

Required instruction groups
 Arithmetic and logic operations
 Load/store
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Concluding Remarks

Measure MIPS instruction executions inof Electr

Measure MIPS instruction executions in 
benchmark programs
Consider making the common case fastrical Eng

Consider making the common case fast
Consider compromises

ineering,

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%

Data transfer lw  sw  lb  lbu  35% 36%, Feng-Ch

Data transfer lw, sw, lb, lbu, 
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi, 
ori  sll  srl

12% 4%

hia U
nive

ori, sll, srl

Cond. Branch beq, bne, slt, 
slti, sltiu

34% 8%

Jump j  jr  jal 2% 0%
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Jump j, jr, jal 2% 0%



p

a

q x

168 12 20 24 28 32 36 40 44

8 12 16 20 24 28 32 36 40 448

p q

1612

x

20 28

a

24 3632 40 44

*p:1, p:40, &p:12
*q:2, q:20, &q:16
*a:3, a:24, &a:24

printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);
printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);
printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

Printed 
output

a

p q x

24 28 32 36 40168 12 20 24 28 32 36 40 44

p q x

168 12 20 24 28 32 36 40 44

Now we define an array that can store 4 
int values. a is now a variable that points 
to the first index of this array.  However, 
notice that unlike the pointer variables p 
and q, a does NOT live in memory.

Now p contains, or points to, the address of a dynamically 
allocated memory space that can store one int value, and 
q points to the address of the variable x. 

Here, we declare p and q 
as pointers that will hold 
the addresses of int 
variables, and x as an 
ordinary int variable. 

int *p, *q, x;

int a[4];

p = (int*) malloc(sizeof(int));
q = &x;

*p = 1;
*q = 2;
*a = 3;

When we dereference these pointers, 
we simply look inside the addresses 
that they point to. In this way, we can 
access the data stored there and 
even change those values.  Here, we 
store the values of 1, 2, and 3 into 
the boxes that the addresses p, q, 
and a point to, respectively. 

Imagine memory as long block of boxes that store data.  Each box is labeled with an address.  A pointer is simply a variable 
that holds a particular address. An array is a group of contiguous boxes that can be accessed by their index values. Array 
and pointer variables are mostly the same; we're going to highlight one of the ways they are different.

In the illustrations above, none of these variables 
have been assigned values yet, so they contain 
“garbage” -- whatever had been stored into these 
blocks of memory beforehand. We change that with 
the code below.

One last thing before you 
go.... We said that the 
variable of an array 
doesn‛t live in memory. 
But, the system prints 
the address of the first 
index of the array as the 
address of a.

Pointers and Arrays

a

q


