Lecture 6 Quine-McCluskey Method

- A systematic simplification procedure to reduce a minterm expansion to a minimum sum of products.
- Use XY + XY' = X to eliminate as many as literals as possible.
 - The resulting terms = prime implicants.
- Use a prime implicant chart to select a minimum set of prime implicants.

Determination of Prime Implicants

√ Eliminate literals

Two terms can be combined if they differ in exactly one variable.

$$AB'CD' + AB'CD = AB'C$$

$$\frac{1\ 0\ 1}{X} 0 + \frac{1\ 0\ 1}{X} 1 = \frac{1\ 0\ 1}{X}$$

We need to compare and combine whenever possible.

Sorting to Reduce Comparisons

 $\sqrt{\text{Sort into groups according to}}$ the number of 1's.

$$F(a,b,c.d) = \Sigma m(0,1,2,5,6,7,8,9,10,14)$$

- No need for comparisons
 - (1) Terms in nonadjacent group
 - (2) Terms in the same group

Group 0 0 0000

Group 1 1 0001

2 0010

8 1000

Group 2 5 0101

6 0110

9 1001

10 1010

Group 3 7 0111 14 1110 Chap 6

C-H 3

Comparison of adjacent groups

- Use X + X = X repeatedly between adjacent groups
- Those combined are checked off.
- Combine terms that have the same dashes and differ one in the number of 1's. (for column II and column III)

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

(1, 5) (5, 7) (6, 7) (0, 1, 8, 9) (0, 2, 8, 10) (2, 6, 10, 14)

$$f = a'bd + b'c' + cd'$$

Determination of Prime Implicants

Co	lumr	ı I		Col	umn II	Column	III
group 0	O	0000	✓	0, 1	000− ✓	0, 1, 8, 9	-00-
	1	0001	/	0, 2	00−0 ✓	0, 2, 8, 10	-0-0
group 1	2	0010	/	0, 8	-000 ✓	0, 8, 1, 9	-00-
	8	1000	✓	1, 5	0-01	0, 8, 2, 10	-0-0
	5	0101	/	1, 9	$-001 \checkmark$	2, 6, 10, 14	10
	6	0110	/	2, 6	$0-10 \ \checkmark$	2, 10, 6, 14	10
group 2	9	1001	/	2, 10	-010 ✓		
	10	1010	/	8, 9	100- ✓		
- (7	0111	/	8, 10	10−0 ✓		
group 3	14	1110	/	5, 7	01-1		
				6, 7	011 -		
				6, 14	$-110 \checkmark$		
				10, 14	1-10 ✓		

Prime Implicants

 The terms that have not been checked off are called prime implicants.

$$f = 0-01 + 01-1+011- + -00-$$

$$+ -0-0 + --10$$

$$= \underline{a'c'd} + \underline{a'bd} + \underline{a'bc} + \underline{b'c'} +$$

$$\underline{b'd'} + \underline{cd'}$$

• Each term has a minimum number of literals, but minimum SOP for f:

Definition of Implicant

Definition

- Given a function of F of n variables, a product term P is an implicant of F iff for every combination of values of the n variables for which P = 1, F is also equal to 1.
 - Every minterm of F is an implicant of F.
 - Any term formed by combining two or more minterms is an implicant.
 - If F is written in SOP form, every product term is an implicant.
- Example: f(a,b,c) = a'b'c' + ab'c' + ab'c' + ab'c + abc = b'c' + ac
 - If a'b'c' = 1, then F = 1, if ac = 1, then F = 1. a'b'c' and ac are implicants.
 - If bc = 1, (but a = 0), F = 0, so bc is not an implicant of F.

Definition of Prime Implicant

Definition

- A prime implicant of a function F is a product term implicant which is no longer an implicant if any literal is deleted from it.
- Example: f(a,b,c) = a'b'c' + ab'c' + ab'c + abc = b'c' + ac
 - Implicant a'b'c' is not a prime implicant. Why? If a' is deleted, b'c' is still an implicant of F.
 - b'c' and ac are prime implicants.
- Each prime implicant of a function has a minimum number of literals that no more literals can be eliminated from it or by combining it with other terms.

Quine McClusky Procedure

- QM procedure:
 - Find all product term implicants of a function
 - Combine non-prime implicants.
 - Remaining terms are prime implicants.
 - A minimum SOP expression consists of a sum of some (not necessarily all) of the prime implicants of that function.
 - We need to select a minimum set of prime implicants.
 - If an SOP expression contains a term which is not a prime implicant, the SOP cannot be minimum.

