
Nios II Embedded Processor Design Contest—Outstanding Designs 2005

306

Third Prize

TCP/IP Offload Engine (TOE) for an
SOC System

Institution: Institute of Computer & Communication Engineering, National
Cheng Kung University

Participants: Zhan Bokai and Yu Chengye

Instructor: Chen Zhonghe

Design Introduction
Today, the Internet plays an important role in everyone’s life. The 100-Mbps network system has
become very popular in schools and offices, while the 1-Gbps network system is deployed in server host
networks such as large portal websites and Storage Area Networks (SAN). Meanwhile, the Internet
SCSI (iSCSI) protocol is recognized as the new standard for the emerging network storage
technology—networking of storage component. However, the iSCSI protocol will place heavy demands
on server processing when applications run on high-speed networks. According to recent studies, you
need 100% efficiency from a Pentium III, 1-GHz processor or 30% efficiency from a Pentium 4 2.4
GHz processor to process the 1-Gbps TCP protocol. Therefore, it is necessary to accelerate network-
processing capability and reduce the CPU load by adding extra hardware.

Accelerating system processing has a bearing on the built-in system featuring network functions. The
network communication protocol performance depends on memory (memory access times) and data
volume. For example, you need lots of memory access to read data when computing checksums, which
leads to an efficiency bottleneck. Additionally, when the network interface controller (NIC) receives
large volumes of data, the data is split into many different segments based on protocol restrictions.
Therefore, subsequent interrupts affect the CPU efficiency. If protocols are processed through additional
hardware and with an enhanced memory management mechanism, the above problems can be solved
effectively.

The left side of Figure 1 shows a standard TCP/IP stack. To implement TCP/IP in an embedded system,
we need two important blocks: the PHY and media access controller (MAC) that function in the
physical layer and data-link layer.

 TCP/IP Offload Engine (TOE) for an SOC System

 307

These function blocks also operate under the local real-time operating system (RTOS) in the third layer
(network layer, IP layer) and the fourth layer (transport layer, TCP layer). Thus, all TCP/IP protocols
can be implemented in a software-only solution. We replaced the network protocol with our TCP/IP
Offload Engine (TOE), which you can see in the system’s architecture on the right side of Figure 1.
TOE uses hardware modules to implement protocols, and uses drivers to communicate with upper-layer
space and operating systems.

Figure 1. Network Protocol Stacking (TCP/IP Stack) & TOE Engine

Figure 2 shows the system overview of our design in the FPGA. The system adopts the Avalon® system
bus. In addition to the TOE architecture, the design includes system main memory, a Nios® II processor,
DMA, the LAN91C111, and a PHY/MAC chip controller. We will describe the TOE’s major functions
and blocks in a later section.

In this system, the Nios II processor functions as the primary controller for data communication
between the MAC, TOE, and main memory. The MAC receives a message box data and sends it to a
data buffer space of TOE (TCP/IP Offload Engine) through firmware, which processes the data and
sends it to the main memory. While transmitting, MAC first sends the data to the internal data buffer
space of the TOE, which then adds headers and transfers it back to the MAC for transmission.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

308

Figure 2. Hardware Overview

Avalon System Bus

Nios II Main MemoryLAN91C111
PHY/MACRJ45

TCP/IP
Offload Rx

Part

Rx Connection
Control

Information
(Rx_CCI)

(16 K SRAM)

Rx Data Buffer
(64 K SRAM)

Tx Data Buffer
(64 K SDRAM)

TOE

Register Files

DMA

Rx Connection
Control Information

(Rx_CCI)
(16 K SRAM)

TCP/IP
Offload Tx

Part

We used the Nios II processor because the Altera® PCI development board provides peripherals such as
the PCI interface and SDRAM, which are required by the system. Although we were unable to achieve
the final goal in this contest, that is to use SDRAM as a data buffer to support more connections and use
the PCI interface to communicate with the upper-layer operating system (OS), we selected the above
development board and related Altera integrated development environment (IDE) to facilitate easy
development and scalability in the future.

