o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
3.
0
=8
m
>
e
>
)
(W
=.
>
S
-n
o®
=]
K
Q
=5
o
-
=
<
o
=3
o
-t
<

Chapter 2

Instructions: Language of the Computer

(Part 2)

F &% (Chen-Chieh Wang)
ccwang@mail.ee.ncku.edu.tw

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

2.7
2.8
29
210

Outline

Instructions for Making Decisions

Supporting Procedures in Computer Hardware
Communicating with People
MIPS Addressing for 32-Bit Immediates and Addresses

2

Computer Organization and Architecture, Fall 2010

Text Book : P105

Change of the control flow

4 Decision making instructions
» alter the control flow,
> i.e., change the "next" instruction to be executed

MIPS conditional branch instructions:

beq $t0, $tl, Label # branch if equal
bne $t0, $tl1, Label # branch if not equal
% Example: if (i==3) h =1 + 3;

bne $s0, $s1, Label
add $s3, $s0, $s1
Label : .-

4% MIPS unconditional branch instructions:

j label
3

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—+
3
o
S
i
(o]
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
2.
o
-
=
<
o
-3
o,
—+
~<

Text Book : P106

Example

% Compiling //~then-else into Conditional Branches

=1 =]

==

» C Code:

if (i==j)
else

ETse:

f=g+h

Extt: [

> MIPS Code:

bne $s3, $s4, Else
add $s0, $s1, $s2
i Exit $s
Else: sub $s0, $s1, $s2 $s2

Exit: - i $s3
\ j $s4

Assembler calculates addresses

Var. | Reg.
$s0

0O |Q | =

4

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Text Book . P107 ~ P108

o

(O]

O

[a]

| Example

3

™

=

¥ <+ Compiling a while Loop in C

m

§ Var. Reg.
3 » C Code: i $s3
S while (save[i] == k) Kk $s5
Lg' i+=1; save,,., | $s6
>

£ » MIPS Code:

2

3 Loop: sl $t1, $s3, 2 # Temp reg $t1 =4*

il add $t1, $t1, $s6 # $t1 = address of saveli]
S lw $t0, 0 ($t1) # Temp reg $t0 = saveli
S bne $t0, $s5, Exit #go to Exit if savefi] I= k
- addi $s3, $s3, 1 #i=i+1

2 j Loop # go to Loop

% Exit:

= 5
~

Computer Organization and Architecture, Fall 2010

So far:

|nstruction Meaning

add $sl1,$s2,5%s3 $sl = $s2 + $s3
sub $sl1,$s2,5$s3 $s1 = $s2 - $s3
1w $s1,100($s2) $s1 = Memory[$s2+100]
SW $s1,100(S$s2) Memory[$s2+100] = $sl

bne $s4,$s5,Label Next instr. is at Label if $s4 # $sb
beqg $s4,5s5,Label Next instr. is at Label if $s4 = $s5
3 Label Next instr. is at Label

4 Formats:
R op rs rt rd shamt| funct
I op rs rt 16 bit address
J op 26 bit address

6

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Text Book : P108

Basic Blocks

A basic block is a sequence of instructions with
» No embedded branches (except at end)
» No branch targets (except at beginning)

% A compiler identifies basic
blocks for optimization

4 An advanced processor can
accelerate execution of basic
blocks

7

Computer Organization and Architecture, Fall 2010

o
)
o
o
-3
—+
3
o
S
i
(o]
—h
il
o
(9]
—+
=y
0
=1
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
=5
o
-
=
<
o
=3
a,
-t
~<

Text Book : P109

Control Flow

We have: beq, bne, what about Branch-if-less-than?

4 New instruction:
if $s1 < $s2 then

$t0 = 1
slt $t0, $s1, $s2 else
$t0O = 0

Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

8

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Text Book : P109 ~ P110

Signed vs. Unsigned

4 Signed comparison: slt, slti
4 Unsigned comparison: sltu, sltui
4 Example

$s0 =1111 1111 1111 1111 1111 1111 1111 1111
$s1 = 0000 0000 0000 0000 0000 0000 0000 0001

st $t0, $s0, $s1 # signed
®-1<+1=5t0="1

sltu $t0, $s0, $s1 # unsigned
® +4,294 967,295 > +1 = $t0=0

9

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
%
3
o
S
—+
(o]
—h
il
o
(9]
—
=y
0
=1
m
>
=
>
)
o
3.
>
S
T
o
>
<
Q
=7
o
-
=
<
o
=3
a,
-t
~<

Conditional Branch Options

4 Condition Code
» Tests special bits set by ALU operations, possibly under program control.
» Examples: 80x86, ARM, PowerPC ...

