Lecture 15 Sequential Circuit Design

- Example: Code converter
 - Put it all together using what we learn previously.
 - Inputs are received according to time t₀, t₁, t₂, t₃.

Table 16–1

X Input (BCD)	Z Output (excess-3)					
$t_3 t_2 t_1 t_0$	t_3 t_2 t_1 t_0					
0 0 0 0	0 0 1 1					
0 0 0 1	0 1 0 0					
0 0 1 0	0 1 0 1					
0 0 1 1	0 1 1 0					
0 1 0 0	0 1 1 1					
0 1 0 1	1 0 0 0					
0 1 1 0	1 0 0 1					
0 1 1 1	1010					
1 0 0 0	1 0 1 1					
1 0 0 1	1 1 0 0					

Code Converter

State table construction: least significant bit is received first.

- At t_1 , starting with B = 0, if the network receives X = 0, we call state D. This means 00 is received. We should give Z = 1 for input X = 0. (Check Table 16-1 for all 00s, we have Z=1 at t_1).

For input = 0, output = 1 (Check T 16-1 at t_0)

Time	Input Sequence Received (Least Significant Bit First)	Present State	Next State $X = 0$ 1	Present Output (Z X = 0		
t_0	reset	A	B C	1		
<i>t</i> ₁	0 1	B C	D F E G	1 0		
t ₂	00 01 10 11	D E F G	H L I M J N K P	0 1 1 1		
t ₃	000 001 010 011 100 101 110	H I J K L M N	A A A A A - A - A - A - A - A -	0 0 0 0 0 1 1		

Code Converter (cont.)

- Or construct the state graph first.

• Starting at \underline{t}_3 , path 0000 has outputs 0011 as given in Table 16-1.

Code Converter (cont.)

State reduction: find the equivalent states.

Table 16–2

State Table for Code Converter

	Input Sequence Received (Least Significant	Present	Next St	ate	Prese Outpu	ent t (Z)
Time	Bit First)	State	X = 0	1	X = 0	1
t_0	reset	A	В	С	1	0
t_1	0	В	D	F	1	0
	1	С	E	G	0	1
	00	D	Н	L	0	1
t_2	01	E	Ι	M	1	0
	10	F	J	N	1	0
	11	G	K	Р	1	0
	000	H	A	A	0	1
	001	Ι	A	A	0	1
	010	J	A	-	0	-
t_3	011	K	A	_	0	-
-	100	L	A	-	0	-
	101	M	A	-	1	-
	110	N	A	-	1	-
	111	Р	A	_	1	_

Table 16–3 Reduced State Table for Code Converter

	Present	Next S	tate	Present Output (Z)			
Time	State	X = 0	1	X = 0	1		
t_0	A	В	С	1	0		
t_1	В	D	E	1	0		
	С	E	\boldsymbol{E}	0	1		
t_2	D	Н	Н	0	1		
	E	H	M	1	0		
t_3	Н	A	A	0	1		
	М	A	—	1	-		

Code Converter (cont.)

- State assignment
- State B and C, D and E, H and M should be given adjacent assignments.
- State A,B,E,M, state C, D, and H should be given adjacent assignments. G3. (Output)

Code Converter (cont.)

Find the Q⁺ map, and then the FF input equations.

Iterative Circuits

- Same operation in each cell.
- Parallel inputs/parallel outputs
- Combinational cells
 - Primary inputs X_i
 - Primary output Z_i
 - Secondary input a_i
 - Secondary output a $_{i+1}$

A Comparator

• Compare two binary numbers

- $X = x_1 x_2 \dots x_n$ and $Y = y_1 y_2 y_3 \dots y_n$

– The left bit is the most significant bit.

- Comparison proceeds from left to right.
- To the left of cell *i*, *either* X=Y, X>Y, or X<Y
 These input conditions called S₀, S₁, S₂
 S_{i+1} is output state at the right of cell i with the input x_i y_i and the input state at the left of the cell (S_i)

TABLE 16-4

State Table

for Comparator

A Cell in the Comparator

TABLE 16-5 Transition Table for Comparator

	i i				
a _i b _i	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
0 0	00	10	00	01	010
01	01	01	01	01	001
10	10	10	10	10	100

FIGURE 16-7 Typical Cell for Comparator

 $b_{i+1} = b_i + x_i y_i' a_i'$

End Cells in the Comparator

- For the left end cell, a₁= b₁ = 0. Can be used to simplify the equation for this cell.
- Output $Z_1 (X < Y) = 1 (S_2 = 10 = a_{n+1} b_{n+1})$, 11 is not used.

Sequential Circuit Version

- Inputs are received serially.
- Use the same table (state table)
- The same next state equations.

