Lecture 14 Reduction of State Tables

- Elimination of redundant states
- Problem: input X and output Z. If input forms 0101 or 1001, then Z = 1. The network resets after every four inputs.

reset reset reset

Elimination of redundant states

• Designate each next state as a bit is received. We may have redundant states. 0101 or 1001

Table 15–1

State Table for Sequence Detector

Input Present		Next	State	Pre Out	Output		
Sequence	State	X = 0	X = 1	X = 0	X = 1		
reset	A	В	C	0	0		
0	В	D	E	0	0		
1	С	F	G	0	0		
00	D	Н	Ι	0	0		
01	E	J	K	0	0		
10	F	L	M	0	0		
11	G	N	Р	0	0		
000	Н	A	A	0	0		
001	Ι	A	A	0	0		
010	J	A	A	0	1		
011	K	A	A	0	0		
100	L	A	A	0	1		
101	M	A	A	0	0		
110	N	A	A	0	0		
111	Р	A	A	0	0		

Elimination of redundant states

• Find the equivalent states and eliminate those that have the same next state and outputs.

- (I, K, M, N, P => H, keep H)

Table 15-2

State Table for Sequence Detector

Present	Next	State	Pre	sent tput
State	X = 0	X = 1	X = 0	X = 1
A	В	С	0	0
В	D	E	0	0
С	F Ε	G D	0	0
D	Н	X H	0	0
Ε	J	ĶΗ	0	0
F	LJ	MH	0	0-
-G	N H	RH	0	0
Н	A	A	0	0
1	A	A	0	0
J	A	A	0	1
K	A	A	0	
<u> </u>	A	A	0	<u> </u>
<u>M</u>	A	A	0	0-
N	A	A	0	0
P	A	A	0	0

Elimination of redundant states (cont.)

• Row matching: sufficient only to network reset to the starting state after receiving a fixed number of inputs.

Present	Next	State	Ou	tput	\cap
State	X = 0	<i>X</i> = 1	X = 0	X = 1	
A	В	С	0	0	
В	D	E	0	0	
C	Ε	D	0	0	
D	Н	H	0	0	$\left(\begin{array}{c}B\end{array}\right)_{1}$
E	J	H	0	0	
Н	A	A	0	0	$ \% \rangle \times \% \rangle $
J	A	A	0	1	
		(a)			$ \begin{array}{c c} D \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} E \\ 0 \\ 0 \\ 0 \end{array} $
					$\begin{pmatrix} H \end{pmatrix}$
					(h)
					(0)

Equivalent States \equiv

- Equivalent: two states are equivalent if there is no way of telling them apart from observation of network inputs and outputs.
 - N_1 : started in state p
 - N₂: started in state q.
 - For every possible input sequence X, the output sequences are the same (Z₁ and Z₂). Then we say that p is equivalent to q.

Figure 15-2

Equivalent States

- State p in N₁.
- State q in N₂.
 - Output sequence is a function of the initial state and input sequence. Then,
 - We have $\underline{Z}_{\underline{1}} = \lambda_1(\mathbf{p}, \underline{X})$ and $\underline{Z}_{\underline{2}} = \lambda_2$ (q, \underline{X}).
 - State p in N₁ is *equivalent* to state q in N₂ iff $\underline{Z_1} = \underline{Z_2}$ for every possible input sequence X.
 - $\underline{X} = X1, X2, X3 \dots$
 - $\underline{Z}_{\underline{1}} = Z1, Z2, Z3....$

Theorem

- Two states p and q of a sequential network are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, that is,
- $\lambda(p,X) = \lambda(q,X)$ (output) and
- $\delta(p, X) \equiv \delta(q, X)$ (next state) Where $\lambda(p, X)$ is the output given the present state p and input X and $\delta(p, X)$

X) is the next state given the present state p and input X.

Application of the Theorem

- Are S₀ and S₂ equivalent?
 - Present output is the same for S₀ and S₂.
 - $S_0 \equiv S_2$ iff $S_3 \equiv S_3$, $S_2 \equiv S_0$, $S_1 \equiv S_1$ and $S_0 \equiv S_1$. But $S_0 \equiv S_1/(due to outputs.)$
 - The answer is No.