Condition Register

» Tests arbitrary register with the result of a comparison.
» Examples: MIPS, Alpha ...

Compare and Branch
» Compare is part of the branch. Often compare is limited to subset.
» Examples: PA-RISC, VAX

HLL Condition Code Condition Register Compare & Branch
if(a<b) CMP Ra, Rb SLLT Rt Ra,Rb JLT Ra,Rb, Label
Statement 1 ; JNEG Label J.C Rt Label Statement 2
else Statement 2 Statement 2 J Exit
Statement 2 ; J Exit J Exit Label: Statement 1
Label: Statement 1 Label: Statement 1 Exit:
Exit: Exit:

10

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Branch Instruction Design

Why not bl t, bge, etc?
4 Hardware for <, 2, ... slower than =, *

» Combining with branch involves more work per
instruction, requiring a slower clock

» All instructions penalized!
beq and bne are the common case
This is a good design compromise

1

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Outline

2.7 Instructions for Making Decisions

2.8 Supporting Procedures in Computer Hardware

2.9 Communicating with People

210 MIPS Addressing for 32-Bit Immediates and Addresses

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

12

Computer Organization and Architecture, Fall 2010

Text Book : P112

Procedure Call

Put parameters in a place where the procedure can access them.
Transfer control to the procedure.

Acquire the storage resources needed for the procedure.
Perform the desired task.

Place the result value in a place where the calling program can
access it.

6. Return control to the point of origin, since a procedure can be
called from several points in a program.

ok =

13

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—
3
o
>
-t
(e}
—h
il
o
(9]
—
3.
0
=3
m
>
=
>
)
(W
=.
=
S
-n
o®
=]
<
Q
=5
o
-
=
<
o
=3
a,
-t
~<

Text Book : P113

o

®

O ° °

2 Policy of Use Conventions

=]

®

S

_|-

S, Name | Register Usage Preserved
m number on call?
8‘_ $zero 0 the constant value 0 -

g- $at 1 reserved for assembler -

:’DT'I $v0-$v1 2-3 values for results and expression evaluation no
Lg. $a0-$a3 4-7 arguments no

§ $t0-$t7 8-15 | temporaries no

:35. $s0-$s7 | 16-23 | saved temporaries yes
= $t8-$t9 24-25 | more temporaries no
-

o $k0-$k1 | 26-27 | reserved for OS kernel -
La $ap 28 global pointer yes
g_- $sp 29 stack pointer yes
S $fp 30 frame pointer yes
(%' $ra 31 return address yes
@

= 14
~<

Computer Organization and Architecture, Fall 2010

Text Book : P113

Procedure Call Instructions

¢ Procedure call: jump and link
jal ProcedurelLabel
> Address of following instruction put in $ra
» Jumps to target address

4 Procedure return: jump register
jr $ra
> Copies $ra to program counter

» Can also be used for computed jumps
® c.g., for case/switch statements

15

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Text Book . P114 ~ P115

Compiling a Procedure Call

o

®

o

)

=3

=t

8

=8l > CCode > MIPS Code

o

Fnh int leaf_example (int g, int h, inti, intj){ [|Re9 | addi $sp, $sp, -12
3 int f; 9 | %a0 | oy $t1, 8($sp)
g.. f=(g+h)-(i+j); A LI VY $t0, 4($sp)
Q' return f;] %2 sw $s0, 0($sp)
=} j $a3

ny } f | $s0

3 add $t0, $a0, $a1
%' Registers Memory o] $t1. $a2, $a3
:g;. High Address sub $s0, $t0, $t1
Q add $v0, $s0, $zero
(‘“n $t0 Stack

L$ $t1 lw $s0, 0($sp)
O lw $t0, 4($sp)
=) $s0 lw $t1, 8($sp)
- addi $sp, $sp, 12
S $sp jr $ra

o

W0

3 Low Address 16

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
il
o
(9]
—+
=y
0
=1
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
=7
o
-
=
<
o
-3
o,
—+
~<

Text Book . P115, P118

What is and what is not preserved
across a procedure call

Preserved Not preserved
Saved registers: $s0 ~ $s7 Temporary register: $t0 ~ $t9

Stack pointer register: $sp Argument register: $a0 ~ $a3

Return address register: $ra | Return value register: $v0 ~ $v1

Stack above the stack pointer | Stack below the stack pointer

4 Caller saving
» Caller saves the registers that are preserved.

Callee saving
» Called procedure saves the registers that are preserved.