Sequential Circuits Using ROMs

- ROM for combinational parts
- 7 states: 3 D FFs => 4 outputs/4 inputs

TABLE 16-6

(a) State table

			Prese	nt	(b) Transition table							
Present N	Next St	Next State		itate Output (Z)				Q10	$Q_2^+ Q_3^+$	Z		
State	X = 0	1	X = 0	1		$Q_1 Q_2 Q_3$	X = 0	X = 1	X = 0	X = 1		
A	В	С	1	0	A	000	001	010	1	0		
В	D	E	1	0	В	001	011	100	1	0		
C	E	E	0	1	С	010	100	100	0	1		
D	Н	Η	0	1	D	011	101	101	0	1		
E	Н	М	1	0	E	100	101	110	1	0		
Н	A	A	0	1	Н	101	000	000	0	1		
М	A	-	1	*	М	110	000	-	1	_		

Sequential Circuits Using ROMs

- ROM for combinational parts
- 7 states: 3 D FFs => 4 outputs/4 inputs

Sequential Circuits Using PLAs

 For PLA, this table uses 4 inputs/4 outputs, 13 products terms (excluding xxxx)

Sequential Circuits Using PLAs

• For PLA, this table uses 4 inputs/4 outputs and 7 product terms. (Fig 16-2 assignment)

$$D_{1} = Q_{1}^{+} = Q_{2}^{\prime}$$

$$D_{2} = Q_{2}^{+} = Q_{1}$$

$$D_{3} = Q_{3}^{+} = Q_{1}Q_{2}Q_{3} + X^{\prime}Q_{1}Q_{3}^{\prime} + XQ_{1}^{\prime}Q_{2}^{\prime}$$

$$Z = X^{\prime}Q_{3}^{\prime} + XQ_{3}$$

TABLE 16-7	X	Q_1	Q_2	Q_3	Z	D_1	D_2	D_3	
	-	-	0	-	0	1	0	0	
	-	1	+-	-	0	0	1	0	
	-	1	1	1	0	0	0	1	
	0	1	-	0	0	0	0	1	
	1	0	0	-	0	0	0	1	
	0	-	-	0	1	0	0	0	
	1	-	-	1	1	0	0	0	

PALs for Sequential Circuit

- Programmable AND array.
- $Q^+ = D = A'BQ' + AB'Q$

CPLDs for Sequential Circuit

- CPLD = function blocks + MCs + AIM + I/Os + etc
 - PLA in each function block
 - AIM: advanced interconnection matrix
 - Macocell = MUXs + FFs (or latches)
 - Dual-edge triggered FF

A Macrocell

• CPLD

CPLDs for Sequential Circuit

- CPLD for a Mealy machine
- 4 macrocells
 - Two for D FF inputs
 - Two for output Z

FPGAs for Sequential Circuit

- FPGA = configurable logic blocks (CLB) + I/O blocks + (memory blocks + CLK generators + tri-state buffers)
- CLB = LUTs + MUXes + D-CE FFs
- I/O block = FFs (for I/O) + tri-state buffers

FPGAs for Sequential Circuit

- FPGA for a Mealy machine
 - FG: functional generator

Simulations

- Functional level
 - Sequence of transfers btw registers, ALU, memories.
 - Verify high level system design
- Logic level
 - Logic gates, FF, and interconnection
 - Verify logic design and analyze timing
- Circuit level
 - Each gate is represented in transistors, R, C.
 - Information about voltage level and switching speed.

Delays

- Unit delay model for simulation at first.
- Minimum Nominal- Maximum delay
- Shaded area indicates that B may change at any time during this interval.

Synchronizer Circuits

- Purpose: Synchronize the inputs w.r.t. clock.
 - X_{1s} and X_{2s} always change immediately following the clock pulse.

(a) Synchronizer circuit

(b) Synchronizer inputs and outputs

Synchronizer Circuits

- This synchronizer may fail if the FF enters the metastable state.
 - When the signal that is sampled is not stable for the required set-up time and hold time. The FF may go into a metastable state where the output will not have a legitimate high or low value, but in an indeterminate region between them.
 - The FF can not be guaranteed to exit the metastable in any bounded time. But the probability of the FF in the metastable state decreases exponentially with time.
 - So, the solution is to wait more time until the output is stable.

Synchronizer Circuits

- This synchronizer will work properly if the period of metastability is less than the clock period.
 - The first output of the D FF may be metastable, it will not be seen by other logic element until the second clock, when the second D FF samples the signal, which by that time should no longer be in a metastable state. It does not matter whether X_{1s} is delayed for one or two clocks.