Prime Implicant Chart

Chart layout

- Top row lists minterms of the function
- All prime implicants are listed on the left side.
- Place x into the chart according to the minterms that form the corresponding prime implicant.

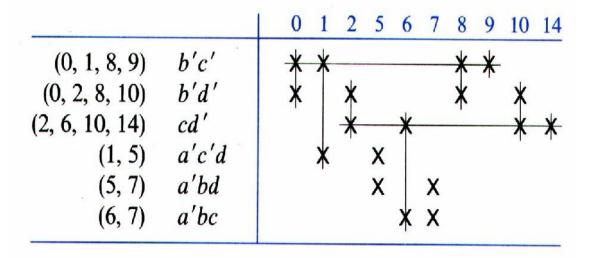
Essential prime implicant

- If a minterm is covered only by one prime implicant, that prime implicant is called essential prime implicant. (9 & 14).
 - » Essential prime implicant must be included in the minimum sum of the function.

		0	1	2	5	6	7	8	9	10	14
(0, 1, 8, 9)	b'c'	Х	X					X	(X)		
(0, 2, 8, 10)	b'd'	Х		X				X	_	X	
(2, 6, 10, 14)	cd'			X		X				X	(X)
(1, 5)	a'c'd		X		X						<u> </u>
(5, 7)	a'bd				Χ		Χ				
(6, 7)	a'bc					X	Χ				

Selection of Prime Implicants

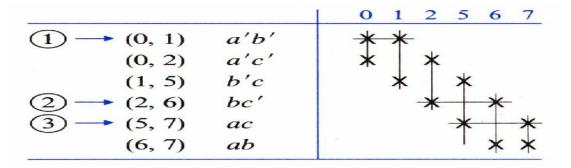
- $\sqrt{\text{Cross out the row of the selected essential}}$ prime implicants
- √ The columns which correspond to the minterms covered by the selected prime implicants are also crossed out.
- √ Select a prime implicant that covers the remaining columns. This prime implicant is not essential.



A Cyclic Prime Implicant Chart

- Two or more X's in every column.
- $F = \Sigma m(0,1,2,5,6,7)$
 - F = a'b' + bc' + ac. (by try and error). No guarantee for this to be minimum.

0 000 All	checked 0,1 00-	
1 001 off	0,2 0-0	_
2 010	1,5 -01	
5 101	2,6 -10	_
6 110	5,7 1-1	
7 111	6,7 11-	



Another Solution

- F = a'c' + b'c + ab
- Each minterm is covered by two different prime implicants.

		7	0	1	2	5	6	7
P_1	(0, 1)	a'b'	*	Χ				
P_2	(0, 2)	a'c'	*		*			
P_3	(1, 5)	b'c		Χ		Χ		
P_4	(2, 6)	bc'			*		Χ	
P_5	(5, 7)	ac				X		X
P_6	(6, 7)	ab					X	X

Chap 6

C-H 12

Petrick's Method

- A more systematic way to find all minimum solutions from a prime implicant chart.
- P is True when all the minterms in the chart have been covered. $P = f(P_1, P_2, ...)$
- Label each row with P_i.
 - P_i is true when the prime implicant in row P_i is included in the solution.
 - For column 0, we must choose either P_1 or P_2 in order to cover minterm 0. Thus $(P_1 + P_2)$ must be true.

		,	0	1	2	5	6	7
P_1	(0, 1)	a'b'	*	X				
P_2	(0, 2)	a'c'	*		*			
P_3	(1, 5)	b'c		Χ		X		
P_4	(2, 6)	bc'			*		Х	
P_5	(5, 7)	ac				X		X
P_6	(6, 7)	ab					X	X

Petrick's Method (cont.)

- For column 0, we must choose either P₁ or P₂ in order to cover minterm 0. Thus (P₁ + P₂) must be true.
- To cover minterm 1, P₁ + P₃ must be true, and etc.
- $P = (P_1 + P_2)(P_1 + P_3)(P_2 + P_4)(P_3 + P_5)(P_4 + P_6)(P_5 + P_6) = 1$
- This means: We must choose row P₁ or P₂, and row P₁ or P₃, and row P₂ or P₄, etc.

		*	0	1	2	5	6	7
P_1	(0, 1)	a'b'	*	X				
P_2	(0, 2)	a'c'	*		*			
P_3		b'c		X		X		
P_4	(2, 6)	bc'			*		Χ	
P_5	(5, 7)	ac				X		X
P_6	(6, 7)	ab					X	X

Petrick's Method (cont.)