17

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 JO Juawidodaq

Text Book . P116 ~P117

Non-Leaf Procedure Example

% Procedures that call other procedures

% For nested call, caller needs to save on the stack:
> Its return address
» Any arguments and temporaries needed after the call

Restore from the stack after the call
4 Recursive call

> Argument n in $a0 int fact (intn)
> Result in $v0 -
if (n<1)
return (1);
else

return (n * fact(n-1));

18

Computer Organization and Architecture, Fall 2010

o
)
o
o
-3
—+
3
o
S
i
(o]
—h
il
o
(9]
—+
=y
0
=1
m
>
=
>
)
(W
=.
>
S
-n
o®
=]
K
Q
=5
o
-
=
<
o
=3
o
-t
<

Text Book : P119

Stack Allocation

Stack can stores variables (large object) that are local to the procedure.

4 $fp is fixed at a stable location so it offers good reference point for
local memory references.

High address
$fp— ifp—
$sp— $sp—~
$fp—| Saved argument
registers (if any)
Saved return address
Saved saved
registers (if any)
Local arrays and
$sp— structures (if any)
Low address a. b. C.

19

Computer Organization and Architecture, Fall 2010

ALIsdaAluN DIYH-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

Text Book : P120

MIPS memory allocation

Text segment : the home of the MIPS machine code
4 Static data segment : constants and other static variables

4 Dynamic data (Heap) segment : data structures like linked lists tend
to grow and shrink during their lifetimes.
» E.g., malloc in C, new in Java

4 Stack segment : starts in the high end of memory and grows down

$Sp—=T7Fff FFFCpay Sk

.
f

Dynamic data
$gp—1000 8000}, Static data
1000 0000yq,
Text
pc—=0040 0000,y
Reserved

0

20

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
(W
2.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Outline

2.7 Instructions for Making Decisions

2.8 Supporting Procedures in Computer Hardware

2.9 Communicating with People

2.10 MIPS Addressing for 32-Bit Immediates and Addresses

21

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

Text Book : P123

Communicating with People

4 Load byte and store byte (ASCII characters)

b $t0, O($sp) # Read byte from source
sb $t0, 0($sp) # Write byte to destination

Load halfword and store halfword (Unicode characters)

lh $t0, O($sp) # Read halfword (16 bits) from source
sh $t0, O($sp) # Write halfword (16 bits) to destination

22

Computer Organization and Architecture, Fall 2010

o Hex ASCII Hex ASCII Hex ASCII Hex ASCII
o code character Code character code character code character
-g 00 NUL 20 Sp 40 @ 60

> 01 SOH 21 ! 41 A 61 a
=1 02 STX 22 “ 42 B 62 b

o 03 ETX 23 # 43 C 63 c

= 04 EOT 24 $ 44 D 64 d

o 05 ENQ 25 45 E 65 e
—+ 06 ACK 26 & 46 F 66 f
M 07 BEL 27 g 47 G 67 g
o 08 BS 28 (48 H 68 h
(_"‘_ 09 HT 29) 49 I 69 i

=S 0A LF 2A * 4A] 6A i

o 0B VT 2B + 4B K 6B k
= 0C FF 2C , 4C L 6C |

m 0D CR 2D - 4D M 6D m
S OE SO 2E . 4E N 6E n
. OF SI 2F / 4F 0 6F o

a 10 DLE 30 0 50 P 70 p

) 11 DC1 31 1 51 Q 71 q
3. 12 DC2 32 2 52 R 72 r
L:QS 13 DC3 33 3 53 S 73 s

N 14 DC4 34 4 54 T 74 t
) 15 NAK 35 5 55 U 75 u
o 16 SYN 36 6 56 Y 76 v
o 17 ETB 37 7 57 w 77 w
(‘\‘ 18 CAN 38 8 58 X 78 x
> 19 EM 39 9 59 Y 79 y
o 1A SUB 3A : 5A s 7A z
- 1B ESC 3B ; 5B [7B {

S 1C FS 3C < 5C \ 7C |

< 1D GS 3D = 5D] 7D)

g 1E RS 3E > 5E A 7E ~

w0 1F uUs 3F ? 5F _ 7F DEL
= 23
~

Computer Organization and Architecture, Fall 2010

Text Book . P124 ~ P125

String Copy

24

Computer Organization and Architecture, Fall 2010

o

o

O

[a)