Function Description
Although we designed the general TCP function block, we could not complete it due to time constraints.
Therefore, the final product does not provide the TCP function. The paragraphs below will mark this
part as “Unfinished”.

Major Functions & Blocks
Figure 1 shows a complete TCP/IP stack. However, because the whole network protocol is too
complicated, we have only implemented the most used functions of TCP/IP protocols. The white shaded
blocks (ARP, ICMP, IP, UDP, and TCP) in Figure 1 were implemented in our design. Three major
functions are included in this design:

■ Send pings and respond to echo request packets (ARP & ICMP).

■ Provide UDP transmission capability of up to eight connections simultaneously.

■ Establish and manage up to eight TCP connections simultaneously (unfinished).

In the hardware scheme shown in Figure 2, the TOE body includes modules as follows:

■ Four SRAMs (alt_syncram):

• Two 64-KByte SRAMs are used as data buffers, which are temporary packet storage for
receiving and transmitting (Rx and Tx data buffer).

 TCP/IP Offload Engine (TOE) for an SOC System

 309

• Two 16-KByte SRAMs are used as storage blocks for connection control information (CCI) of
receiving end and transmitting end. The two blocks will record the status of data buffer, and the
queue information of protocol processing sub-module. All data except packet data are stored in
this CCI.

■ Rx and Tx protocol processing blocks:

• Rx protocol processing module.

• Tx protocol processing module.

The two protocol processing modules consist of small modules, which are responsible for partial logic
functions of specific protocol layers respectively.

■ Register files (TOE internal buffer), which generally includes the following items:

• CPU control bit.

• TOE status.

• Control buffer of item addition at transmitting end (CPU is used to initiate a buffer group that
sends work instruction).

• Control buffer of item addition at receiving end (CPU is used to initiate a buffer group that
receives work instruction).

• ARP table control buffer.

• UDP control block control buffer.

• TCP control block control buffer (unfinished).

• Protocol modules control buffer.

• Queue substrate of protocol processing sub-module and item number control buffer.

Refer to the “Design Architecture” section for the implementation of each module.

Performance Parameters
Because the TCP module is unfinished, the buffer access times and memory data volume are used for
TCP performance evaluation.

Performance Evaluation
The performance can be evaluated as follows.

■ 100-Mbps wire-speed–In Ethernet applications, the TCP maximum segment size (MSS) is usually
set to 1,460 bytes, while the IP maximum transfer unit (MTU) is set to 1,500 bytes. Therefore, the
size of the message box is often 1,518 bytes (a MAC header is 14 bytes, and a CRC is 4 bytes). In
addition, there are eight bytes of preamble when the MAC transmits a valid message box.
Therefore, to receive a message box it needs 1526[x]8[x]10 ns = 122080 ns = 0.12179 ms, that is
we need to process a frame within 0.12208 ms or 12208 clock cycles.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

310

■ 1-Gbps wire-speed–The timing is 1/10 of the result above, meaning we need to process a frame
within 12.2 µs or 1220.8 clock cycles.

Practical Performance Analysis
The test scenario is:
■ TOE: operation frequency 40 MHz

■ PC transmitting packet: 1 GHz Linux running UDP program

■ Measuring packet volume: 2 GHz Windows XP running Ethereal

TOE Performance
Figure 3 shows the number of packets in different sizes that the TOE can process per second. Rx-Tx
means that when receiving a packet, the TOE always transmits a responding packet in the same size, so
the number of packets processed shall include Rx packet and Tx packet. Rx means a packet in response
is transmitted upon receiving 1,000 packets. Therefore, the number of packets processed is the Rx
packet number. Additionally, the Nios II CPU processes all data replications.

Figure 3. TOE Performance

N
um

be
r o

f P
ac

ke
ts

Pr

oc
es

se
d

pe
r S

ec
on

d

In Rx-Tx testing, when the packet size is 60 bytes, the number of packets processed by the TOE per
second can go up to 1514 bytes (packet size). This is because the TOE has three data replications from
receiving to transmitting: the first from MAC buffer to TOE RxBuffer, the second from TOE RxBuffer
to TOE TxBuffer, and the third from TOE TxBuffer to MAC.

