
D
eparrtm

ent oof Electr

Chapter 2
Instructions: Language of the Computerrical Eng

Instructions: Language of the Computer
(Part 2)

ineering,, Feng-Ch

王振傑 (Chen-Chieh Wang)
ccwang@mail ee ncku edu twhia U

nive

ccwang@mail.ee.ncku.edu.tw

ersity

Computer Organization and Architecture, Fall 2010

D
epar Outlinertm

ent o

Outline

2 7 Instructions for Making Decisionsof Electr

2.7 Instructions for Making Decisions
2.8 Supporting Procedures in Computer Hardware
2.9 Communicating with Peoplerical Eng

2.10 MIPS Addressing for 32-Bit Immediates and Addresses

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 2

D
epar Change of the control flow

Text Book : P105

rtm
ent o Decision making instructions

Change of the control flow

of Electr

ec s o a g s uc o s
 alter the control flow,
 i.e., change the "next" instruction to be executed

rical Eng

MIPS conditional branch instructions:

beq $t0, $t1, Label # branch if equal
bne $t0 $t1 Label # branch if not equalineering,

bne $t0, $t1, Label # branch if not equal

Example: if (i==j) h = i + j;

, Feng-Ch

bne $s0, $s1, Label
add $s3, $s0, $s1

Label: ...hia U
nive

MIPS unconditional branch instructions:

j l b l

Computer Organization and Architecture, Fall 2010

ersity 3

j label

D
epar Example

Text Book : P106

rtm
ent o

Example

Compiling if-then-else into Conditional Branchesof Electr

Compiling if-then-else into Conditional Branches

 C Code:rical Eng

if (i == j) f = g + h ;
else f = g – h ;ineering,

 MIPS Code: Var. Reg., Feng-Ch

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

f $s0
g $s1

hia U
nive

j
Else: sub $s0, $s1, $s2
Exit: …

h $s2
i $s3
j $s4

Computer Organization and Architecture, Fall 2010

ersity 4

j $s4
Assembler calculates addresses

D
epar Example

Text Book : P107 ~ P108

rtm
ent o

Example

Compiling a while Loop in Cof Electr

Compiling a while Loop in C

 C Code:
Var. Reg.

i $s3rical Eng

while (save[i] == k)
i += 1 ;

k $s5
savebase $s6ineering,

 MIPS Code:

Loop: sll $t1, $s3, 2 # Temp reg $t1 = 4* i, Feng-Ch

add $t1, $t1, $s6 # $t1 = address of save[i]
lw $t0, 0 ($t1) # Temp reg $t0 = save[i]
bne $t0 $s5 Exit # go to Exit if save[i] != khia U

nive

bne $t0, $s5, Exit # go to Exit if save[i] != k
addi $s3, $s3, 1 # i = i + 1
j Loop # go to Loop

Computer Organization and Architecture, Fall 2010

ersity 5
Exit:

D
epar So far:rtm

ent o

So far:

Instruction Meaningof Electr

Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3rical Eng

$,$,$ $ $ $
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,Label Next instr. is at Label if $s4 ≠ $s5
b $ 4 $ 5 L b l N t i t i t L b l if $ 4 $ 5

ineering,

beq $s4,$s5,Label Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

Formats:, Feng-Ch

Formats:

op rs rt rd shamt funct

op rs rt 16 bit address

R

hia U
nive

op rs rt 16 bit address

op 26 bit address

I

J

Computer Organization and Architecture, Fall 2010

ersity 6

D
epar Basic Blocks

Text Book : P108

rtm
ent o

Basic Blocks

A basic block is a sequence of instructions withof Electr

A basic block is a sequence of instructions with
 No embedded branches (except at end)
 No branch targets (except at beginning)rical Eng

g (p g g)

A compiler identifies basicineering,

A compiler identifies basic
blocks for optimization
An advanced processor can

l i f b i

, Feng-Ch

accelerate execution of basic
blocks

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 7

D
epar Control Flow

Text Book : P109

rtm
ent o We have: beq bne what about Branch-if-less-than?

