Lab 7
Verilog — Sequential Design(2)

Johnson Liu

Department of Electrical Engineering
National Cheng Kung University

O
@)
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

1
B2 < BTk

Outline

Synchronous Reset vs. Asynchronous Reset
Register

Implementation(1) Johnson Counter
Blocking vs. Non-Blocking
Implementation(2) Stack
Implementation(3) Queue

TA Checking & Laboratory Report
Reference

O
o
=
©
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

© N o O A W

O
o
=
©
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

Recall: Clock

Clock period: the time between successive transitions in the same direction.
(second/cycle)

Clock frequency: the reciprocal of clock period. (cycle/second)

Clock width: the time interval during which clock is equal to 1.

Duty cycle: the ratio of the clock width and clock period

Active high: the circuit changes occur at the rising edge or during the logic is 1.

Active low: the circuit changes occur at the falling edge or during the logic is 0.

i clock period |
. g

Negative Edge(negedge)

-

clock
width

Positive Edge(posedge)

rising
edge

falling
edge

Recall: Latch & Flip-Flop

 The state of a latch or flip-flop is switched by a change of the control input
like clock.

* Flip-flops and latches are used as data storage elements.

« D: Data/Delay

| 1o oL
— ck — Q-
Level Trigger D-Latch Edge Trigger D-FF

O
@)
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

D Q Q Comment
— Rising edge | 0 0
0 X Qprev | Qprey | No change g €dg
1 0 0 1 Reset Rising edge |1 | 1
1 1 1 0 Set \Non-rising /X Q

Synchronous Reset
VS.
Asynchronous Reset

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

Reset

A reset clears any pending errors or events and brings a system to
normal condition or an initial state.
Two types of Reset in Verilog:

1. Synchronous Reset

2. Asynchronous Reset

Data D S o———Q

Clock

O
o
=
©
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

Clear/Reset

Synchronous Reset

« Synchronous Reset will reset the Flip-Flop when clock is triggered
and reset signal Is active.

(clk, rst);
clk, rst;
D;

@(clk)

(rst) Synchronous

4,500

D <= 1'd6;

D <= 1'd1;

'®)
o
=

©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

Asynchronous Reset

« Asynchronous Reset will reset the Flip-Flop whenever reset signal is

active.
(clk, rst);
clk, rst;
D;
@(clk or rst)
Asynchronous
Um 3 GO0 I A0

1
iy
=

O
o
=
©
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

O
@)
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
%2
—
@D
=
—
QD
oS
o
=
QO
—
@)
=
<

Asynchronous Set/Reset D Flip-Flop

« Set & Reset are active-high.

* Clock is positive edge triggered.

C oV USETEATCH: - - o oo o

.............

| - iinste

. NAND3

~| - NAND

IIIIIII

.| - NAND3

.| . NAND

—~_INPUT

|| wARes

LU U RESET-LATCH - - - - o e e i

Register

Computer Architecture and System Laboratory

10

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

Register

module (clk, enable, D, Q);

input clk, enable;

input [3:0] D;

-
-~
-

output [3:0] Q;
leg [3:0] Q;
always @(posedge clk)
begin
if (enable)
begin
Q <= D;
end
else
begin
Q <= Q;
end
end
endmodule

enable —|

Clk

Ol

Ol

Ol

rd
rd
P
-
P
-
=
P
P
P
P
-
P
P
>
-
o
|
-
\ 4 -
-
-
-
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~.
S

SS
S
~

Ol

11

Blocking
VS.
Non-Blocking

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

previous inputs.