TABLE 13-4 A State Table with Multiple Inputs and Outputs

Present	t Next State				Present (ent Output (Z_1Z_2)		
State	$X_1 X_2 = 00$	01	10	11	$X_1 X_2 = 00$	01	10	11
So	S3	S2	S	S ₀	00	10	11	01
S ₁	So	S	S2	S ₃	10	10	11	11
S2	S3	S ₀	<i>S</i> ₁	S1	00	10	11	01
S ₃	S ₂	S ₂	S ₁	So	00	00	01	01

Implication Table for State Equivalence

• Use an implication table (pair chart) to check each pair of states for possible equivalence.

Table 15-3

Present	Next St	ate	Present
State	X = 0	1 .	Output
а	d	с	0
b	f	h	0
С	е	d	1
d	а	е	0
е	С	а	1
f	f	b	1
g	b	h	0
h	С	g	1

Figure 15–3 Implication Chart for Table 15–3

Implication Table for State Equivalence (cont.)

a ≡ *b* iff *d* ≡ *f* and *c* ≡ *h*. This "implied pair" is placed in *a*-*b* square. Self-implied pairs are redundant. So eliminate them.

Table 15–3			
	Present State	Next State $X = 0$ 1	Present Output
	а	d c	0
	b	f h	0
	С	e d	1
	d	a e	0
	е	c a	1
	f	f b	1
	g	b h	0
	h	c g	1

Figure 15–3 Implication Chart for Table 15–3

Implication Table for State Equivalence (cont.)

- For *a-b* square, we need *d*≡*f* and *c*≡*h* for *a*≡*b*. But in the *d-f* square we see a X which means that *d* is not equivalent to *f*. So *a* is not equivalent to *b*. We place a X in the *a-b* square.
- For *a*-*d* square, square *c*-*e* does not contain a X. So at this point, we can not determine whether *a* ≡*d*.
- Do the first pass column by column.

Implication Table for State Equivalence (cont.)

- After the first pass, we do the second pass from *a* column again. Then, we do the third pass and find no new X's are added. Then the process terminates.
- The result is $a \equiv d$ and $c \equiv e$.
- So we replace *d* with *a* and *e* with *c* and eliminate row *d* and *e*.

Implication Chart After Second Pass

Equivalent Sequential Networks

- Sequential network N_1 is equivalent to sequential network N_2 if for each state p in N_1 there is a state q in N_2 such that $p \equiv q$, and conversely, for each state s in N_2 there is a state t in N_1 such that $s \equiv t$.
- That is, for N₁ and N₂, the output sequences are the same for the same input sequences.

Equivalent Sequential Networks (cont.)

• $A \equiv S_2$? (output is the same). IF $A \equiv S_2$, then $B \equiv S_0$. This further implies $D \equiv S_1$ and $C \equiv S_3$. This is true from the table. (Next states are equivalent and outputs are the same.)

		N		
	X = 0	1	X = 0	1
A	В	A	0	0
В	С	D	0	1
С	A	С	0	1
D	С	В	0	0

		N ₂		
	X = 0	Ĩ	X = 0	1
S_0	S ₃	S_1	0	1
S ₁	S ₃	So	0	0
S_2	So	S_2	0	0
S ₃	S ₂	S_3	0	1

Equivalent Sequential Networks (cont.)

• Using implication table to determine network equivalence, place X in the square for different outputs for the compared pair.

	X = 0	1 2	X = 0	1
	A = 0		A = 0	
S ₀	S ₃	S ₁	0	1
S ₁	S ₃	S ₀	0	0
S_2	S ₀	S ₂	0	0
\mathfrak{d}_3	S_2	33	0	1

(a)

 $A \equiv S_2, B \equiv S_0, etc$

Figure 15–7 Implication Tables for Determining Network Equivalence

Incompletely Specified State Table

- Problem statement
 - X only has X = 100 and X = 110 sequence
 - Z for X = 100 is 0.
 - Z for X = 110 is 1.
 - Come up each possible state.