Control Flow
of Electr

We have: beq, bne, what about Branch-if-less-than?

New instruction:
if $ 1 $ 2 th

rical Eng

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 0ineering,

$t0 = 0

Can use this instruction to build "blt $s1, $s2, Label" , Feng-Ch

— can now build general control structures

Note that the assembler needs a register to do thishia U
nive

Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Computer Organization and Architecture, Fall 2010

ersity 8

D
epar Signed vs Unsigned

Text Book : P109 ~ P110

rtm
ent o

Signed vs. Unsigned

Signed comparison: slt slti

of Electr

Signed comparison: slt, slti
Unsigned comparison: sltu, sltui
Examplerical Eng $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
$ 1

ineering,

$s1 = 0000 0000 0000 0000 0000 0000 0000 0001

slt $t0 $s0 $s1 # signed, Feng-Ch

slt $t0, $s0, $s1 # signed

 –1 < +1  $t0 = 1

hia U
nive

sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1  $t0 = 0

Computer Organization and Architecture, Fall 2010

ersity 9

D
epar Conditional Branch Optionsrtm

ent o

Conditional Branch Options
Condition Code
 Tests special bits set by ALU operations possibly under program control

of Electr

 Tests special bits set by ALU operations, possibly under program control.
 Examples: 80x86, ARM, PowerPC …

Condition Register

rical Eng

Condition Register
 Tests arbitrary register with the result of a comparison.
 Examples: MIPS, Alpha …

ineering,

Compare and Branch
 Compare is part of the branch. Often compare is limited to subset.
 Examples: PA RISC VAX, Feng-Ch

 Examples: PA-RISC, VAX

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 10

D
epar Branch Instruction Designrtm

ent o

Branch Instruction Design

Why not blt bge etc?of Electr

Why not blt, bge, etc?
Hardware for ＜, ≧, … slower than ＝, ≠
 C bi i ith b h i l k

rical Eng

 Combining with branch involves more work per
instruction, requiring a slower clock

 All instructions penalized!ineering,

 All instructions penalized!

beq and bne are the common case
This is a good design compromise, Feng-Ch

This is a good design compromise

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 11

D
epar Outlinertm

ent o

Outline

2 7 Instructions for Making Decisionsof Electr

2.7 Instructions for Making Decisions
2.8 Supporting Procedures in Computer Hardware
2.9 Communicating with Peoplerical Eng

2.10 MIPS Addressing for 32-Bit Immediates and Addresses

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 12

D
epar Procedure Call

Text Book : P112

rtm
ent o

Procedure Call

1 Put parameters in a place where the procedure can access themof Electr

1. Put parameters in a place where the procedure can access them.
2. Transfer control to the procedure.
3. Acquire the storage resources needed for the procedure.

f

rical Eng

4. Perform the desired task.
5. Place the result value in a place where the calling program can

access it.ineering,

6. Return control to the point of origin, since a procedure can be
called from several points in a program.

, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 13

D
epar Policy of Use Conventions

Text Book : P113

rtm
ent o

Policy of Use Conventions

Name Register Usage Preservedof Electr

Name Register
number

Usage Preserved
on call?

$zero 0 the constant value 0 ─
$at 1 reser ed for assembler

rical Eng

$at 1 reserved for assembler ─
$v0-$v1 2-3 values for results and expression evaluation no
$a0-$a3 4-7 arguments noineering,

$t0-$t7 8-15 temporaries no
$s0-$s7 16-23 saved temporaries yes
$t8 $t9 24 25 more temporaries no, Feng-Ch