Data Bits

. :)DL

. 2
A 4-bit parity generation and .
. e G . Generated Parity
checking circuit for even parity. Bit
e

O
o
=
©
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

j : Error Signal
P 7

n
input
variables

Recall: Combinational Circuit

—

-

Combinational
Logic Circuit

« A combinational circuit consists of logic gates whose outputs at any time are
determined directly from the present combination of inputs without regard to

>
> m

» Output

L
.

variables

>

19

'®)
o
=

©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)

<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=

<

C8
GTECH_AND2

Cc9
GTECH_XOR2

Recall: Blocking Assignment

AN

(a, b, c, out); C
aéuiz - (a, b, c, out);
// Wire a, b, ¢
W; : out;
out; // Wire
We
@(*) Oat;
W=a&b; // |Continuous Assignment
out = w ~ c; w=2a&b;
out = w * c;
20

Alojeloge] walsAS pue a1n1a811ydlyy Jaandwo)

Recall: Blocking Assignment Waveform

a
a
I
of: Z W

B | GTECH_AND2

C9
B| /GTECH_XOR2

Recall: Sequential Circuit

« A sequential circuit is a system whose outputs at any time are determined from
the present combination of inputs and the previous inputs or outputs, so
sequential components contain memory elements.

 Sequential circuit can be break into two phases:

1. Evaluate (Before Clock Edge) => Combinational Circuit
2. Update (On Clock Edge) => Memory Element

Combinational Circuit

O
o
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

g
ninput ~— — mqutput
np .- variables _
variables] —— ; 1) Registers
' " 2) Counters
3) Regqister files

Memory 4) Memories

tat Elements [— |5) Queues

states | 6) Stacks

®)
o
S
©
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

Non-Blocking Assignment

(clk, rst, a, b, ¢, out); + Non-Blocking Assignment; <=
clk, rst, a, b, c;] .
out; « Use In Sequential Block

// Register Sequential Block (Always Block with Clock)

out;
@(clk rst)
(rst)
out <= 1'bo;

out <= (a & b) * c;

23

Non-Blocking Assignment

(clk, rst, a, b, c, out);
clk, rst, a, b, c;

out; . .
// Wire // Blocking Assignment
; @(*) o
3? Combinational Block
// Register wl = a & b;
out; S a1 Block w2 = wl » c;
// NonBlocking Assignment equentia ocC
@(clk or rst)
(rst)
out <= 1'do;

'®)
o
=

©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)

<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=

<

out <= w2;
24

Non-Blocking Assignment Waveform

Alojeloge] walsAS pue a1n1a811ydlyy Jaandwo)

Different in Assignment

Blocking Assignment (=) are order sensitive
Non-Blocking Assignment (<=) are order independent Blocking

O

o

3

&)

-

o

>

= Time

o :

=8 1. Blocking 2. Non-Blocking Timestamp | 0

@ a

Q) initial initial

cjl begin begin b

o a = #12 1; d <= #12 1; .

é b = #3 0; e <= #3 0;

= C = #2 3; f <= #2 3; d
end end

D e

QJ - - o= - -

Bl <2 initial: Simulation start at O. :

SE <2 #n: Delay of n time units.

o

<

Test Yourself

A=7Is used
B =7Is used

B =7Is used
; A=7?Is used

/“\/\
>@
>
VANV AN
I
C)

w >

!

O

o

=

=1 initial initial

C;'; begin begin

§ A=1; A=1;

= 1. Blockin B = 0; . B = 0; .
D J B =7is used A="7?Iis used
= A=; A= ?is used B=@; B=7?is used
o B = (A) A = (B)

% initial initial

E’.. begin begin

D

= 2. Non-Blockin A<= 1; A <=1

— ' 9 B <= 0; B <= 0;

Q)

O

o

2

o

<

27

I I LHS in initial or always statements should declare as “reg”. | ! |

Different in Sequential Block

(clk, a, b, c, out); (clk, a, b, c, out);

clk, a, b, c; clk, a, b, c;

out; out;
t1, t2; t1, t2;
out; out;

@(clk) @(clk)
t1 E a & b; @ t1 k= a & b; @
t2 F t1 & c;) t2 k= t1 & c; Doldtlisused
out] = t1 & t2; © out| <= t1 & t2; D oldert1 & old t2 is used

out

Alojeloge] walsAS pue a1n1a811ydlyy Jaandwo)

Implementation(1)
Johnson Counter

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

Ring counter

« Aring counter is a type of counter composed of flip-flops connected
Into a shift register.