In Rx testing, when the packet is 60 bytes, the number of packets processed by TOE per second can go
up to 1514 bytes (packet size), which is 12 times the size when compared with Rx-Tx testing. This is
because the replication from TOE RxBuffer to TOE TxBuffer is reduced.

 TCP/IP Offload Engine (TOE) for an SOC System

 311

In Rx-Tx testing, when the packet is 60 bytes, the number of packets processed by TOE per second is
12,000; that is, the packets received are 6,000. However, when provided with the same packet size, TOE
only receives 10,664 packets per second in the Rx testing. This is because the CPU has to process data
replications of Rx packets and Tx packets simultaneously.

Provided that the time for data replication is deducted, and if we assume a packet size of 1514 bytes, the
data volume received per second is 6000[x]1514/1000000=9.084 Mbytes.

In Rx testing, when the packet is 60 bytes, the number of packets processed by TOE per second is
10,664. Provided, time for data replication is deducted, and assuming packet size of 1514 bytes, the data
volume received per second is: 10664[x]1514/1000000=16.145 Mbytes.

As a result, the performance bottleneck of TOE lies in the data replication. If the time of data replication
is reduced but the speed is accelerated, the TOE will be able to process 100 Mbps network speed. To
process 1-Gbps data, we need to improve the processor frequency of up to 1 Gbps/16.145 Mbytes =7.8
and 40 MHz x 7.8 = 312 MHz.

Design Architecture
This section describes the system’s architecture.

TOE Hardware System Design Concept
As shown in Figure 4, we divided stacks into two modules: Rx and Tx, which are both ASICs and are
attached to the same system bus. Therefore, they can be controlled by the same embedded CPU and
share a common memory. However, the TCP module needs to communicate with input modules in full-
duplex mode (the size of the sliding window is influenced by ACK reply), and the two modules can
operate independently. The advantage of this design is that the transmitting and receiving allows
parallel processing as long as some appropriate firmware is deployed.

Figure 4. Parallel Processing Module Dividing (Tx & Rx)

Receiving
Tasks

Sending
Tasks

TCP/IP Module

Memory

Memory

Figure 5 shows the relationship between the TCP packet processing module and the buffer. After the
protocol processing is finished on the first layer, the processed data is discarded to the next layer in
order to avoid too much memory-to-memory transfer, so that the processing module of each
communication protocol will be able to read and write using a shared memory.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

312

Figure 5. Protocol Processing Module Required for TCP Packet Processing & Shared
Memory

When it finishes processing a protocol packet, the module notifies the next module of a pointer in the
same shared memory so that the processing flow can obtain the data with minimum memory transfer
volume. However, no memory exceeding three access ports is available for use. Therefore, we need to
determine which memory will come first when reading and writing the buffer via the arbiter circuit
when we connect these modules with the buffer. We need to research whether the different applications
or connections are related in this arbitration mechanism.

Figure 6. Protocol Module Division Design

Rx Module

MAC (Rx)

IP_rx ARP

UDP_rx

ICMP_rx

Rx Frame

ARP_Rx

UDP_Rx

UDP_tx TCP_tx

IP_tx ICMP_tx

TCP_rx

Rx _L4_done

TCP_Rx

Rx_L3_done
(L4rx Processing Req)

ICMP_Rx
IP_RX

Tx_LR_done
(L3 tx processing req.)

UDP_Tx UDP_Tx

Data_Tx_req.
(L4 Tx Processing Req.)

Tx Module

MAC (Rx)

Tx_L3_done
(MAC Tx Req.)

The three major functions (TCP, UDP, and ping) in the document are realized based on the TCP/IP
Protocol Suite by Behrouz A. Forouzan and Sophia Chung Fegan. We have utilized hardware circuits to
complete the logic function of each software module (using multi-cycle based finite state machine to
realize function of single module by stages), and then connect the logic circuit to shared memory for
communication (see Figure 5). To realize parallel processing, the whole TCP/IP stack is divided into
several modules as shown in Figure 6. As mentioned above, such a design approach enables it to receive

 TCP/IP Offload Engine (TOE) for an SOC System

 313

packets while transmitting. Additionally, when a packet is processing TCP, it can accept another packet
to occupy the IP processing module for implementation of protocol-related work on the IP layer. Each
protocol module runs the state machine as shown in Figure 7.