$t8-$t9 24-25 more temporaries no
$k0-$k1 26-27 reserved for OS kernel ─
$gp 28 global pointer yeshia U

nive

$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

Computer Organization and Architecture, Fall 2010

ersity 14

$ra 31 return address yes

D
epar Procedure Call Instructions

Text Book : P113

rtm
ent o

Procedure Call Instructions

Procedure call: jump and linkof Electr

Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction put in $rarical Eng

g p $
 Jumps to target address

ineering,

Procedure return: jump register
jr $ra

 C i $

, Feng-Ch

 Copies $ra to program counter
 Can also be used for computed jumps

 e g for case/switch statementshia U
nive

 e.g., for case/switch statements

Computer Organization and Architecture, Fall 2010

ersity 15

D
epar Compiling a Procedure Call

Text Book : P114 ~ P115

rtm
ent o

Compiling a Procedure Call
 C Code  MIPS Codeof Electr

Var. Reg.

g $a0

h $a1

i $ 2

addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)

int leaf_example (int g, int h, int i, int j) {
int f ;
f = (g + h) – (i + j) ;rical Eng

i $a2

j $a3

f $s0

sw $s0, 0($sp)

add $t0, $a0, $a1

return f ;
}

ineering,

add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero, Feng-Ch

lw $s0, 0($sp)
lw $t0, 4($sp)hia U

nive

$, ($ p)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

Computer Organization and Architecture, Fall 2010

ersity 16

jr $ra

D
epar What is and what is not preserved

 d ll

Text Book : P115, P118

rtm
ent o

across a procedure call

of Electr

Preserved Not preserved
Saved registers: $s0 ~ $s7 Temporary register: $t0 ~ $t9rical Eng

Stack pointer register: $sp Argument register: $a0 ~ $a3
Return address register: $ra Return value register: $v0 ~ $v1
Stack above the stack pointer Stack below the stack pointerineering, Caller saving

Stack above the stack pointer Stack below the stack pointer

, Feng-Ch

Caller saving
 Caller saves the registers that are preserved.

hia U
nive

Callee saving
 Called procedure saves the registers that are preserved.

Computer Organization and Architecture, Fall 2010

ersity 17

 Called procedure saves the registers that are preserved.

D
epar Non-Leaf Procedure Example

Text Book : P116 ~ P117

rtm
ent o

Non Leaf Procedure Example

Procedures that call other proceduresof Electr

Procedures that call other procedures
For nested call, caller needs to save on the stack:
 Its return addressrical Eng

 Its return address
 Any arguments and temporaries needed after the call

Restore from the stack after the callineering,

Restore from the stack after the call
Recursive call
 Argument n in $a0 int fact (int n), Feng-Ch

g
 Result in $v0 {

if (n<1)
return (1);hia U

nive

else
return (n * fact(n-1));

}

Computer Organization and Architecture, Fall 2010

ersity 18

}

D
epar Stack Allocation

Text Book : P119

rtm
ent o

Stack Allocation

Stack can stores variables (large object) that are local to the procedureof Electr

Stack can stores variables (large object) that are local to the procedure.
$fp is fixed at a stable location so it offers good reference point for
local memory references.rical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 19

D
epar MIPS memory allocation

Text Book : P120

rtm
ent o

MIPS memory allocation

Text segment : the home of the MIPS machine codeof Electr
Text segment : the home of the MIPS machine code
Static data segment : constants and other static variables
Dynamic data (Heap) segment : data structures like linked lists tend
to grow and shrink during their lifetimes

rical Eng

to grow and shrink during their lifetimes.
 E.g., malloc in C, new in Java

Stack segment : starts in the high end of memory and grows downineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 20

D
epar Outlinertm

ent o

Outline

2 7 Instructions for Making Decisionsof Electr

2.7 Instructions for Making Decisions
2.8 Supporting Procedures in Computer Hardware
2.9 Communicating with Peoplerical Eng

2.10 MIPS Addressing for 32-Bit Immediates and Addresses

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 21

D
epar Communicating with People

Text Book : P123

rtm
ent o

Communicating with People

Load byte and store byte (ASCII characters)of Electr

Load byte and store byte (ASCII characters)

lb $t0, 0($sp) # Read byte from source
sb $t0, 0($sp) # Write byte to destinationrical Eng