« The output of the last flip-flop fed to the input of the first, making a
"circular" or "ring" structure.

Straight ring counter

State Q0 Q1 Q2 Q3

4-bit Straight Ring Counter

O
@)
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

o |1 o/0 o0

1 '0/1 00

2 lolol1 o | ¥

3 D G' .0. 1 _’DSQ‘—’DSQ'—)DSQ'—’DSQ

0 =~ 0 | 0| O ——> DFF —»{> DFF » > DFF —3 > DFF

1 oOf1 0|0 R R R R

2 (oo M O | $ jF T
CLK

3 o o lol1 RST

o |1 o/0 o0

Johnson Counter

« Johnson Counter can represent 2N states, while Straight Ring Counter
can only represent N states. (N is the number of bits in the code)

 Inversion of the Q signal from the last shift register feeding back to the
first shift register’s D input.

Johnson counter

O
o
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

I

State Q0 Q1 Q2 Q3
0 (0 0|00 4-bit Johnson Counter Q
1 '1 0 0 o0 ‘
2 1 1 0 o0
3 1 1 1 0 _ »p s Q———>»D S Q———>D s Q——>D s[Qpb
4 1 1 1 1 N DFF —»> DFF I\ DFF . DFF
5 0.1 1 1 R R R R
6 0 01 1 $ ’T‘ $ T

CLK
7 o001 RST
0 0 0 0 O

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

Implement 6-bit Johnson Counter

Draw 6-bit Johnson Counter circuit with following D Flip-Flop Template,
and paste it into Report.

Use 6 Asynchronous Set/Reset D Flip-Flop to create 6-bit Johnson
Counter, and pass TA’s testbench.

D Flip-Flop Template Asynchronous Set/Reset D Flip-Flop
Set o e _
—— o =
Data p O o—Q ﬂ | L
. —_— . instg T ﬂ —
Clock Clk o——Q Tg -
: ° [S— : : :
Clear/Reset =1 - 1 , _
— 2 ”j}o 15

O
o
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

Implement 6-bit Johnson Counter

* |/O Interface of Module JohnsonCounter in JohnsonCounter.v

Name /0 | Width Description
clk | 1 System clock signal. This system is synchronized with
the positive edge of the clock.
rst I 1 Active-high asynchronous reset signal.
A Vector with element of Q6~Q1 from D-FF, with
0 5 MSB from Q6 and LSB from Q1.
d D-FF 1 is first shift register.
D-FF 6 is last shift register.

16

Implement 6-bit Johnson Counter

* Waveform of 6-bit Johnson Counter

o~ Q from Tirst shitt register

| (8 o[5:0]

Q from last shift register

®)
o
S
o
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

Implementation(2)
Stack

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

O
o
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—t
@D
S
—
QD
oS
o
=
QO
—
@)
=
<

Stack

A stack is an abstract data type that serves as a collection of elements.
Two main principal operations:

1. Push => Adds an element to the collection.

2. Pop => Removes the most recently added element.

The order in which elements come off a Stack gives rise to Its
alternative name, LIFO (Last In, First Out).

empty push push push pop
stack

30

O
@)
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

Implement Stack with 8 Element

« Each element in Stack is 8-bit width.

« Three operation support:

1. Push => Adds an 8-bit element to the stack.

2. Pop => Removes an 8-bit element from the stack.

3. Clear => Clear all element in the stack, and don’t need to output.

Recommendation:

1. Use the combination of Vector and Array to create Stack’s memory
element, for example reg [7:0] memory [7:0];

2. Use a variable to indicate which element is the newest one.

3. Evaluate in Combinational Block.

4. Update register & memory element in Sequential Block.

31

O
@)
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

Implement Stack with 8 Element

* |/O Interface of Module Stack in Stack.v

Name /0 | Width Description
System clock signal. This system is synchronized with
clk I 1 .
the positive edge of the clock.
rst I 1 Active-high asynchronous reset signal.
operation | | 2 Operations.
P Idle = 2'h00, Push = 2'b01, Pop = 2'b10, Clear = 2'b11
In I 8 Push element.
out O 8 Pop element.
empty O 1 High when stack is empty.
full O 1 High when stack is full.

