
Chap 15 1

Lecture 14

Reduction of State Tables

• Elimination of redundant states

• Problem: input X and output Z.

If input forms 0101 or 1001,

then Z = 1. The network resets

after every four inputs.

 X = 0101 0010 1001 0100

 Z = 0001 0000 0001 0000

 reset reset reset

Chap 15 2

Elimination of redundant

states

• Designate each next state as a

bit is received. We may have

redundant states. 0101 or 1001

Chap 15 3

Elimination of redundant states

• Find the equivalent states and

eliminate those that have the same next

state and outputs.

– (I, K, M, N, P => H, keep H)

Chap 15 4

Elimination of redundant

states (cont.)

• Row matching: sufficient only to network

reset to the starting state after receiving a fixed

number of inputs.

Chap 15 5

Equivalent States ≡

• Equivalent: two states are

equivalent if there is no way of

telling them apart from

observation of network inputs

and outputs.
– N1: started in state p

– N2: started in state q.

– For every possible input sequence X,

the output sequences are the same (Z1

and Z2). Then we say that p is

equivalent to q.

Chap 15 6

Equivalent States

• State p in N1.

• State q in N2.

– Output sequence is a function of

the initial state and input sequence.

Then,

• We have Z1 = λ1(p,X) and Z2= λ2 (q,

X).

• State p in N1 is equivalent to state q

in N2 iff Z1 = Z2 for every possible

input sequence X.

• X = X1, X2, X3 ….

• Z1 = Z1, Z2, Z3…..

Chap 15 7

Theorem

• Two states p and q of a

sequential network are

equivalent iff for every single

input X, the outputs are the

same and the next states are

equivalent, that is,

• λ(p,X) = λ(q,X) (output) and

• δ(p, X) ≡ δ(q, X) (next state)

 Where λ(p,X) is the output given the

present state p and input X and δ(p,

X) is the next state given the present

state p and input X.

Chap 15 8

Application of the

Theorem

• Are S0 and S2 equivalent?
• Present output is the same for S0 and

S2.

• S0 ≡ S2 iff S3 ≡ S3, S2 ≡ S0, S1 ≡ S1

and S0 ≡ S1. But S0 ≡ S1 (due to

outputs.)

• The answer is No.

Chap 15 9

Implication Table for State

Equivalence

• Use an implication table (pair chart) to check each

pair of states for possible equivalence.

Chap 15 10

Implication Table for State

Equivalence (cont.)

• a ≡ b iff d ≡ f and c ≡ h. This “implied pair”

is placed in a-b square. Self-implied pairs

are redundant. So eliminate them.

a ≡ d iff

a ≡ d and

c ≡ e.

Chap 15 11

Implication Table for State

Equivalence (cont.)

• For a-b square, we need d≡f and c≡h for

a≡b. But in the d-f square we see a X

which means that d is not equivalent to f.

So a is not equivalent to b. We place a X in

the a-b square.

• For a-d square, square c-e does not contain

a X. So at this point, we can not determine

whether a ≡d.

• Do the first pass column by column.

Chap 15 12

Implication Table for State

Equivalence (cont.)

• After the first pass, we do the second pass

from a column again. Then, we do the

third pass and find no new X’s are added.

Then the process terminates.

• The result is a ≡d and c ≡e.

• So we replace d with a and e with c and

eliminate row d and e.

Chap 15 13

Equivalent Sequential

Networks

• Sequential network N1 is

equivalent to sequential network

N2 if for each state p in N1 there

is a state q in N2 such that p  q,

and conversely, for each state s

in N2 there is a state t in N1 such

that s  t.

• That is, for N1 and N2, the

output sequences are the same

for the same input sequences.

Chap 15 14

Equivalent Sequential

Networks (cont.)

• A  S2? (output is the same). IF A  S2,

then B  S0. This further implies D  S1

and C  S3. This is true from the table.

(Next states are equivalent and outputs are

the same.)

Chap 15 15

Equivalent Sequential

Networks (cont.)

• Using implication table to determine

network equivalence, place X in the square

for different outputs for the compared pair.

A  S2, B  S0, etc

Chap 15 16

Incompletely Specified

State Table

• Problem statement

– X only has X = 100 and X = 110

sequence

– Z for X = 100 is 0.

– Z for X = 110 is 1.

– Come up each possible state.

Chap 15 17

Incompletely Specified

State Table(cont.)