L d h lf d d t h lf d (U i d h t)

sb $t0, 0($sp) # Write byte to destination

ineering,

Load halfword and store halfword (Unicode characters)

lh $t0, 0($sp) # Read halfword (16 bits) from source, Feng-Ch

sh $t0, 0($sp) # Write halfword (16 bits) to destination

hia U
nive

Computer Organization and Architecture, Fall 2010

ersity 22

D
eparrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 23

D
epar String Copy

Text Book : P124 ~ P125

rtm
ent o

String Copy
 C Code  MIPS Codeof Electr

strcpy: addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0 $zero $zero

void strcpy (char x[], char y[])
{

int i ;

rical Eng

add $s0, $zero, $zero
L1: add $t1, $s0, $a1

lbu $t2, 0($t1)

int i ;
i = 0 ;
while ((x[i] = y[i]) != ‘\0’)ineering,

add $t3, $s0, $a0
sb $t2, 0($t3)
beq $t2 $zero L2

i += 1 ;
}

, Feng-Ch

beq $t2, $zero, L2
addi $s0, $s0, 1
j L1

$ ($)
Var. Reg.

X $ 0hia U
nive

L2: lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Xbase $a0
Ybase $a1

i $s0

Computer Organization and Architecture, Fall 2010

ersity 24

j

D
epar Outlinertm

ent o

Outline

2 7 Instructions for Making Decisionsof Electr

2.7 Instructions for Making Decisions
2.8 Supporting Procedures in Computer Hardware
2.9 Communicating with Peoplerical Eng

2.10 MIPS Addressing for 32-Bit Immediates and Addresses

ineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 25

D
epar Constantsrtm

ent o Small constants are used quite frequently (50% of operands)

Constants
of Electr

Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;rical Eng

C C 8;
Solutions? Why not?
 put 'typical constants' in memory and load them.
 t h d i d i t (lik $) f t t likineering,

 create hard-wired registers (like $zero) for constants like one.

MIPS Instructions:, Feng-Ch

addi $29, $29, 4
slti $8, $18, 10
andi $29 $29 6hia U

nive

andi $29, $29, 6
ori $29, $29, 4

D i P i i l M k th f t Whi h f t?

Computer Organization and Architecture, Fall 2010

ersity 26

Design Principle: Make the common case fast. Which format?

D
epar How about larger constants?

Text Book : P128

rtm
ent o We'd like to be able to load a 32 bit constant into a register

How about larger constants?

of Electr

We d like to be able to load a 32 bit constant into a register
Must use two instructions, new "load upper immediate" instruction

lui $t0 1010101010101010rical Eng

lui $t0, 1010101010101010

1010101010101010 0000000000000000

filled with zeros

ineering,

Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010, Feng-Ch

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

hia U
nive

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

Computer Organization and Architecture, Fall 2010

ersity 27

D
epar Assembly Language vs. Machine Languagertm

ent o Assembly provides convenient symbolic representation

Assembly Language vs. Machine Language
of Electr

Assembly provides convenient symbolic representation
 much easier than writing down numbers
 e.g., destination first

rical Eng

Machine language is the underlying reality
 e.g., destination is no longer first

ineering,

Assembly can provide 'pseudo-instructions'
 e.g., “move $t0, $t1” exists only in Assembly
 ld b i l t d i “ dd $t0 $t1 $ ”

, Feng-Ch

 would be implemented using “add $t0,$t1,$zero”

When considering performance you should count real instructionshia U
nive

Computer Organization and Architecture, Fall 2010

ersity 28

D
epar Branch Addressing

Text Book : P130

rtm
ent o

Branch Addressing

Instructions:of Electr

st uct o s
bne $t4,$t5,Label # Next instruction is at Label if $t4≠$t5
beq $t4,$t5,Label # Next instruction is at Label if $t4=$t5

rical Eng

Most branch targets are near branch
 Forward or backward

ineering,

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

I

, Feng-Ch

Addresses are not 32 bits
— How do we handle this with load and store instructions?