>

8

= » C Code » MIPS Code

o

Fn_h void strcpy (char x[], char y[]) strcpy: addi $sp, $sp, -4
‘-QL { sw $s0, 0($sp)
= int i; add $s0, $zero, $zero
‘r’; i=0; L1: add $t1, $s0, $a1
3 while ((x[i] = y[i]) = 10’) Ibu $t2, 0($t1)

= i+=1; add $t3, $s0, $a0
s sb $t2, 0($t3)

o beq $t2, $zero, L2
’gf‘ addi $s0, $s0, 1
o Var. Reg. j L1

Q

g_. Xpase $a0 L2: Iw $s0, 0($sp)
= Ybase $a1 addi $sp, $sp, 4
A

_P

<

Outline

2.7 Instructions for Making Decisions

2.8 Supporting Procedures in Computer Hardware

2.9 Communicating with People

2.10 MIPS Addressing for 32-Bit Immediates and Addresses

25

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—+
3
o
>
-t
(e}
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
(W
2.
>
S
-n
o®
=]
<
Q
2.
o
-
=
<
o
-3
a,
-t
~<

Constants

4 Small constants are used quite frequently (50% of operands)
e.g., A=A+5;
B=B+1;
C=C-18;
Solutions? Why not?
» put 'typical constants' in memory and load them.

> create hard-wired registers (like $zero) for constants like one.

MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, s$29, 4

Design Principle: Make the common case fast. Which format?
26

Computer Organization and Architecture, Fall 2010

ALisdaAlun piIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Text Book : P128

How about larger constants?

We'd like to be able to load a 32 bit constant into a register
Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

filled with zeros
/ /

1010101010101010 0000000000000000

% Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

ori 0000000000000000 1010101010101010

1010101010101010 1010101010101010

27

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Assembly Language vs. Machine Language

4 Assembly provides convenient symbolic representation
» much easier than writing down numbers
> e.g., destination first

Machine language is the underlying reality
» e.g., destination is no longer first

4 Assembly can provide 'pseudo-instructions'
> e.g., “move $t0, $t1” exists only in Assembly

> would be implemented using “add $t0,$t1,$zero”

When considering performance you should count real instructions

28

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIYH-bua4 ‘buluaauibul |pa14422|3 JO Juawidodaq

o
)
o
o
3
—+
3
o
S
i
(o]
—h
on
o
(9]
—+
3.
0
=
m
>
=
>
)
o
3.
>
S
-
o
>
<
Q
2.
o
-
=
<
o
-3
o,
—+
~<

Text Book : P130

Branch Addressing

4 Instructions:
bne $t4,$t5, Label # Next instruction is at Label if $t4£$t5
beq $t4,$t5, Label # Next instruction is at Label if $t4=5$t5

4 Most branch targets are near branch
» Forward or backward

I op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Addresses are not 32 bits
— How do we handle this with load and store instructions?

4 PC-relative addressing
» Target address = PC + offset x 4
» PC already incremented by 4 by this time
29

Computer Organization and Architecture, Fall 2010

ALisdaAlun piIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Text Book : P130

Jump Addressing

% Jump (J and jal) targets could be anywhere in
text segment
» Encode full address in instruction

J op address
6 bits 26 bits

4 (Pseudo) Direct jump addressing
» Jump instructions just use high order bits of PC
> Target address = PC;, .5 : (address x 4)
» address boundaries of 256 MB

30

Computer Organization and Architecture, Fall 2010

Text Book : P131

Showing Branch Offset

4 MIPS assembly code:

Loop: sl $t1, $s3, 2 # Temp reg $t1 = 4%
add $t1, $t1, $s6 # $t1 = address of saveli]
Iw $t0, 0 ($t1) # Temp reg $t0 = savefi]
bne $t0, $s5, Exit # go to Exit if savefi] I= k
addi $s3, $s3, 1 Hi=i+1
j Loop # go to Loop

Exit:

4% MIPS machine code:

80000 0 0 19 9 2 0
80004 0 9 22 9 0 32
80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 2000

80024 e

31

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
@)
-
=
<
o
-3
a2,
-t
~<

Text Book : P132

Branching Far Away

If branch target is too far to encode with 16-bit
offset, assembler rewrites the code

4 Example

beq $s0,%$s1, L1
\)
bne $s0,%$s1, L2
j L1
L2:

32

Computer Organization and Architecture, Fall 2010

ALIsdaAlun pIyn-bua ‘buluaauibul |pa14422|3 Jo Juawidodaq

Overview of MIPS

% simple instructions all 32 bits wide
very structured, no unnecessary baggage
4 only three instruction formats

R op rs rt rd shamt | funct
I op rs rt 16 bit address
J op 26 bit address

4 rely on compiler to achieve performance
— what are the compiler's goals?