 $\frac{t_0 \ t_1 \ t_2}{X = 1 \ 0 \ 0} \qquad \qquad Z = - - 0 \\ - - 1 \qquad (- \text{ is a don't care output})$ Network A $\frac{X}{X} \qquad B \\ Sequential Network \\ Subsystem \\ \hline X \qquad Network C$

Incompletely Specified State Table(cont.)

- Unspecified states or outputs.
 - For the next state of S_0 , X = 0 does not occur. (S_0 : reset)
 - Entering t₁, we have S₂ or S₃ two states depending on X.
 - Fill in don't cares for row matching.

Table 15–5

Incompletely Specified State Table

*	X = 0	1	0	1		X = 0	1	0	1		X = 0	1	0	1
S_0	-	S_1	_	-	S ₀	(S_0)	S_1	(0)	-	S ₀	S_0	S_1	0	+
S_1	S_2	S_3	-	_	S_1	Sg So	S_3	(1)	-	S ₁	S_0	S_1	1	-
S_2	S_0	_	0	-	S_2	S_0	(S_1)	0	-					_
<i>S</i> ₃	S ₀	-	1	-	S ₃	S ₀	(S ₃)	1	-					
	(8	a)				(b))				(0	;)		
						$S_0 \equiv S_2,$	$S_1 \equiv S$	3						

Derivation of Flip-Flop Input Equations

• 3 FFs for 7 states

TABLE 15-6

	(a) Stat	le table				(b
	X = 0	1	0	1		
So	S1	52	0	0	ABC	X
S1	S ₃	5,	0	0	000	
S2	51	54	0	0	110	
S ₃	Ss	5,	0	0	001	
S_4	S1	56	0	0	111	
Ss	Ss	52	1	0	011	
Se	S ₁	Se	0	1	101	
		-0			010	

(b) Transition table

	A^+B^+	C+	2	Ζ
ABC	<i>X</i> = 0	1	0	1
000	110	001	0	0
110	111	001	0	0
001	110	011	0	0
111	101	001	0	0
011	110	010	0	0
101	101	001	1	0
010	110	010	0	1

(a) Derivation of D flip-flop input equations

(b) Derivation of J-K flip-flop input equations

Equivalent State Assignment

- State assignment for 3 states S_0 ,
 - S_1 , and S_2 . (Table 14-, 101 detector)
 - We need 2 FFs. S₀ can have 00, 01, 10, or 11. In this way, there are 4x3x2x1 = 24 possible combinations to evaluate.
 - Assignment 1 and assignment 3 has the same cost. Since only the labeling of FF is changed. (change column = same cost)
 - Assignment 4 and 6 has row change. They will have different cost.

Interchanging or Complementing State Assignment

- Assignment b: interchanging the column of a
- Assignment c: complementing the columns of a.
 - For J-K FF, the cost is the same for all three assignments for any kind of logic gates.
 - For D FF, if AND and OR gates are available, then the cost is the same.

11 45

	Assignments			Present	Next State	Output	
	"a"	"Ъ"	"с"	State	X = 0 1	0	1
	00	00	11	S ₁	$S_1 S_3$	0	0
	01	10	10	S ₂	$S_2 S_1$	0	1
	10	01	01	S ₃	$S_2 S_3$	1	0
Assignment "a" $J_{1} = XQ'_{2}$ $K_{1} = X'$ $J_{2} = X'Q_{1}$ $K_{2} = X$ $Z = X'Q_{1} + XQ$	2_2	$ \begin{array}{c} $	$Signmer$ $= XQ'_{1}$ $= X'$ $= X'Q_{2}$ $= X$ $= X'Q_{2}$	$+ XQ_1$	Assignment "c" $K_{1} = XQ_{2}$ $J_{1} = X'$ $K_{2} = X'Q'_{1}$ $J_{2} = X$ $Z = X'Q'_{1} + XQ'_{2}$		
$D_1 = XQ_2'$		$D_2 =$	$= XQ'_1$		$D_1 = X' + Q_2'$		

 $D_2 = X'(Q_1 + Q_2)$ $D_1 = X'(Q_2 + Q_1)$ $D_2 = X + Q_1Q_2$

Minimum Cost Realization of State Assignment

- Nonequivalent assignment: by eliminating states that can be obtained by permuting or complementing columns.
 - We can complement one or more columns. So any state assignment can be converted to one in which the first state is assigned all 0's.
 - For symmetrical FFs, need only to try three assignments for minimum cost.
 - The number of distinct states increases rapidly as the number of states increases.