hia U
nive

PC-relative addressing
 Target address = PC + offset × 4
 PC l d i t d b 4 b thi ti

Computer Organization and Architecture, Fall 2010

ersity 29

 PC already incremented by 4 by this time

D
epar Jump Addressing

Text Book : P130

rtm
ent o

Jump Addressing

Jump (j and jal) targets could be anywhere inof Electr

Jump (j and jal) targets could be anywhere in
text segment
 Encode full address in instructionrical Eng op addressJineering, (P d) Di t j dd i

6 bits 26 bits

, Feng-Ch

(Pseudo) Direct jump addressing
 Jump instructions just use high order bits of PC
 Target address = PC31 28 : (address × 4)hia U

nive

 Target address = PC31…28 : (address × 4)
 address boundaries of 256 MB

Computer Organization and Architecture, Fall 2010

ersity 30

D
epar Showing Branch Offset

Text Book : P131

rtm
ent o

Showing Branch Offset
MIPS assembly code: of Electr

Loop: sll $t1, $s3, 2 # Temp reg $t1 = 4* i
add $t1, $t1, $s6 # $t1 = address of save[i]
lw $t0, 0 ($t1) # Temp reg $t0 = save[i]rical Eng

lw $t0, 0 ($t1) # Temp reg $t0 save[i]
bne $t0, $s5, Exit # go to Exit if save[i] != k
addi $s3, $s3, 1 # i = i + 1
j Loop # go to Loopineering,

j Loop # go to Loop
Exit:

, Feng-Ch

MIPS machine code:

0 0 19 9 2 0
0 9 22 9 0 32

80000
80004hia U

nive

0 9 22 9 0 32
35 9 8 0
5 8 21 2
8 19 19 1
2 2000

80004
80008
80012
80016
80020

Computer Organization and Architecture, Fall 2010

ersity 31
80024 . . .

D
epar Branching Far Away

Text Book : P132

rtm
ent o

Branching Far Away

If branch target is too far to encode with 16 bitof Electr

If branch target is too far to encode with 16-bit
offset, assembler rewrites the code

rical Eng

Example

ineering,

beq $s0,$s1, L1

↓, Feng-Ch

bne $s0,$s1, L2
j L1

L2:hia U
nive

L2: …

Computer Organization and Architecture, Fall 2010

ersity 32

D
epar Overview of MIPSrtm

ent o simple instructions all 32 bits wide

Overview of MIPS

of Electr

simple instructions all 32 bits wide
very structured, no unnecessary baggage
only three instruction formatsrical Eng op rs rt rd shamt funct

t 16 bit dd

R

ineering,

op rs rt 16 bit address

op 26 bit address

I

J

, Feng-Ch

rely on compiler to achieve performance
— what are the compiler's goals?hia U

nive

help compiler where we can

Computer Organization and Architecture, Fall 2010

ersity 33

D
epar MIPS Addressing Mode Summary

Text Book : P133

rtm
ent o

g y
of Electrrical Engineering,, Feng-Chhia U

nive

Computer Organization and Architecture, Fall 2010

ersity 34

D
epar MIPS Operand Summaryrtm

ent o

MIPS Operand Summary
230 Memory wordsof Electr Name Register number Usage

32 registers

rical Eng

$zero 0 the constant value 0
$at 1 reserved for assembler
$v0-$v1 2-3 values for results and expression evaluationineering,

$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved temporaries, Feng-Ch

$ $ p
$t8-$t9 24-25 more temporaries
$k0-$k1 26-27 reserved for OS kernel
$gp 28 global pointerhia U

nive

$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ 31 t dd

Computer Organization and Architecture, Fall 2010

ersity 35

$ra 31 return address

D
epar MIPS Instruction Summaryrtm

ent oof Electrrical Engineering,, Feng-Chhia U
nive

Computer Organization and Architecture, Fall 2010

ersity 36