% help compiler where we can

33

Computer Organization and Architecture, Fall 2010

o
()
o
)
-3
—+
3
o
S
-+
o
—h
on
®
(9]
—+
3.
0
=
m
>
=
>
o
o®
3.
>
o
M
o
>
2
Q
2.
o
-
=3
<
o
-3
a2,
-t
~<

Text Book : P133

MIPS Addressing Mode Summary

1. Immediain addrensing
|q)| ru[1] | Immediate |

2. Register addressing
[o« o] g g

Register |

3. Base addvessing
[op[| n | Addwss | Mamory

‘ Ragisiar | |[Byte | Halfword | Waord

I PC [Word

|np| Address | Memory

Computer Organization and Architecture, Fall 2010

ALisdaAlun pIyn-bua4 ‘buluaauibul |pa14422|3 Jo Juawidodaq

o

®

ae]

= MIPS Operand Summary
g

3 230 Memory words

i 4 32 registers

S .

= Name | Register number Usage

é' $zero 0 the constant value 0

r—n $at 1 reserved for assembler

S $v0-$v1 2-3 values for results and expression evaluation
§' $a0-$a3 4-7 arguments

= $t0-$t7 8-15 temporaries

5:03 $s0-$s7 16-23 saved temporaries

g’ $t8-$t9 24-25 more temporaries

S $k0-$k1 26-27 reserved for OS kernel

9 $gp 28 global pointer

= $sp 29 stack pointer

-3C>_ $fp 30 frame pointer

§ $ra 31 return address

£ 55

Computer Organization and Architecture, Fall 2010

o
)
o
o
3
—
=]
o
S
-t
(e}
—h
)
o
(9]
=4
3.
0
=1
m
>
=
>
)
o
=.
>
S
-
o
>
<
Q
=5
o
-
=
<
o
3
a8,
-t
~<

MIPS Instruction Summary

s Jscion ot

Category

add $s1,$s52,%$s53 $s1 =852 + $s3 Three register operands
Arithmetic subtract sub $s1,%$52,$s3 $51 =%s52-3s3 Three register operands
add immediate addi $s1,%$s2,100 $s51=4%s52 +100 Used to add constants
load word lw $51,100($s2) $51 = Memory[$52 + 100] Word from memory to register
store word sw $s51,100(%s2) Memony{$52 + 100] = $51 Word from register to memory
load half 1h $s51,100(%s2) $51 = Memory[$s2 + 100] Halfword memory to register
Data transfer | store half sh $s51,100(%s52) Memony{$52 + 100] = $51 Halfword register to memory
load byte 1b $s1,100(%s2) $51 = Memony{$52 + 100] Byte from memory to register
store byte sb $s51,100(%s52) Memory{$s2 + 100] = $51 Byte from register to memory
load upper immed. lui $s1,100 $s]1 =100 * 216 Loads constant in upper 16 bits
and and $s1,$s2,8$s3 $s51=$52 & $s3 Three reg. operands; bit-by-bit AND
or or $51,%$52,9s3 $s1 =952 |$s3 Three reg. operands; bit-by-bit OR
nor nor $s1,$s2,$s3 $s1 =~ (%52 |$53) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1,$s2,100 $s1=19$s2 & 100 Bit-by-bit AND reg with constant
or immediate ori $s51,$s2,100 $s1=$s52|100 Bit-by-bit OR reg with constant
shift left logical s11 $51,$s2,10 $51 =952 <<10 Shift left by constant
shift right logical srl $s1,%s2,10 $51 =%s52>>10 Shift right by constant
branch on equal beq $s1,%s2.25 if ($s1 == $52)go to Equal test; PC-relative branch
PC + 4 + 100
branch on not equal bne $s1,%$s2,25 if($s1!= $s2)goto Not equal test; PC-relative
Conditional PC + 4 + 100
branch set on less than s1t $s1,%$s52,%s53 if ($52 < $53) $s51=1; Compare less than; for beq, bne
else $51=0
set less than s1ti $s1,$s2,100 if($52 < 100) $51 = 1; Compare less than constant
immediate else $s1 =0
. jump J 2500 g0 to 10000 Jump to target address
:Ij::::rﬁ:np jump register jr $ra gotos$ra For switch, procedure retum
jump and link Jal 2500 $ra =PC + 4; go to 10000 For procedure call

Computer Organization and Architecture, Fall 2010