Figure 7. State Machine Structure of Protocol Processing Module

2
Processing

3
Save in the
Next Buffer

1
Wait from

Layer

In short, these sub-modules use multi-cycle logic circuits to work as software modules. The module
group responsible for receiving analyzes the header fields of the message box stored in the data buffer
according to sequence, and then processes this data. The transmitting module clusters add network
headers to the data segment that needs to be transmitted according to user instructions (for example,
driver and system firmware).

Process Communication Queue Among Modules: Buffer
Tables, Connection Control Information (CCI)
The communication among the processing modules is shown in Figure 8 and is realized through queues.
In our design, we implemented it using a buffer table. The buffer table consists of pointers and
information required by packet processing and is stored in the connection control information (CCI)
RAM, pointing at a memory block to store complete packets into the data buffer. Each processing
module is related to at least two tables; one indicates the data pointer where the data is processed, and
the other holds the data pointer required to notify the module on the next layer when the module
processing is finished.

In Figure 8, the lines connecting the blocks indicate table names. Each buffer table has several items,
with data pointers pointing to the packet located in the data buffer. The ARP module captures the data
block required for ARP protocol processing in the ARP_Rx table. It then performs the operation and
store the finished data pointer in the Tx_L3_done table. Finally, it waits for the MAC_Tx module to
read the pointer and output the data. Figure 8 shows the logic-buffer table and the data buffer. In our
design, each data pointer has four fields as shown in Figure 9. Field description is explained following
the data buffer design description.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

314

Figure 8. Buffer Table Scheme

Data Buffer
Received Frame Table

A Block of SRAM Is Used to Store
All the Table Needed for the TOE

<Buffer Tables>

Packet /
Frame Buffer

(64 KB)

Entries with All 0's Are
Empty Ones

Start ptr0
Start ptr1

length 0
length 1 Received Frame Table

IP_rx Table
ARP_rx Table

Rx_L3_done Table

Rx_L4_done Table
Rx_L4_done Table

Start ptr0
Start ptr1

Length 0
Length 1

00000000
00000000
000000000

Figure 9. Data Pointers

In Rx Buffer?

Data Pointer

Slot No. Data Start Offset Data_length

7 Bit 9 Bit 11
Bit

Data Buffer Area Design
To facilitate buffer management, the 64-Kbyte data buffer area is divided into several slots, each
occupied by a message box. The larger message boxes may occupy more slots. In this design, the
number of slots is set in the compiled hardware circuit. We have set 128 slots in the current trial
version, where each slot takes up 512 bytes. In this way, the buffer management is less complex and
requires less CCI storage.

Data pointer fields in Figure 9 can be explained as follows:

■ In the Rx buffer: 1 bit, shows whether data is at the receiving end buffer or the transmitting end
buffer.

■ Slot No.: Number of the first slot occupied by the data.

■ Data start offset: Indicates the start offset of the valid data.

■ Data length: Length of the data.

The second and third bit can be combined to form a 16-bit data buffer address, pointing to the start point
of the data.

 TCP/IP Offload Engine (TOE) for an SOC System

 315

Logically, the data buffer puts the contents of the message box into memory. However, because the
packets are not processed in sequence, a linked list mechanism changes the small usable area into serial
memory blocks, improving the working efficiency of the data buffer. If a frame can obtain a whole list
of serial data while requiring the data buffer, the linked list mechanism is not started; instead, the serial
idle segments are distributed into the frame.

Figure 10. Data Buffer & Linked List

...

¡

As shown in Figure 10, the idle spaces in the data buffer are not in series because of the non-sequential
processing. The best way to deal with this mechanism is to connect the idle segments to a linked list.
Except when transferring whole packets (for example, to transfer a message box from MAC to TOE or
from TOE to main memory), other packet headers do not need to support a linked list, because the slot
size is set to far exceed the overall length of all protocol headers. This means that the linked list does
not span the slot while it is processing the packet header.