Table 15–10

Nonequivalent Assignments for 3 and 4 States

States	3-Sta	te Assigni	ments	4-State Assignments		
	1	2	3	1	2	3
а	00	00	00	00	00	00
b	01	01	11	01	01	11
С	10	11	01	10	11	01
d				11	10	10

Guidelines for State Assignment

- Try to places 1's on the FF input maps in adjacent squares.
 - 1: States which have the same next state for a given input should be given adjacent assignment.
 - 2: States which are the next states of the same state should be given adjacent assignment.
 - 3: States which have the same output for a given input should be given adjacent assignment (for output simplification.)

Guidelines for State Assignment: Example

- $G_1: (S_0, S_1, S_3, S_5) (S_3, S_5) (S_4, S_6)$ $(S_0, S_2, S_4, S_6) \rightarrow S_1$ as the next state.
- G_2 : $(S_1, S_2) (S_2, S_3) (S_1, S_4) (S_2, S_5) 2x$ $(S_1, S_6) 2x$
- Try to fulfill as many of these adjacency conditions as possible.
- G₁ preference > G₂ preference.

ABC		X = 0	1	0	1
000	S_0	S_1	S_2	0	0
110	S_1	S_3	S_2 .	0	0
001	S_2	S_1	S_4	0	0
111	S_3	S_5	S_2	0	0
011	S_4	S_1	S ₆	0	0
101	S_5	S_5	S_2	1	0
010	S_6	S_1	S_6	0	1
	(a	a) state ta	ble		

(b) assignment maps

Why is it a better assignment?

• Next state map shows that S_1 appears in four adjacent squares, and etc. Example: S_1 = 110

(b) Next state maps for Fig. 15-14 (cont.)

On State Assignment

- In some cases, the assignment which satisfies the most guidelines is not necessarily the best assignment. Therefore, it is a good idea to try several assignments which satisfy most of the guidelines and choose the one which gives the lowest cost function.
- In general, the best assignment for one type of flip-flop is not the best for another type.

State Assignment for CPLDs

- In CPLDs, FPGAs, a logic cell has one or more FFs.
- FFs are there whether used or not.
 - May not be important to minimize the # of FFs used in the design.
- Need to reduce the logic cells used and the interconnection between cells for shorter delay. LCs are cascaded to realize a function. So min # of LCs !!
- In order design fast logic, minimize the # of cells used.

26

A logic cell

One-Hot State Assignment

- Use one FF for each state.
- For a 4-state machine, use 4 FFs.
 - $S_0 = Q_0 Q_1 Q_2 Q_3 = 1000, S_1 : 0100, S_2: 0010, S_3: 0001.$
 - $Q_{3}^{+} = X_{1}(Q_{0}Q_{1}^{'}Q_{2}^{'}Q_{3}^{'}) + X_{2}(Q_{0}^{'}Q_{1}Q_{2}^{'}Q_{3}^{'}) + X_{3}(Q_{0}^{'}Q_{1}^{'}Q_{2}Q_{3}^{'}) + X_{4}(Q_{0}^{'}Q_{1}^{'}Q_{2}^{'}Q_{3}) : \text{this is}$ AND
 - $Q_3^+ = X_1 Q_0 + X_2 Q_1 + X_3 Q_2 + X_4 Q_3^{\text{reduced } Q^+}$
 - Each term contains only one state variable (fewer variables).
 - More next-state equations are required (FFs are there.)
 - One FF is reset to 1 instead of resetting all FFs to 0 when resetting the system.

 But next state and output equations may contain fewer variables, meaning that fewer logic cells are required.

IN CPLD and FPGA

- Try both for state assignment
 - Minimum number of states
 - One-hot assignment
 - And see which leads to the use of the smallest number of logic cells.
 - Less delays, higher speed!