
Chap 9 C-H 1

Lecture 9 Multiplexer,

Decoder, and PLD

• SSI (small-scale integration)

– NAND, NOR, NOT, flip flop etc

• Gate count < 10.

• MSI (medium-scale integration)

– Adders, multiplexers, decoders,

registers, counters

• Gate count < 100

• LSI

• VLSI (very large-scale

integration

– Memory chips, microprocessors

Chap 9 C-H 2

Multiplexers

• Multiplexers are selectors.

Z = A’B’I0 + A’BI1 + AB’I2 + ABI3. (4-

to-1 MUX)

Chap 9 C-H 3

Logic Diagram for MUX

• 8-to-1 MUX

Chap 9 C-H 4

Application of MUX

• Select data.

C-H 5

Application of MUX

Crossbar switch

• As s=0, x1 to

y1, x2 to y2.

• As s=1, x1 to

y2, x2 to y1.

x 1 0

1

x 2 0

1

s

y 1

y 2

x 1

x 2

y 1

y 2

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

s

Using Mux for logic

function, XOR

• f = w1 xor w2

Chap 9 C-H 6

f

w
1

0

1

0

1

w
2

1

0

0

0

1

1

1

0

1

f w
1

0

w
2

1

0

Better

• Modify the truth table.

• When w1 = 0, f = w2. Otherwise,

f = ~w2

C-H 7

0

1

0

0

1

1

1

0

1

f w
1

0

w
2

1

0

0

1

f w
1

w
2

w
2

f

w
2

w
1

Using Mux to Implement

a barrel shifter

Chap 9 C-H 8

Chap 9 C-H 9

Buffers/Tri-state Buffer

• Driving capability

• High impedance

Chap 9 C-H 10

Tri-state Buffer

Application

• Data transfer between registers

Chap 9 C-H 11

Tri-state Buffer

Application (cont.)

• Source selection

Chap 9 C-H 12

Decoder

• 3-to-8 line decoder

– An n-to-2n decoder generates all 2n

minterms of the n input variables.

Chap 9 C-H 13

More Decoder

• 2-to-4 decoder: minterm

generator

Chap 9 C-H 14

Decoder (cont.)

• 4-to-10 line decoder

Chap 9 C-H 15

ROM

• Read-only memory: stored data can

not be changed under normal

operating conditions.

Chap 9 C-H 16

ROM (cont.)

• ROM size = 2n x m bits.

Chap 9 C-H 17

ROM Basic Structure

• 8-word x 4 bit ROM

– F0 = m0 + m1 + m4 +m6

Chap 9 C-H 18

Multiple-Output

Network Using ROM

• BCD to Excess-3 code

Chap 9 C-H 19

Types of ROM

• Mask-programmable ROM

– Contents are stored during

fabrication.

• Field-programmable ROM

– PROM: programmable ROM

• Fusible link (PROM programmer)

– EPROM: erasable PROM

• Use ultraviolet light for erasure.

– EEPROM: electrically erasable

PROM.

• Flash memory

Chap 9 C-H 20

Programmable Logic

Devices

• PLA (programmable logic array)

– Realize m functions of n variables.

Implementation

procedure for PLA

• Prepare the truth table based on your

system

• Write the Boolean expression in SOP (sum

of product) form.

• Obtain the minimum SOP form to reduce

the number of product terms to a minimum.

• Decide the input connection of the AND

matrix for generating the required product

term.

• Then decide the input connections of OR

matrix to generate the sum terms.

• Decide the connections of invert matrix.

• Program the PLA.

Chap 9 C-H 21

Chap 9 C-H 22

Programmable Symbology

Chap 9 C-H 23

PLA

• PLA 3 inputs, 5 product terms, 4

outputs.

Chap 9 C-H 24

PLA

• PLA circuit

Chap 9 C-H 25

PLA (cont.)

• PLA 3 inputs, 5 product terms, 4

outputs. AND-OR array.

Chap 9 C-H 26

PLA Application

• f1 = a’bd + abd + ab’c’ + b’c

• f2 = c + a’bd

• f3 = bc + ab’c’ + abd

• If abcd = 0111, 1st, 5th, 6th rows are

selected. f1 = 1 +0+0, f2 = 1+1+0, etc.

Chap 9 C-H 27

Programmable Array

Logic (PAL)
• AND array is programmable. OR

array is fixed.

• Use input buffer to drive many

ANDs.

Input buffer

Chap 9 C-H 28

Programmable Array

Logic (PAL)

• Full Adder using a PAL

Why prefers PLA rather

than ROM

• A combinational circuit may occasionally

have don't-care conditions. When

implemented with a ROM, a don't care

condition becomes an address input that

will never occur.

• The words at the don't care address need

not be programmed and may be left in their

original state(all 0's or all 1's).

• The has the result that all the bit patterns

available in ROM are used, but for the

don’t care addresses you really can do

without them.

Chap 9 C-H 29

What Programmable

Means

• "programmable" does not indicate that all

PLAs are field-programmable.

• Many are mask-programmed during

manufacture in the same manner as a mask

ROM.

– This is particularly true of PLAs that are

embedded in more complex and numerous

integrated circuits such as microprocessors.

• PLAs that can be programmed after

manufacture are called FPGA (Field-

programmable gate array)

Chap 9 C-H 30

Chap 9 C-H 31

Complex Programming

Logic Devices
• Xilinx XCR3064XL CPLD

– Function block (16 macrocells)= PLA

– Macrocell = a flip flop + multiplexers

– IA routes signals

Input of function block

Chap 9 C-H 32

Function Block and MC

• Signal from PLA -> marcocell ->
I/O pin

• Use CAD tool to fit the design into
the PLD.

Chap 9 C-H 33

Field Programmable

Gate Arrays (FPGA)
• Logic cell: configurable logic blocks

(CLBs)

• Input/Output blocks (I/O blocks)

Chap 9 C-H 34

Configurable Logic

Block
• Inside a CLB: function generators (LUT),

FFs, and MUXs

• LUT: lookup table (truth table) is a

reprogrammable ROM (16 1-bit words)

Chap 9 C-H 35

A Lookup Table (LUT)

• If we want F = abc (one minterm)

– 1110 (and F=1) + 1111 (and F=1)

• Or if we want F = a’b’c’d’ + a’b’cd’ + …abcd.
(15 minterms)

• Require a single function generator. Program
the LUT table to get what we want.

a b c d F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

…..

1 1 1 1 1

This is a 4-variable function

generator.

Bit stored in the LUT.

To be implemented

Chap 9 C-H 36

Shannon’s Expansion

Theorem
• What if # of variables > 4 variables

f (x1, x2,… xn)

= xi’ f (x1, x2,..xi-1, 0, xi+1, … xn) +

 xi f (x1, x2,..xi-1, 1, xi+1, … xn)

= xi’ f0 + xif1

f (a, b, c, d, e) = a’ f(0, b, c, d, e) + a f(1, b, c, d, e)

2-1 MUX F = a’I1 + a I2

Let a = 0, what lefts

are terms with b, c, d, e