• Then we simplify

$$\begin{split} P &= (P_1 + P_2)(P_1 + P_3)(P_2 + P_4)(P_3 + P_5)(P_4 + P_6)(P_5 + P_6) \\ &= (P_1 + P_2 P_3)(P_4 + P_2 P_6)((P_5 + P_3 P_6); \\ &= (P_1 P_4 + P_1 P_2 P_6 + P_2 P_3 P_4 + P_2 P_3 P_6)(P_5 + P_3 P_6) \\ &= (P_1 P_4 P_5 + P_1 P_2 P_5 P_6 + P_2 P_3 P_4 P_5 + P_1 P_3 P_4 P_6 + P_2 P_3 P_6) \end{split}$$

In other words, for P = 1 (to cover all minterms), we must choose row P_1 and P_4 and P_5 or row P_1 and P_2 and P_5 and P_6 or etc

There are five to choose. We choose $P_1P_4P_5$ or $P_2P_3P_6$.

			0	1	2	5	6	7
P_1	(0, 1)	a'b'	*	×				
P_2	(0, 2)	a'c'	*		*			
P_3	(1, 5)	b'c		X		X		
P_4	(2, 6)	bc'			*		X	
P_5	(5, 7)	ac				X		X
P_6	(6, 7)	ab					X	×

Simplification of Incompletely Specified Functions

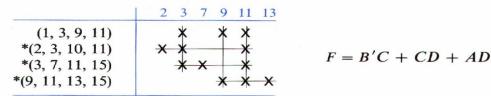
An incompletely specified function

$$F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$$

(the terms following d are don't cares)

The don't cares are treated like required minterms when finding the prime implicants:

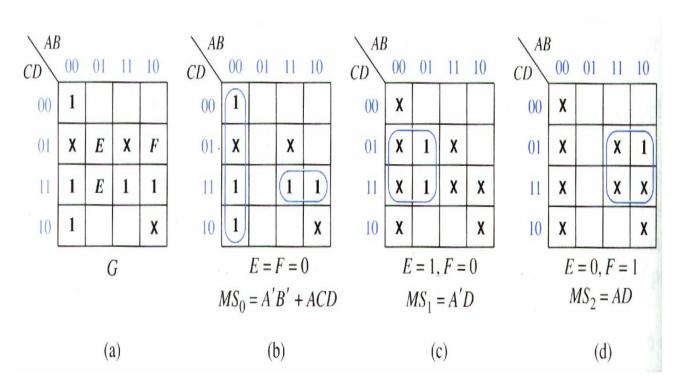
The don't care columns are omitted when forming the prime implicant chart:



^{*} indicates an essential prime implicant.

Simplification Using Map-Entered Variables

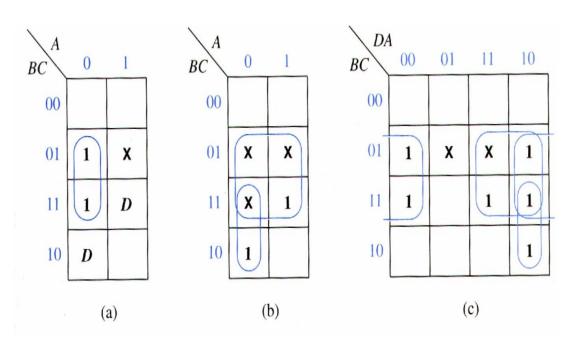
- Extend K-map for more variables.
 - When E appears in a square, if E = 1, then the corresponding minterm is present in the function G.
 - $G(A,B,C,D,E,F) = m_0 + m_2 + m_3 + Em_5 + Em_7 + Fm_9 + m_{11} + m_{15} + (don't care terms)$



Chap 6

Map-Entered Variable

- F(A,B,C,D) = A'B'C + A'BC + A'BC'D + ABCD + (AB'C), (don't care)
 - Choose D as a map-entered variable.
 - When D = 0, F = A'C (Fig. a)
 - When D = 1, F = C + A'B (Fig. b)
 - » two 1's are changed to x's since they are covered in Fig. a.
- F = A'C + D(C+A'B) = A'C + CD + A'BD



General View for Map-Entered Variable Method

- Given a map with variables P₁, P₂ etc, entered into some of the squares, the minimum SOP form of F is as follows:
- $F = MS_0 + P_1 MS_1 + P_2 MS_2 + ...$ where
 - MS_0 is minimum sum obtained by setting $P_1 = P_2 ... = 0$
 - MS_1 is minimum sum obtained by setting $P_1 = 1$, $P_j = 0$ ($j \ne 1$), and replacing all 1's on the map with don't cares.
- Previously, G = A'B' + ACD +EA'D + FAD.