32

Implement Stack with 8 Element

 \Waveform of Stack with 8 Element

Push Oxa Pop Ox14
Reset Stack
10 Q) - 20 000
=Gl

wer] clk
"'_ﬂl '|":E:t.

werl operation[1:0]
- i @ in[7:0]

e B out[7:0]

Rer] (B =mpty

- i [Full

'®)
o
=

©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)

<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=

<

33

Implementation(3)
Queue

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

O
o
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

Queue

« A queue Is an abstract data type that serves as a collection of elements..
« Two main principal operations:
1. Enqueue => Adds an element to the rear of the queue.
2. Dequeue => Removes an element from the front of the queue.
« The order in which elements come off a Queue gives rise to its
alternative name, FIFO (First In, First Out).

empty queue enqueue enqueue dequeue

35

O
o
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

Implement Queue with 8 Element

» Each element in Queue is 8-bit width.

« Three operation support:

1. Enqueue => Adds an 8-bit element to the queue.

2. Dequeue => Removes an 8-bit element from the queue.

3. Clear => Clear all element in the queue, and don’t need to output.

Recommendation:

1. Use the combination of Vector and Array to create Queue’s memory
element, for example [7:0] memory [7:0];

2. Use a variable to indicate which element is the newest one.

3. Always dequeue first (oldest) element in memory, and shift the
memory by one element, and subtract index variable by 1.

4. Evaluate in Combinational Block.

5. Update register & memory element in Sequential Block.

36

O
o
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

Implement Queue with 8 Element

 |/O Interface of Module Queue in Queue.v

Name | I/O | Width Description
clk | 1 System clock signal. This system is synchronized
with the positive edge of the clock.
rst I 1 Active-high asynchronous reset signal.
Operations.
operation | | 2 Idle = 2'b00, Enqueue = 2'b01, Dequeue = 2'b10,
Clear = 2'b11
In I 8 Enqueue element.
out O 8 Dequeue element.
empty O 1 High when queue is empty.
full O 1 High when queue is full.

37

Implement Queue with 8 Element

 \Waveform of Stack with 8 Element

Enqueue Oxa Dequeue Oxa
Reset Queue

20,001

= G1
werl 1k
El =t

her|] B operat ion[1:0]
- =] @ in[7:0]

her] B out[7:0]

Rer] (B enpty

- i [Full

®)
o
=
©
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

38

TA Checking
&
aboratory Report

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

O
o
=
©
-
—+
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

TA Checking & Laboratory Report

TA Checking

1.
2.
3.

Implementation(1)’s Code & Pass Result
Implementation(2)’s Code & Pass Result
Implementation(3)’s Code & Pass Result

Laboratory Report

1.

ok W

Test Yourself’s Answer

Implementation(1)’s 6-bit Johnson Counter Circuit
Implementation(2)’s idea and waveform
Implementation(3)’s idea and waveform

How do you think about this time’s laboratory class?

40

41

Reference

Computer Architecture and System Laboratory

O
@)
=
©
c
—
9>
=
>
®)
-
=
@D
P
—
c
=
@D
jab)
-
o
0p)
<
92)
—
@D
=
—
QD
oS
@)
=
QO
—
@)
=
<

Reference

Latch & Flip-Flop & Register: https://reurl.cc/em7x2m

Combinational vs Sequential: https://reurl.cc/OkL117
Blocking vs Non-Blocking: https://reurl.cc/GbLVMG
Verilog HDL Design: https://pse.is/3rypr5

42

https://reurl.cc/em7x2m
https://reurl.cc/OkL1l7
https://reurl.cc/GbLVMG
https://pse.is/3rypr5

Thank for Listening

O
@)
=
©
-
—t
g
-
>
®)
=
=
g
®)
—
-
-
@D
Qb
=
o
0p)
<
2]
—t
D
S
—
QD
oS
o
=
QD
—t
@)
=
<