In Figure 10, we can see that the data buffer and linked list mechanism needs two memory blocks to
support it. These memory spaces are put into CCI, and the resulting CCI memory allocation is shown in
Figure 11. The first memory area is called status bits, where there are a total of 128 data bits. Each one
represents the status of a slot in the data buffer—1 for occupied and 0 for idle. The second memory area
is called linking ptrs (linking pointers), which records the interconnection status of occupied data slots.
Here there are 128 total units, each with a 32-bit data, and each corresponds to one slot. As shown in the
figure, the highest 2-bit indicates the slot status—‘00’ means that the slot is a part of the data that has
not be segmented; ‘10’ means the slot is a node of linked list; ’11’ means the slot is the last node of
linked list. Next to this are two 7-bit fields, respectively, indicating the starting and ending shifts of
valid data; the last 9 bits is a data pointer to the next data slot.

The linked-list mechanism relies on the Nios II processor for management. So when the hardware
module processes headers, the mechanism is not used for one slot. When it needs to send data into TOE,
the Nios II processor detects the idle slot by referring to status bits in the TOE; and if necessary,
initiates a linked-list mechanism to store the data in the TOE. When the data is moved out of the TOE, it
determines whether there is a linked list, then reconnects the processed data and transmits it to the
destination.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

316

Figure 11. CCI Internal Memory Allocation

Status Bit (128 Bit)

Linking Pointers
(128 Words, Each Word
Represents the Linking

Condition of a Slot)

IP_RCV Buffer Table

ARP_RCV Buffer Table

UDP_RCV Buffer Table

TCP_RCV Buffer Table

...

TCP_RCV Buffer Table

Buffer
 Tables

Processing Flow
Figure 12 shows the transmit packet flow.

 TCP/IP Offload Engine (TOE) for an SOC System

 317

Figure 12. Process Flow of Transmitting Packet

setup

Figures 12 and 13 show the transmitting and receiving flows, respectively, in which the Nios II CPU
processes the contents in circle objects (at the beginning and end of flow) via software, while the square
contents are processed by a hardware protocol processing module. The squares that are connected
through broken lines and bold arrows on two sides of the flow show the data structure of single items in
the hardware-processing-module communication queue.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

318

When the TCP_Tx module is transmitted to the IP_Tx module, you need the data pointer and packet
type (see below).

Referring back to the data buffer design in Figures 10 and 11, the data buffers of both the receiving and
transmitting ends have two fields in CCI to record the status of the data buffer. These are status bits and
linking pointers: status bits use 0 and 1 to record if the slot is idle; the linking pointers record the
interconnection status among each slot. When data is transferred into TOE, CPU needs to control the
DMA engine for data transfer and modify the data structure that records the data buffer status. This
operation ensures correct control of the processing module operation.

Figure 12 explains the process flow for packet transmission.

■ When the packet that is going to be transmitted is in the main memory, the CPU checks whether the
status bits in the slot status table denote enough space. There may be three outcomes:

• Sufficient serial space—Setthe status bit of the corresponding space to be used to 1. Set the
status bit of the corresponding Linking_ptrs of slot to be 00.

• Sufficient non-serial space—Set the status bit of the corresponding space to be 1. Each field of
the corresponding Linking_ptrs shall be set.

• Insufficient space—The CPU checks continuously until there is sufficient space.

■ The CPU calls the DMA to transfer the data from the main memory to the Tx_data_buffer.

■ Add an entry into the Tx_data_req and notify the TCP/IP offload engine to transmit some data.

■ In the TCP/IP offload engine, each module has a corresponding table, and the data is processed as
follows: the upper-layer module finishes data processing and adds the pointer to the data that is put
into the table of next layer. In this way, the module knows which data to process by looking at the
table.

■ After the last layer arp_tx in the TCP/IP offload engine finishes processing, it sends out an interrupt
signal. The CPU calls the DMA to transfer the data from the Tx_data_buffer to the MAC buffer to
complete the packet transmission.