• Unspecified states or outputs.
• For the next state of S0, X = 0 does

not occur. (S0 : reset)

• Entering t1, we have S2 or S3 two

states depending on X.

• Fill in don’t cares for row matching.

Chap 15 18

Derivation of Flip-Flop Input

Equations

• 3 FFs for 7 states

Chap 15 19

Equivalent State Assignment

• State assignment for 3 states S0,

S1, and S2. (Table 14-, 101 detector)

• We need 2 FFs. S0 can have 00, 01,

10, or 11. In this way, there are

4x3x2x1 = 24 possible combinations

to evaluate.

• Assignment 1 and assignment 3 has

the same cost. Since only the

labeling of FF is changed. (change

column = same cost)

• Assignment 4 and 6 has row change.

They will have different cost.

Same cost

 Different cost
AB

Chap 15 20

Interchanging or Complementing

State Assignment

• Assignment b: interchanging the column of

a

• Assignment c: complementing the columns

of a.

– For J-K FF, the cost is the same for all three

assignments for any kind of logic gates.

– For D FF, if AND and OR gates are available,

then the cost is the same.

Chap 15 21

Minimum Cost Realization of

State Assignment
• Nonequivalent assignment: by eliminating

states that can be obtained by permuting or

complementing columns.

– We can complement one or more columns. So

any state assignment can be converted to one in

which the first state is assigned all 0’s.

– For symmetrical FFs, need only to try three

assignments for minimum cost.

– The number of distinct states increases rapidly

as the number of states increases.

Chap 15 22

Guidelines for State

Assignment

• Try to places 1’s on the FF

input maps in adjacent squares.
• 1: States which have the same next

state for a given input should be

given adjacent assignment.

• 2: States which are the next states of

the same state should be given

adjacent assignment.

• 3: States which have the same

output for a given input should be

given adjacent assignment (for

output simplification.)

Chap 15 23

Guidelines for State

Assignment: Example

• G1: (S0, S1,S3, S5) (S3, S5) (S4,S6)

(S0,S2,S4,S6) S1 as the next state.

• G2: (S1, S2) (S2, S3) (S1,S4) (S2,S5)2x

(S1,S6)2x

• Try to fulfill as many of these

adjacency conditions as possible.

• G1 preference > G2 preference.

Chap 15 24

Why is it a better assignment?

• Next state map shows that S1 appears in

four adjacent squares, and etc. Example: S1

= 110

S1 = 110
S5 =101

Chap 15 25

On State Assignment

• In some cases, the assignment

which satisfies the most

guidelines is not necessarily the

best assignment. Therefore, it is

a good idea to try several

assignments which satisfy most

of the guidelines and choose the

one which gives the lowest cost

function.

• In general, the best assignment

for one type of flip-flop is not

the best for another type.

Chap 15 26

 State Assignment for CPLDs

• In CPLDs, FPGAs, a logic cell has

one or more FFs.

• FFs are there whether used or not.

– May not be important to minimize the #

of FFs used in the design.

• Need to reduce the logic cells used

and the interconnection between

cells for shorter delay. LCs are

cascaded to realize a function. So

min # of LCs !!

• In order design fast logic, minimize

the # of cells used.

FF0

to

FFi

A logic cell
FF0

to

FFi

cascaded

Delay

Chap 15 27

One-Hot State Assignment

• Use one FF for each state.

• For a 4-state machine, use 4 FFs.

– S0 =Q0Q1Q2Q3 = 1000, S1 :0100, S2: 0010,

S3:0001.

– Q3
+ = X1(Q0Q1

’Q2
’Q3

’) + X2(Q0
’Q1Q2

’Q3
’) +

X3(Q0
’Q1

’Q2Q3
’) + X4(Q0

’Q1
’Q2

’Q3) : this is

AND

– Q3
+ = X1Q0 + X2Q1 + X3Q2 + X4Q3 reduced Q+

– Each term contains only one state variable (fewer

variables).

– More next-state equations are required (FFs are

there.)

– One FF is reset to 1 instead of resetting all FFs

to 0 when resetting the system.

– But next state and output equations may contain

fewer variables, meaning that fewer logic cells

are required.

Z2 = X2Q1 + X4 Q3

Chap 15 28

IN CPLD and FPGA

• Try both for state assignment

– Minimum number of states

– One-hot assignment

– And see which leads to the use of

the smallest number of logic cells.

• Less delays, higher speed!