Figure 13 shows the receive packet flow.

 TCP/IP Offload Engine (TOE) for an SOC System

 319

Figure 13. Process Flow of Receiving Packet

Packet in MAC Buffer

LAN9C1111 Interrupts
CPU

CPU Checks
Status Bits of Slot

Status Table in CCI

Set Corresponding Status Bits 1

Contiguous
Free Space Non-Contiguous

Free Space

No Free Space

Set All Corresponding
Status Bits of
Linking_ptrs

00

Set All Fields in
Corresponding

Linking_ptrs
CPU Programs DMA to
Move Data from MAC

Buffer to Rx Data
Buffer

Add an Entry to the
Received Frame Table

Set Corresponding Status Bits 1

If TCP

Data_ptr

IP Header
Checksum

TCP
Checksum

Data_ptr

IP Header
Checksum

UDP
Checksum

If UDP

IP_Rx

Data_ptr

TCP
Checksum TCP_Rx

Data_ptr

UDP
Checksum UDP_Rx

DMA Control

Host_data_adr
Data_ptr

Use Information in the
Register Files to Program DMA to

Move Received Data to Host
SDRAM

Slot No. str end M
Slot No. str end M

Copy 1
Copy 2

More bit

Rx_Data_valid interrupt

Read

setup

Host_data_adr
In Register
Files

Software

Figure 13 shows the process flow for packet receiving.

■ When the packet that is going to be transmitted is in the main memory, the CPU checks whether the
status bits in the slot status table indicate enough space. There can be three results:

• Sufficient serial space—Set the status bit of the corresponding space to 1, and the
corresponding Linking_ptrs status bit to 00.

• Sufficient non-serial space—Set the status bit of the corresponding space to 1. Each field of the
corresponding Linking_ptrs shall be set.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

320

• Insufficient space—CPU will check continuously until there is sufficient space.

■ The CPU calls the DMA to transfer the data from the main memory to the Rx_data_buffer.

■ Add an entry into frame_table and notify the TCP/IP offload engine that the data has been received.

■ In the TCP/IP offload engine, each module has a corresponding table, and the data is processed as
follows: the upper-level layer finishes the data processing and adds the pointer pointing to the data
that is put into the table onto the next layer. In this way, the module knows which data to process
by looking at the table.

■ After the last layer Tcp_rx and udp_rx in the TCP/IP offload engine finish processing, it sends out
an interrupt signal. The CPU calls the DMA to transfer the data from the Rx_data_buffer to the
main memory to complete receiving the packets.

Design Methodology
The architecture of the whole system is shown in Figure 14, detailing several main components:

■ Nios II CPU.

■ DMA engine.

■ Main memory constructed by Altera synchronous SRAM (in the future, main memory could be
constructed by the development board DDR SDRAM and SDRAM controller).

■ Tri-state bridge for Lan91c111 PHY/MAC.

■ Custom ASIC TCP/IP Offload Engine.

Figure 14. Hardware Overview

Avalon System Bus

Nios II Main MemoryLAN91C111
PHY/MACRJ45

TCP / IP
Offload Rx

Part

Rx Connection
Control Information

(Rx_CCI)
(16 K SRAM)

Rx Data Buffer
(64 K SRAM)

Tx Data Buffer
(64 K SDRAM)

TOE

Register Files

DMA

Rx Connection
Control Information

(Rx_CCI)
(16 K SRAM)

TCP / IP
Offload Tx

Part

 TCP/IP Offload Engine (TOE) for an SOC System

 321

The interconnection of these components was configured using the SOPC Builder tool, and the data was
transferred into each component through Avalon system bus. Our TOE features the following five
external channels:

■ Access channel of CCI system at receiving end.

■ Access channel of CCI system at transmitting end.

■ Access channel of data buffer system at receiving end.

■ Access channel of data buffer system at transmitting end.

■ Register file access.

These channels connect with the Avalon system bus through the interface to user logic in SOPC
Builder, which is set in slave mode; meanwhile, based on an address mechanism, the Nios II processor
can access five channels of TOE through this interface.

The system is controlled by the Nios II CPU, which executes the program located in the main memory.
The program initializes the lan91c111 and TOE, waits for interrupts, and then executes the
corresponding interrupt service routing (ISR).

The system features the ISR described as follows.

Lan91c111 PHY/MAC ISR
When the processed packet is put into the MAC buffer and the subsequent interrupt is generated, the
CPU shall do the following:

■ Check status bits in the slot status table to find if the rx_buffer has enough space for the packets.

■ Packets are transferred from the MAC buffer to the rx_buffer by calling the DMA function.

■ Add an entry to the Rx_frame.

TOE ISR
The CPU checks for the type of interrupt served by the TOE_status_reg:

■ Interrupt receiving packet—The CPU calls the DMA to transfer the processed packets to the main
memory.

■ Interrupt transmitting packet—The CPU calls the DMA to transfer the processed packets to the
MAC buffer.

DMA ISR
The CPU checks status bits in the slot status table to find out whether the Tx_buffer has enough space
for packets.

■ Packets are transferred from the Rx_buffer to the Tx_buffer by calling the DMA.

■ Add an entry to the Tx_frame.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

322

Design Features
The main features of our system design are as follows:

■ If we used only the Nios II CPU to process the TCP/IP network protocol, it would be impossible to
reach 100 Mbps. However, by deploying both the Nios II CPU and the TOE architecture to process
the TCP/IP network protocol, we can reach 100 Mbps.

■ Our architecture modularizes each protocol. Each module performs according to its own rules table.
Therefore, we could easily add new protocols using the flexible TOE architecture.

■ The modules for sending and receiving are separated, and this scheme enables message-box
processing in parallel.

■ Support for eight UDP connections.

■ Hardware ARP table.

■ Hardware UDP connection-management mechanism.

■ When the processing modules handle the message box, they only transfer the pointers to the
message-box, reducing data transfers in memory.

■ Due to the network function created in hardware, we were able to reduce host CPU resources
occupied by network tasks in embedded applications.

■ We can efficiently manage the data buffer by dividing the storage memory into numerous slots,
which simplifies the mechanism of data link list. Also, you can easily change the slot size
configuration to meet different requirements by simply altering the design parameters.

■ The system focuses on network storage devices, so the parameter setting in the current design is set
to optimize storage-network applications.

■ If you take into account the time from the MAC operation to receiving and storing this data onto
destination main memory, our system can process the data packets at 100-Mbps of network speed.

Conclusion
In our opinion, the toughest challenge for the system designer is to have the system verified by
application hardware. Fortunately, Altera’s PCI development board provides an environment that
enables testing of the system and interconnection bus that features CPU, DMA, main memory, PC
bridge, and interconnecting peripherals. You can easily construct the system by using the SOPC Builder
tool, which connects its own IP with the peripherals. For example, our system uses MAC and PHY as
network devices, and we developed firmware using the C language.

We constructed the test environment using SOPC Builder, emphasizing the development of the
hardware processing core. If the IP is implemented, its performance can be measured by using the
SOPC Builder, which will greatly reduce the IP development time. Although this board provides
enough I/O, IP is generally too expensive and we need to devote more effort for developing submodules
in case there are not enough resources in the lab. For instance, we could not achieve the expected results
in the design because there was no proper bridge connecting the DDR SDRAM Controller and the PCI
bus. If we had IP of the trial version or the simulation environment of this bridge peripheral, it would
have helped us to dramatically reduce the system development time.

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

	Design Introduction
	Function Description
	Major Functions & Blocks

	Performance Parameters
	Performance Evaluation
	Practical Performance Analysis
	TOE Performance

	Design Architecture
	TOE Hardware System Design Concept
	Process Communication Queue Among Modules: Buffer Tables, Connection Control Information (CCI)
	Data Buffer Area Design
	Processing Flow

	Design Methodology
	Lan91c111 PHY/MAC ISR
	TOE ISR
	DMA ISR

	Design Features
	Conclusion

